首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Oxidation of carbon monoxide and methane by Pseudomonas methanica.   总被引:18,自引:0,他引:18  
The oxidation of carbon monoxide and methane by suspensions and ultrasonic extracts of Pseudomonas methanica was studied. A continuous assay for the oxidation of CO to CO2 was devised, using O2 and CO2 electrodes in combination. Stoicheiometries of CO-dependent CO2 formation, O2 consumption and NADH oxidation, and the partial stoicheiometries of methane-dependent NADH oxidation, suggest the involvement of a mono-oxygenase in these oxidations. Evidence is presented suggesting methane and CO oxidation are catalysed by a single enzyme system, distinct, at least in part, from the NADH oxidase present in extracts. Ethanol was able to provide the reductant necessary for CO oxidation by cell suspensions, though the metabolism of ethanol by P. methanica was found unlikely to result in substrate-level formation of NADH; the means whereby alcohol oxidation could supply reductant for the mono-oxygenase are discussed.  相似文献   

2.
After the occurrence of nitrate-dependent anaerobic methane oxidation (AMO) in rumen fluid culture was proved, the organisms that perform the denitrifying anaerobic methane oxidizing (DAMO) process in the rumen of dairy goat were investigated by establishing two enrichment culture systems, which were supplied with methane as the sole carbon source and NaNO3 or NaNO2 as the electron acceptor. Several Operational Taxonomic Units (OTU) belonging to Proteobacteria became dominant in the two enrichment systems. The identified Pseudomonas aeruginosa, which was isolated from the NaNO2 enrichment system, could individually perform a whole denitrifying anaerobic methane oxidizing process. Further in vitro rumen fermentation showed that supplementation with the isolated P. aeruginosa could reduce methane emissions, alleviate the nitrite accumulation and prevent the decrease in propionic acid product caused by nitrate supplementation.  相似文献   

3.
Methanococcus thermolithotrophicus can use either H2 or formate as the electron donor for methanogenesis from CO2. Resuspended-cell experiments revealed that the ability to use H2 as the source of electrons for methanogenesis was constitutive; cells grown on formate or H2-CO2 were equally capable of H2-CO2 methanogenesis. The ability to metabolize formate at high rates was observed only in cells previously grown on formate. Two such strains were distinguished: strain F and strain HF. Strain F was repeatedly grown exclusively on formate for over 3 years; this strain showed a constitutive capacity to metabolize formate to methane, even after subsequent repeated transfers to medium containing only H2-CO2. Strain HF could only metabolize formate to methane when grown in the presence of formate with no H2 present; this strain was recently derived from another strain (H) that had been exclusively grown on H2-CO2 and which upon initial transfer to formate medium could only metabolize formate to methane at a very slow rate. Initial adaptation of strain H to growth on formate was preceded by a long lag. The specific activities of hydrogenase and formate dehydrogenase in cell extracts derived from these different strains confirmed these findings. Similar levels of hydrogenase were observed in all strains, independent of the presence of H2 in the growth medium medium. High levels of formate dehydrogenase were also constitutive in strain F. Only low formate dehydrogenase activities were observed in strain H. High levels of formate dehydrogenase were observed in strain HF only when these cells were grown with formate in the absence of H2. In all strains the two- to threefold fluctuations of both hydrogenase and formate dehydrogenase cell-free activities were observed during growth, with peak activities reached in the middle of the exponential phase.  相似文献   

4.
Trichloroethylene (TCE) oxidation was examined in 9 different methanotrophs grown under conditions favoring expression of the membrane associated methane monooxygenase. Depending on the strain, TCE oxidation rates varied from 1 to 677 pmol/min/mg cell protein. Levels of TCE in the reaction mixture were reduced to below 40 nmolar in some strains. Cells incubated in the presence of acetylene, a selective methane monooxygenase inhibitor, did not oxidize TCE.Cultures actively oxidizing TCE were monitored for the presence of the soluble methane monooxygenase (sMMO) and membrane associated enzyme (pMMO). Transmission electron micrographs revealed the cultures always contained the internal membrane systems characteristic of cells expressing the pMMO. Naphthalene oxidation by whole cells, or by the cell free, soluble or membrane fractions was never observed. SDS denaturing gels of the membrane fraction showed the polypeptides associated with the pMMO. Cells exposed to 14C-acetylene showed one labeled band at 26 kDa, and this protein was observed in the membrane fraction. In the one strain examined by EPR spectroscopy, the membrane fraction of TCE oxidizing cells showed the copper complexes characteristic of the pMMO. Lastly, most of the strains tested showed no hybridization to sMMO gene probes. These findings show that the pMMO is capable of TCE oxidation; although the rates are lower than those observed for the sMMO.  相似文献   

