首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The discovery of two mating types in the cellular slime mould Polysphondylium pallidum is reported. Two developmental mutants produced in strains of opposite mating type but which do not proceed past the aggregation stage of development are capable of producing macrocysts. These macrosysts were viable and 5 to 10% germinated after 6 weeks of storage. When the macrocyst progeny were cloned, several classes of non-parental phenotypes were recovered.  相似文献   

2.
S. B. Lee  J. W. Taylor 《Genetics》1993,134(4):1063-1075
This study tested mechanisms proposed for maternal uniparental mitochondrial inheritance in Neurospora: (1) exclusion of conidial mitochondria by the specialized female reproductive structure, trichogyne, due to mating locus heterokaryon incompatibility and (2) mitochondrial input bias favoring the larger trichogyne over the smaller conidium. These mechanisms were tested by determining the modes of mitochondrial DNA (mtDNA) inheritance and transmission in the absence of mating locus heterokaryon incompatibility following crosses of uninucleate strains of Neurospora tetrasperma with trichogyne (trichogyne inoculated by conidia) and without trichogyne (hyphal fusion). Maternal uniparental mitochondrial inheritance was observed in 136 single ascospore progeny following both mating with and without trichogyne using mtDNA restriction fragment length polymorphisms to distinguish parental types. This suggests that maternal mitochondrial inheritance following hyphal fusions is due to some mechanism other than those that implicate the trichogyne. Following hyphal fusion, mututally exclusive nuclear migration permitted investigation of reciprocal interactions. Regardless of which strain accepted nuclei following seven replicate hyphal fusion matings, acceptor mtDNA was the only type detected in 34 hyphal plug and tip samples taken from the contact and acceptor zones. No intracellular mtDNA mixtures were detected. Surprisingly, 3 days following hyphal fusion, acceptor mtDNA replaced donor mtDNA throughout the entire colony. To our knowledge, this is the first report of complete mitochondrial replacement during mating in a filamentous fungus.  相似文献   

3.
Yan Z  Xu J 《Genetics》2003,163(4):1315-1325
Previous studies demonstrated that mitochondrial DNA (mtDNA) was uniparentally transmitted in laboratory crosses of the pathogenic yeast Cryptococcus neoformans. To begin understanding the mechanisms, this study examined the potential role of the mating-type locus on mtDNA inheritance in C. neoformans. Using existing isogenic strains (JEC20 and JEC21) that differed only at the mating-type locus and a clinical strain (CDC46) that possessed a mitochondrial genotype different from JEC20 and JEC21, we constructed strains that differed only in mating type and mitochondrial genotype. These strains were then crossed to produce hyphae and sexual spores. Among the 206 single spores analyzed from six crosses, all but one inherited mtDNA from the MATa parents. Analyses of mating-type alleles and mtDNA genotypes of natural hybrids from clinical and natural samples were consistent with the hypothesis that mtDNA is inherited from the MATa parent in C. neoformans. To distinguish two potential mechanisms, we obtained a pair of isogenic strains with different mating-type alleles, mtDNA types, and auxotrophic markers. Diploid cells from mating between these two strains were selected and 29 independent colonies were genotyped. These cells did not go through the hyphal stage or the meiotic process. All 29 colonies contained mtDNA from the MATa parent. Because no filamentation, meiosis, or spore formation was involved in generating these diploid cells, our results suggest a selective elimination of mtDNA from the MATalpha parent soon after mating. To our knowledge, this is the first demonstration that mating type controls mtDNA inheritance in fungi.  相似文献   

4.
An intriguing feature of early zygote development in Chlamydomonas reinhardtii is the active elimination of chloroplast DNA from the mating-type minus parent due presumably to the action of a zygote-specific nuclease. Meiotic progeny thus inherit chloroplast DNA almost exclusively from the mating-type plus parent. The plus-linked nuclear mutation mat3 prevents this selective destruction of minus chloroplast DNA and generates progeny that display a biparental inheritance pattern. Here we show that the mat3 mutation creates additional phenotypes not previously described: the cells are much smaller than wild type and they possess substantially reduced amounts of both mitochondrial and chloroplast DNA. We propose that the primary defect of the mat3 mutation is a disruption of cell-size control and that the inhibition of the uniparental transmission of chloroplast genomes is a secondary consequence of the reduced amount of chloroplast DNA in the mat3 parent.  相似文献   