5.
The role of the storage lipid poly-β-hydroxybutyrate (PHB) in trichloroethylene transformation by methanotrophic mixed cultures was investigated. Naphthalene oxidation rates were used to assay for soluble methane monooxygenase activity. The PHB content of methanotrophic cells grown in reactors varied diurnally as well as from day to day. A positive correlation between the amount of PHB in the cells and the naphthalene oxidation rate as well as between PHB and the trichloroethylene transformation rate and capacity was found. Addition of β-hydroxybutyrate increased the naphthalene oxidation rates significantly. PHB content in cells could be manipulated by incubation at different methane-to-nitrogen ratios. A positive correlation between the naphthalene oxidation rate and the PHB content after these incubations could be seen. Both the PHB content and the naphthalene oxidation rates decreased with time in resting methanotrophic cells exposed to oxygen. However, this decrease in the naphthalene oxidation rate cannot be explained by the decrease in the PHB content alone. Probably a deactivation of the methane monooxygenase itself is also involved.  相似文献   

6.
Inhibition of trichloroethylene (TCE) oxidation by the transformation intermediate carbon monoxide (CO) was evaluated with the aquifer methanotroph Methylomonas sp. strain MM2. CO was a TCE transformation intermediate. During TCE oxidation, approximately 9 mol% of the TCE was transformed to CO. CO was oxidized by Methylomonas sp. strain MM2, and when formate was provided as an electron donor, the CO oxidation rate doubled. The rate of CO oxidation without formate was 4.6 liter mg (dry weight)-1 day-1, and the rate with formate was 10.2 liter mg (dry weight)-1 day-1. CO inhibited TCE oxidation, both by exerting a demand for reductant and through competitive inhibition. The Ki for CO inhibition of TCE oxidation, 4.2 microM, was much less than the Ki for methane inhibition of TCE oxidation, 116 microM. CO also inhibited methane oxidation, and the degree of inhibition increased with increasing CO concentration. When CO was present, formate amendment was necessary for methane oxidation to occur and both substrates were simultaneously oxidized. CO at a concentration greater than that used in the inhibition studies was not toxic to Methylomonas sp. strain MM2.  相似文献   

7.
Butane monooxygenase (BMO) from Pseudomonas butanovora has high homology to soluble methane monooxygenase (sMMO), and both oxidize a wide range of hydrocarbons; yet previous studies have not demonstrated methane oxidation by BMO. Studies to understand the basis for this difference were initiated by making single-amino-acid substitutions in the hydroxylase alpha subunit of butane monooxygenase (BMOH-alpha) in P. butanovora. Residues likely to be within hydrophobic cavities, adjacent to the diiron center, and on the surface of BMOH-alpha were altered to the corresponding residues from the alpha subunit of sMMO. In vivo studies of five site-directed mutants were carried out to initiate mechanistic investigations of BMO. Growth rates of mutant strains G113N and L279F on butane were dramatically slower than the rate seen with the control P. butanovora wild-type strain (Rev WT). The specific activities of BMO in these strains were sevenfold lower than those of Rev WT. Strains G113N and L279F also showed 277- and 5.5-fold increases in the ratio of the rates of 2-butanol production to 1-butanol production compared to Rev WT. Propane oxidation by strain G113N was exclusively subterminal and led to accumulation of acetone, which P. butanovora could not further metabolize. Methane oxidation was measurable for all strains, although accumulation of 23 microM methanol led to complete inhibition of methane oxidation in strain Rev WT. In contrast, methane oxidation by strain G113N was not completely inhibited until the methanol concentration reached 83 microM. The structural significance of the results obtained in this study is discussed using a three-dimensional model of BMOH-alpha.  相似文献   