5.
K. R. Chung  A. Leuchtmann    C. L. Schardl 《Genetics》1996,142(1):259-265
We analyzed the inheritance of mitochondrial DNA (mtDNA) species in matings of the grass symbiont Epichloe typhina. Eighty progeny were analyzed from a cross in which the maternal (stromal) parent possessed three linear plasmids, designated Callan-a (7.5 kb), Aubonne-a (2.1 kb) and Bergell (2.0 kb), and the paternal parent had one plasmid, Aubonne-b (2.1 kb). Maternal transmission of all plasmids was observed in 76 progeny; two progeny possessed Bergell and Callan-a, but had the maternal Aubonne-a replaced with the related paternal plasmid Aubonne-b; two progeny lacked Callan-a, but had the other two maternal plasmids. A total of 34 progeny were analyzed from four other matings, including a reciprocal pair, and in each progeny the plasmid transmission was maternal. The inheritance of mitochondrial genomes in all progeny was analyzed by profiles of restriction endonuclease-cleaved mtDNA. In most progeny the profiles closely resembled those of the maternal parents, but some progeny had nonparental mtDNA profiles that suggested recombination of mitochondrial genomes. These results indicate that the fertilized stroma of E. typhina is initially heteroplasmic, permitting parental mitochondria to fuse and their genomes to recombine.  相似文献   

6.
Summary Crosses were made using strains of S. cerevisiae which carried mitochondrial markers conferring resistance to erythromycin and chloramphenicol. The effect of auxotrophic starvation of one parent prior to mating on the transmission of its mitochondrial markers was studied in different crosses relative to the presence of the cdc8 nuclear mutation (a temperature-sensitive DNA replication).In crosses between two cdc8 mutant strains, auxotrophic starvation of one of the haploid parental strains prior to mating caused a marked decrease of its mitochondrial marker transmission to the diploid progeny of the cross. The transmission decreased as a function of the time of starvation. This effect was not observed in the cross between two wild type strains and in crosses of starved cdc8 phenotypic revertants with cdc8 mutant strains. Only a small, if any, effect of starvation on mitochonrial marker transmission was observed when starved cdc8 mutant strains were crossed either with their phenotypic revettants or with the wild-type strains.In one of the haploid parental strains the starvation increased the frequency of petites as a function of starvation time, while in the other this effect was not observed.In the progeny of cdc8xcdc8 crosses (both in starvation experiments and in control crosses) an increased frequency of diploid petite cells accompanied by a decreased frequency of recombination between mitochondrial markers was noticed.The influence of the cdc8 mutation on the transmission of mitochondrial markers is discussed in terms of high frequency of molecule formation in cdc8 strains.  相似文献   

7.
D. Zickler  S. Arnaise  E. Coppin  R. Debuchy    M. Picard 《Genetics》1995,140(2):493-503
In wild-type crosses of the filamentous ascomycete Podospora anserina, after fertilization, only nuclei of opposite mating type can form dikaryons that undergo karyogamy and meiosis, producing biparental progeny. To determine the role played by the mating type in these steps, the four mat genes were mutagenized in vitro and introduced into a strain deleted for its mat locus. Genetic and cytological analyses of these mutant strains, crossed to each other and to wild type, showed that mating-type information is required for recognition of nuclear identity during the early steps of sexual reproduction. In crosses with strains carrying a mating-type mutation, two unusual developmental patterns were observed: monokaryotic cells, resulting in haploid meiosis, and uniparental dikaryotic cells providing, after karyogamy and meiosis, a uniparental progeny. Altered mating-type identity leads to selfish behavior of the mutant nucleus: it migrates alone or paired, ignoring its wild-type partner in all mutant X wild-type crosses. This behavior is nucleus-autonomous because, in the same cytoplasm, the wild-type nuclei form only biparental dikaryons. In P. anserina, mat genes are thus required to ensure a biparental dikaryotic state but appear dispensable for later stages, such as meiosis and sporulation.  相似文献   

8.
S. Kawano  H. Takano  J. Imai  K. Mori    T. Kuroiwa 《Genetics》1993,133(2):213-224
We have identified two distinct mitochondrial phenotypes, namely, Mif(+) (mitochondrial fusion) and Mif(-) (mitochondrial fusion-deficient), and have studied the genetic system that controls mitochondrial fusion in the slime mould, Physarum polycephalum. A mitochondrial plasmid of approximately 16 kbp was identified in all Mif(+) plasmodial strains. This plasmid is apparently responsible for promoting mitochondrial fusion, and it is inserted into the mitochondrial DNA (mtDNA) in successive sexual crossing with Mif(-) strains. This recombinant mtDNA and the unchanged free plasmid spread through the mitochondrial population via the promotion of mitochondrial fusion. The Mif(+) strains with the plasmid were further classified as being two types: high frequency and low frequency mitochondrial fusion. Restriction analysis of the mtDNA suggested that the high frequency mitochondrial fusion type was more often heteroplasmic; within each plasmodium, mtDNAs of both parental types were usually present, in addition to the presence of the plasmid. Genetic analysis with the progeny obtained from crossing myxamoebae derived from three different isolates suggested that these progeny carried different alleles at a nuclear locus that controlled the frequency of mitochondrial fusion. These alleles (mitochondrial mating-type alleles, mitA1, 2 and 3) appear to function like the mating type of the myxamoebae; mitochondrial fusion occurs at high frequency with the combination of unlike alleles, but at low frequency with the combination of like alleles.  相似文献   

9.
Although numerous exceptions are well known, organelle DNA is often exclusively or predominantly maternally inherited. In such cases, maternal inheritance is often documented by the study of progeny derived from crosses between parents with distinguishable organelle genotypes. These studies generally detect a single type of progeny, those containing organelles derived from only one of the parents; no progeny containing organelles derived either from the opposite parent or from both parents are found. However, in most cases the number of progeny examined is quite small. I present a simple binomial model of organelle inheritance to determine the power of such experiments to distinguish between the hypothesis of strict maternal inheritance and a more complex hypothesis involving the presence of both organelle types within a progeny array. Extremely large sample sizes of progeny are required to distinguish these two hypotheses with reasonable confidence when organelle transmission is not strictly maternal. As a result, studies involving simple progeny testing may be misleading. Larger samples, more complex breeding designs, or more sensitive molecular methods are required to document adequately strict maternal inheritance of organelles.  相似文献   

10.
The mitochondrial genome of Chlamydomonas reinhardtii is a 15.8 kb linear DNA molecule present in multiple copies. In crosses, the meiotic products only inherit the mitochondrial genome of the mating type minus (paternal) parent. In contrast mitotic zygotes transmit maternal and paternal mitochondrial DNA copies to their diploid progeny and recombinational events between molecules of both origins frequently occur. Six mitochondrial mutants unable to grow in the dark (dk? mutants) were crossed in various combinations and the percentages of wild-type dk+ recombinants were determined in mitotic zygotes when all progeny cells had become homoplasmic for the mitochondrial genome. In crosses between strains mutated in the COB (apocytochrome ) gene and strains mutated in the COX1 (subunit 1 of cytochrome oxidase) gene, the frequency of recombination was 13.7% (± 3.2%). The corresponding physical distance between the mutation sites was 4.3 kb. In crosses between strains carrying mutations separated by about 20 bp, a recombinational frequency of 0.04% (± 0.02%) was found. Two other mutants not yet characterized at the molecular level were also used for recombinational studies. From these data, a linear genetic map of the mitochondrial genome could be drawn. This map is consistent with the positions of the mutation sites on the mitochondrial DNA molecule and thereby validates the method used to generate the map. The frequency of recombination per physical distance unit (3.2% ± 0.7% per kilobase) is compared with those obtained for other organellar genomes in yeasts and Chlamydomonas.  相似文献   