8.
Inhibition of trichloroethylene (TCE) oxidation by the transformation intermediate carbon monoxide (CO) was evaluated with the aquifer methanotroph Methylomonas sp. strain MM2. CO was a TCE transformation intermediate. During TCE oxidation, approximately 9 mol% of the TCE was transformed to CO. CO was oxidized by Methylomonas sp. strain MM2, and when formate was provided as an electron donor, the CO oxidation rate doubled. The rate of CO oxidation without formate was 4.6 liter mg (dry weight)-1 day-1, and the rate with formate was 10.2 liter mg (dry weight)-1 day-1. CO inhibited TCE oxidation, both by exerting a demand for reductant and through competitive inhibition. The Ki for CO inhibition of TCE oxidation, 4.2 microM, was much less than the Ki for methane inhibition of TCE oxidation, 116 microM. CO also inhibited methane oxidation, and the degree of inhibition increased with increasing CO concentration. When CO was present, formate amendment was necessary for methane oxidation to occur and both substrates were simultaneously oxidized. CO at a concentration greater than that used in the inhibition studies was not toxic to Methylomonas sp. strain MM2.  相似文献   

9.
Adsorption of pure cultures of methane oxidizing bacteria, Methylosinus trichosporium 20 and Methylococcus ucrainicus 21, on glass and coal was studied; the former strain was sorbed on both sorbents, the latter strain was sorbed on coal but not on glass. The rate of methane oxidation by the cells of adsorbed microorganisms was higher than in the case of free cells, and increased with a decrease in dimensions of the sorbent particles.  相似文献   

10.
The role of the storage lipid poly-beta-hydroxybutyrate (PHB) in trichloroethylene transformation by methanotrophic mixed cultures was investigated. Naphthalene oxidation rates were used to assay for soluble methane monooxygenase activity. The PHB content of methanotrophic cells grown in reactors varied diurnally as well as from day to day. A positive correlation between the amount of PHB in the cells and the naphthalene oxidation rate as well as between PHB and the trichloroethylene transformation rate and capacity was found. Addition of beta-hydroxybutyrate increased the naphthalene oxidation rates significantly. PHB content in cells could be manipulated by incubation at different methane-to-nitrogen ratios. A positive correlation between the naphthalene oxidation rate and the PHB content after these incubations could be seen. Both the PHB content and the naphthalene oxidation rates decreased with time in resting methanotrophic cells exposed to oxygen. However, this decrease in the naphthalene oxidation rate cannot be explained by the decrease in the PHB content alone. Probably a deactivation of the methane monooxygenase itself is also involved.  相似文献   

11.
Rhizospheric methane oxidation was evaluated at a Carex (spp.) dominated fen in Alberta, Canada overthree growing seasons. Aerobic incubations of bulkpeat and live roots in the laboratory show a clearassociation between active methane oxidizing bacteriaand the rhizosphere. Aerobic incubations also show anoxidation potential that far exceeds methaneproduction potential measured in the laboratory. Quantitative estimates of how this oxidation potentialis expressed in situ depend strongly on which of twocommon approaches are used. (1) Subtracting in situmethane emission rates from methane production ratesmeasured in the laboratory with anaerobic incubationssuggest that methane oxidation may attenuate emissionsby 58 to 92%. (2) Applying the inhibitor methylfluoride (CH3F) to whole plants in situ suggestmethane oxidation attenuates emissions by less than20% seasonally. The production minus emissiontechnique likely overestimates methane oxidationbecause methane production measured via anaerobicincubations in the laboratory are probablyoverestimates. Oxidation percentages measured byCH3F were greatest early in the growing seasonwhen emission rates were low and fell to almostnondetectable levels as emission rates peaked in latesummer. Estimates provided by the CH3F techniquewere generally in better agreement with estimates ofoxidation based on a stable isotope mass balance(0–34%) determined in a companion study (Popp et al. 1999).  相似文献   