11.
Summary Mitochondrial mutants resistant to erythromycin, neomycin and monomycin were isolated. Mitochondria were transmitted from different natural strains to the cells of the same nuclear genotype. In bifactorial crosses of such isochromosomal and anisomitochondrial yeasts we tested random samples of diploid colonies. The distribution of mitochondrial markers in parent and recombinant classes has been shown to occur unequally. The asymmetry of parent and the polarity of recombinant classes were observed to differ in different mitochondrial mutants.Anisomitochondrial strain crosses proved that mitochondrial origin essentially influenced both the parent and recombinant classes distribution and the susceptibility of the transmission to the effect of mating type locus. One can distinguish between homo- and heterosexual cross combinations in terms of recombination polarity.The new type of mitochondria was found to occur with high frequency of transmission to the zygote progeny of markers resistant to erythromycin but not of markers resistant to neomycin. The problem of sex in mitochondria is discussed.  相似文献   

12.
To gain insight into the process of mitochondrial transmission in yeast, we directly labeled mitochondrial proteins and mitochondrial DNA (mtDNA) and observed their fate after the fusion of two cells. To this end, mitochondrial proteins in haploid cells of opposite mating type were labeled with different fluorescent dyes and observed by fluorescence microscopy after mating of the cells. Parental mitochondrial protein markers rapidly redistributed and colocalized throughout zygotes, indicating that during mating, parental mitochondria fuse and their protein contents intermix, consistent with results previously obtained with a single parentally derived protein marker. Analysis of the three-dimensional structure and dynamics of mitochondria in living cells with wide-field fluorescence microscopy indicated that mitochondria form a single dynamic network, whose continuity is maintained by a balanced frequency of fission and fusion events. Thus, the complete mixing of mitochondrial proteins can be explained by the formation of one continuous mitochondrial compartment after mating. In marked contrast to the mixing of parental mitochondrial proteins after fusion, mtDNA (labeled with the thymidine analogue 5-bromodeoxyuridine) remained distinctly localized to one half of the zygotic cell. This observation provides a direct explanation for the genetically observed nonrandom patterns of mtDNA transmission. We propose that anchoring of mtDNA within the organelle is linked to an active segregation mechanism that ensures accurate inheritance of mtDNA along with the organelle.  相似文献   

13.
P. Bennoun  M. Delosme    U. Kuck 《Genetics》1991,127(2):335-343
We describe the genetic and molecular analysis of the first non-Mendelian mutants of Chlamydomonas reinhardtii resistant to myxothiazol, an inhibitor of the respiratory cytochrome bc1 complex. Using a set of seven oligonucleotide probes, restriction fragments containing the mitochondrial cytochrome b (cyt b) gene from C. reinhardtii were isolated from a mitochondrial DNA library. This gene is located adjacent to the gene for subunit 4 of the mitochondrial NADH-dehydrogenase (ND4), near one end of the 15.8-kb linear mitochondrial genome of C. reinhardtii. The algal cytochrome b apoprotein contains 381 amino-acid residues and exhibits a sequence similarity of about 59% with other plant cytochrome b proteins. The cyt b gene from four myxothiazol resistant mutants of C. reinhardtii was amplified for DNA sequence analysis. In comparison to the wild-type strain, all mutants contain an identical point mutation in the cyt b gene, leading to a change of a phenylalanine codon to a leucine codon at amino acid position 129 of the cytochrome b protein. Segregation analysis in tetrads from reciprocal crosses of mutants with wild type shows a strict uniparental inheritance of this mutation from the mating type minus parent (UP-). However, mitochondrial markers from both parents are recovered in vegetative diploids in variable proportions from one experiment to the next for a given cross. On the average, a strong bias is seen for markers inherited from the mating type minus parent.  相似文献   

14.
The mitochondrial genome of Chlamydomonas reinhardtii is a 15.8 kb linear DNA molecule present in multiple copies. In crosses, the meiotic products only inherit the mitochondrial genome of the mating type minus (paternal) parent. In contrast mitotic zygotes transmit maternal and paternal mitochondrial DNA copies to their diploid progeny and recombinational events between molecules of both origins frequently occur. Six mitochondrial mutants unable to grow in the dark (dk mutants) were crossed in various combinations and the percentages of wild-type dk+ recombinants were determined in mitotic zygotes when all progeny cells had become homoplasmic for the mitochondrial genome. In crosses between strains mutated in the COB (apocytochrome ) gene and strains mutated in the COX1 (subunit 1 of cytochrome oxidase) gene, the frequency of recombination was 13.7% (± 3.2%). The corresponding physical distance between the mutation sites was 4.3 kb. In crosses between strains carrying mutations separated by about 20 bp, a recombinational frequency of 0.04% (± 0.02%) was found. Two other mutants not yet characterized at the molecular level were also used for recombinational studies. From these data, a linear genetic map of the mitochondrial genome could be drawn. This map is consistent with the positions of the mutation sites on the mitochondrial DNA molecule and thereby validates the method used to generate the map. The frequency of recombination per physical distance unit (3.2% ± 0.7% per kilobase) is compared with those obtained for other organellar genomes in yeasts and Chlamydomonas.  相似文献   

15.
The genus Saccharomyces consists of several species divided into the sensu stricto and the sensu lato groups. The genomes of these species differ in the number and organization of nuclear chromosomes and in the size and organization of mitochondrial DNA (mtDNA). In the present experiments we examined whether these yeasts can exchange DNA and thereby create novel combinations of genetic material. Several putative haploid, heterothallic yeast strains were isolated from different Saccharomyces species. All of these strains secreted an a- or alpha-like pheromone recognized by S. cerevisiae tester strains. When interspecific crosses were performed by mass mating between these strains, hybrid zygotes were often detected. In general, the less related the two parental species were, the fewer hybrids they gave. For some crosses, viable hybrids could be obtained by selection on minimal medium and their nuclear chromosomes and mtDNA were examined. Often the frequency of viable hybrids was very low. Sometimes putative hybrids could not be propagated at all. In the case of sensu stricto yeasts, stable viable hybrids were obtained. These contained both parental sets of chromosomes but mtDNA from only one parent. In the case of sensu lato hybrids, during genetic stabilization one set of the parental chromosomes was partially or completely lost and the stable mtDNA originated from the same parent as the majority of the nuclear chromosomes. Apparently, the interspecific hybrid genome was genetically more or less stable when the genetic material originated from phylogenetically relatively closely related parents; both sets of nuclear genetic material could be transmitted and preserved in the progeny. In the case of more distantly related parents, only one parental set, and perhaps some fragments of the other one, could be found in genetically stabilized hybrid lines. The results obtained indicate that Saccharomyces yeasts have a potential to exchange genetic material. If Saccharomyces isolates could mate freely in nature, horizontal transfer of genetic material could have occurred during the evolution of modern yeast species.  相似文献   

16.
Summary Protoplasts of auxotrophic strains of Saccharomyces cerevisiae of opposite and identical mating types carrying different mitochondrial drug-resistance markers, with both homosexual and heterosexual mitochondrial backgrounds, were induced to fuse by polyethylene glycol. After selective regeneration of prototrophic fusion products, the transmission and recombination frequencies of mitochondrial genes in populations of cells were determined and compared with those obtained in mating processes. The frequencies obtained in the fusion experiments proved very similar to those found in the zygote clones. The behavior of mitochondrial genes was apparently affected neither by nuclear mating type background nor by the method of transfer of mitochondrial genomes (i.e., protoplast fusion or mating), making possible mitochondrial genetic studies by protoplast fusion irrespective of the mating type barrier of yeast strains.  相似文献   