12.
Zheng H  Lipscomb JD 《Biochemistry》2006,45(6):1685-1692
The hydroxylase component (MMOH) of the soluble form of methane monooxygenase (sMMO) isolated from Methylosinus trichosporium OB3b catalyzes both the O2 activation and the CH4 oxidation reactions at the oxygen-bridged dinuclear iron cluster present in its buried active site. During the reaction cycle, the diiron cluster forms a bis-mu-oxo-(Fe(IV))2 intermediate termed compound Q (Q) that reacts directly with methane. Many adventitious substrates also react with Q, most at a relatively slow rate. We have proposed that Q reacts preferentially with CH4 because the sMMO regulatory component MMOB induces a size selective pore into the MMOH active site as the two components form a complex. Support for this proposal has come through the observation of a nonlinear Arrhenius plot for the CH4 oxidation, presumably due to a shift in rate-limiting step from substrate binding at low temperature to C-H bond cleavage at high temperature. Reactions of all substrates other than CH4 fail to exhibit a break in the Arrhenius plot because binding is always rate limiting in the temperature range explored. Here we show that it is possible to induce a break in the Arrhenius plot for the ethane reaction with Q by using an MMOB mutant termed DBL2 (S109A/T111A) in which residues at the MMOH-MMOB interface are reduced in size. We hypothesize that this increases the ethane binding rate and shifts the Arrhenius breakpoint into the observable temperature range. As a result of this shift, the kinetic and activation parameters of the C-H bond breaking reaction for both methane and ethane can be observed using the DBL2 mutant. A 2H-KIE is observed for both substrate oxidation reactions when using DBL2, whereas only CH4 oxidation exhibits an effect when using wild type MMOB, consistent with the C-H bond cleaving reaction becoming at least partially rate limiting for ethane. Analysis of the temperature dependence of the 2H-KIE for ethane and methane for reactions using both mutant and wild type forms of MMOB suggests that quantum tunneling plays a significant role in methane oxidation but not ethane oxidation.  相似文献   

13.
In a preliminary experiment we found that methane evolved from a sandy subsoil during aerobic incubation of shaken soil slurries. In the study presented here the methane was found to be released from the sand particles by mechanical weathering, caused by the grinding effect of the shaking. Large amounts of gas (about 0.5 ml gas g–1 soil) were extracted by intense grinding of the soil in gas tight serum vials. Methane was the main hydrocarbon in the emitted gas, but also a considerable amount of ethane was present, as well as minor amounts of heavier hydrocarbons (up to C6). The 13C-values of the emitted methane and ethane were –33 and –29 , respectively. Together these results demonstrate a thermogenic origin of the gas. This paper also reports the results of an incubation experiment where possible methane oxidation was looked for. If a possible release of methane is not accounted for, methane oxidation may be overlooked, as illustrated in this paper. Methane consumption was detected only in soil from 40 cm, in contrast to soil sampled at 100 cm and deeper where a slight production was measured. When methane oxidation was inhibited by dimethyl-ether, a significant release of methane was seen. The release was probably caused by chemical weathering. When this methane release was taken into account, methane oxidation was found to be present at all measured depths (40 to 200 cm). Fertilization with urea inhibited the methane oxidation at 40 cm but not at deeper layers. It is hypothesized that ammonia oxidizing bacteria were the main methane oxidizers in this mineral subsoil (deeper than 1 m), and that oxidation of methane might be a survival mechanism for ammonia oxidizers in ammonia limited environments.  相似文献   

14.
This study addresses three questions related to the immune response of cattle to tick salivary gland extracts. Firstly, is there a difference in the inhibition of proliferation of Concanavalin A (ConA) stimulated bovine lymphocytes induced by salivary gland extracts of the N and Y strains of Boophilus microplus? Second, is there a difference in the development rate of the Y and N tick strains? Third, does the host affect the inhibitory effect of salivary gland extract on the proliferation of ConA stimulated lymphocytes from the two tick strains? Salivary gland extract of the Y strain inhibited in vitro proliferation of lymphocytes stimulated by ConA significantly more than that of the N strain, when each strain was raised on different animals. A difference in the development rate was observed between the tick strains when raised on the same animal, with female ticks of the Y strain developing faster and reaching a greater fully engorged weight than ticks of the N strain. The difference in their rate of development did not appear to contribute to a difference in inhibitory effects of the salivary gland extracts and there was no difference between the inhibitory effects of salivary gland extracts from both strains. However, when Y strain ticks were raised on different animals, there was a significant difference in the inhibition of lymphocyte proliferation between the two salivary gland extracts. Therefore, it was concluded that there is no difference between the inhibitory effects of the two tick strains and that the host has an influence on salivary gland extract composition of B. microplus and its inhibitive properties.  相似文献   

15.
Invasive plant species such as Ludwigia hexapetala might have a competitive advantage if they produce allelopathically active compounds against primary producers. Both phytoplankton and plant community structure may be affected due to different, species‐specific sensitivity to allelochemicals. Moreover, such allelopathic interactions could vary over the year depending on (i) the plant's phenological stage and (ii) the abilities of the native macrophytes to suppress—or the non‐native macrophytes to stimulate—the non‐native macrophyte population. We tested the allelopathic effects of aqueous leaf extracts of L. hexapetala on the photosynthetic activity of three target phytoplankton strains (Scenedesmus communis, a toxic Microcystis aeruginosa strain and a non‐toxic Microcystis aeruginosa strain) over three seasons of development (spring, summer and autumn). We also tested seasonal allelopathic effects of aqueous leaf extracts of both L. hexapetala (i.e. the non‐native invasive species) and the native Mentha aquatica on L. hexapetala seed germination. Finally, we identified three main secondary compounds present in the aqueous leaf extracts of L. hexapetala and we tested each individual compound on the phytoplankton's photosynthetic activity and on L. hexapetala seed germination. We observed marked seasonal and species‐specific patterns of L. hexapetala allelopathy on phytoplankton. The photosynthetic activities of S. communis and the toxic M. aeruginosa strain were stimulated by L. hexapetala aqueous leaf extracts in autumn and spring, respectively, whereas the non‐toxic M. aeruginosa strain was strongly inhibited in these two seasons. In summer, photosynthesis of all phytoplankton strains was inhibited. The germination rate of L. hexapetala seeds was stimulated by both L. hexapetala and M. aquatica aqueous leaf extracts, especially in summer, concomitant with the strong negative effects observed on the three phytoplankton strains. Three flavonoid glycosides (myricitrin, prunin and quercitrin) were identified as the main secondary compounds present in the L. hexapetala aqueous leaf extracts. The photosynthetic activity of S. communis was slightly stimulated by the three compounds. The photosynthetic activity of the toxic M. aeruginosa strain was stimulated by myricitrin and quercitrin, whereas that of the non‐toxic M. aeruginosa strain was inhibited by prunin. Finally, the germination rate and the germination velocity of L. hexapetala seeds were stimulated by myricitrin and prunin. These findings suggest that L. hexapetala could favour the photosynthetic activity of toxic cyanobacteria in spring and reduce their photosynthetic activity in summer, potentially leading to drastic changes in the phytoplankton communities and therewith ecological functioning of invaded ponds. Moreover, the stimulation of its seed germination could give a strong competitive advantage to L. hexapetala, thus promoting its invasiveness.  相似文献   

16.
Summary From the present experiments it may be concluded that in the surroundings of natural gas leaks, methane, ethane and possibly some other components of the natural gas are oxidized by microbial activities as long as oxygen is available. This is demonstrated by an increased oxygen consumption and carbon dioxide production, as well as by increased numbers of different types of bacteria. The resulting deficiency of oxygen, the excess of carbon dioxide, and perhaps the formation of inhibitory amounts of ethylene, are considered to be mainly responsible for the death of trees near natural gas leaks. Also the long period of time needed by the soil to recover, may be due to prolonged microbial activities, as well as to the presence of e. g. ethylene.The present experiments suggest that especially methane-oxidizing bacteria of the Methylosinus trichosporium type were present in predominating numbers and consequently have mainly been responsible for the increased oxygen consumption. However, some fungi oxidizing components of natural gas, including methane and ethane may also have contributed to the increased microbial activities in the soil. The same will be true of a possible secondary microflora on products derived from microorganisms oxidizing natural gas components.  相似文献   

17.
Anaerobic Methane Oxidation: Occurrence and Ecology   总被引:19,自引:11,他引:8       下载免费PDF全文
Anoxic sediments and digested sewage sludge anaerobically oxidized methane to carbon dioxide while producing methane. This strictly anaerobic process showed a temperature optimum between 25 and 37°C, indicating an active microbial participation in this reaction. Methane oxidation in these anaerobic habitats was inhibited by oxygen. The rate of the oxidation followed the rate of methane production. The observed anoxic methane oxidation in Lake Mendota and digested sewage sludge was more sensitive to 2-bromoethanesulfonic acid than the simultaneous methane formation. Sulfate diminished methane formation as well as methane oxidation. However, in the presence of iron and sulfate the ratio of methane oxidized to methane formed increased markedly. Manganese dioxide and higher partial pressures of methane also stimulated the oxidation. The rate of methane oxidation in untreated samples was approximately 2% of the CH4 production rate in Lake Mendota sediments and 8% of that in digested sludge. This percentage could be increased up to 90% in sludge in the presence of 10 mM ferrous sulfate and at a partial pressure of methane of 20 atm (2,027 kPa).  相似文献   

18.
Some cultural and physiological aspects of methane-utilizing bacteria   总被引:1,自引:1,他引:0  
A number of different methane-utilizing bacteria are described and compared with isolates of other investigators. The strains can be divided into three groups based on pigmentation, cell morphology and internal membrane structures. The oxidation of hydrocarbons, alcohols, aldehydes, fatty acids, methyl ethers and sugar phosphates by these bacteria was studied. There was much similarity between strains within the same group. Differences between groups as regards oxidative properties could be detected, but these were mainly quantitative and could not be used as taxonomical criteria. In addition, the inhibition of methane oxidation by metabolites and enzyme inhibitors was investigated. Formaldehyde proved to be the most active of the organic compounds tested. Iodoacetic acid inhibited both methane and methanol oxidation at concentrations of 0.03m or above. Of the inorganic compounds, KCN completely suppressed methane oxidation at 5×10?4 m and to more than 90% at 5×10?5 m.  相似文献   

19.

After reductive immobilization of uranium, the element may be oxidized and remobilized in the presence of nitrate by the activity of dissimilatory nitrate-reducing bacteria. We examined controls on microbially mediated nitrate-dependent U(IV) oxidation in landfill leachate-impacted subsurface sediments. Nitrate-dependent U(IV)-oxidizing bacteria were at least two orders of magnitude less numerous in these sediments than glucose- or Fe(II)-oxidizing nitrate-reducing bacteria and grew more slowly than the latter organisms, suggesting that U(IV) is ultimately oxidized by Fe(III) produced by nitrate-dependent Fe(II)-oxidizing bacteria or by oxidation of Fe(II) by nitrite that accumulates during organotrophic dissimilatory nitrate reduction. We examined the effect of nitrate and reductant concentration on nitrate-dependent U(IV) oxidation in sediment incubations and used the initial reductive capacity (RDC = [reducing equivalents] - [oxidizing equivalents]) of the incubations as a unified measurement of the nitrate or reductant concentration. When we lowered the RDC with progressively higher nitrate concentrations, we observed a corresponding increase in the extent of U(IV) oxidation, but did not observe this relationship between RDC and U(IV) oxidation rate, especially when RDC > 0, suggesting that nitrate concentration strongly controls the extent, but not the rate of nitrate-dependent U(IV) oxidation. On the other hand, when we raised the RDC in sediment incubations with progressively higher reductant (acetate, sulfide, soluble Fe(II), or FeS) concentrations, we observed progressively lower extents and rates of nitrate-dependent U(IV) oxidation. Acetate was a relatively poor inhibitor of nitrate-dependent U(IV) oxidation, while Fe(II) was the most effective inhibitor. Based on these results, we propose that it may be possible to predict the stability of U(IV) in a bioremediated aquifer based on the geochemical characteristics of that aquifer.  相似文献   

20.
Protoplasts have been prepared by pronase treatment of cells of two as yet unidentified methanogenic species, strains Gö1 and AJ2. The rate in which these protoplasts formed methane from methanol and molecular hydrogen amounted to 55% (strain Gö1) or 18% (strain AJ2) of the rate of whole cells. Cell extracts, however, had lost most of the activity, and the rate was only 3.6% of the one of whole cells. Methanogenesis by protoplasts from the above mentioned substrates was inhibited by dicyclohexylcarbodiimide, and this inhibition could be abolished by the protonophore tetrachlorosalicylanilide.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号