17.
Summary Pairs of strains of opposite mating type were isolated from a strain of Saccharomyces cerevisiae. From these isogenic strains, mitochondrially inherited resistant mutants to antimycin A and erythromycin were isolated. By using the two resistance genes as mitochondrial markers, it was proposed that the distribution of the mitochondrial genomes from zygotes to tetrads seemed not to be random but the genomes from either a or parent would be selected with approximately equal frequencies after zygote formation and subsequently distributed uniparentally to meiotic products.  相似文献   

18.
Stability of foreign DNA transformed into a novel host is an important parameter in decisions to permit the release of genetically engineered microorganisms into the environment. Meiotic instability of transformed DNA has been reported in fungi such as Ascobolus, Aspergillus, and Neurospora. We used strains of Gibberella fujikuroi (Fusarium moniliforme) transformed with the hygr gene from Escherichia coli to study meiotic stability of foreign DNA in this plant pathogenic fungus. Crosses with single-copy transformants segregated hygr:hygs in a 1:1 manner consistent with that expected for a Mendelian locus in a haploid organism. Multicopy transformants, however, segregated hygr:hygs in a 1:2 manner that was not consistent with Mendelian expectations for a chromosomal marker, even though two unrelated auxotrophic nuclear genes were segregating normally. Segregation ratios in crosses in which hygr was introduced via the male parent did not differ significantly from crosses in which the transformed strain served as the female parent. Some of the sensitive progeny from the crosses with the multicopy transformants carried hygr sequences. When these phenotypically sensitive progeny were crossed with a wild-type strain that carried no hygr sequences, some of the progeny were phenotypically hygr. Some progeny from some crosses were more resistant to hygromycin than were their sibs or the transformant strains that served as their parents. Transformants passaged through a maize plant only rarely segregated progeny with the high levels of resistance. The mechanism underlying these genetic instabilities is not clear but may involve unequal crossing over or methylation or both. Further work with cloned genes with homology to sequences already present in the Fusarium genome is warranted.  相似文献   

19.
Stability of foreign DNA transformed into a novel host is an important parameter in decisions to permit the release of genetically engineered microorganisms into the environment. Meiotic instability of transformed DNA has been reported in fungi such as Ascobolus, Aspergillus, and Neurospora. We used strains of Gibberella fujikuroi (Fusarium moniliforme) transformed with the hygr gene from Escherichia coli to study meiotic stability of foreign DNA in this plant pathogenic fungus. Crosses with single-copy transformants segregated hygr:hygs in a 1:1 manner consistent with that expected for a Mendelian locus in a haploid organism. Multicopy transformants, however, segregated hygr:hygs in a 1:2 manner that was not consistent with Mendelian expectations for a chromosomal marker, even though two unrelated auxotrophic nuclear genes were segregating normally. Segregation ratios in crosses in which hygr was introduced via the male parent did not differ significantly from crosses in which the transformed strain served as the female parent. Some of the sensitive progeny from the crosses with the multicopy transformants carried hygr sequences. When these phenotypically sensitive progeny were crossed with a wild-type strain that carried no hygr sequences, some of the progeny were phenotypically hygr. Some progeny from some crosses were more resistant to hygromycin than were their sibs or the transformant strains that served as their parents. Transformants passaged through a maize plant only rarely segregated progeny with the high levels of resistance. The mechanism underlying these genetic instabilities is not clear but may involve unequal crossing over or methylation or both. Further work with cloned genes with homology to sequences already present in the Fusarium genome is warranted.  相似文献   

20.
X. Yang  AJF. Griffiths 《Genetics》1993,134(4):1055-1062
One of the general rules of heredity is that in anisogamous matings genetic elements in organelles are inherited maternally. Nevertheless, there are cases of paternal transmission, both as rare exceptions, and as regular modes of inheritance. We report two new cases of paternal transmission in crosses of the model fungus Neurospora. First, we show leakage of a linear plasmid from males, the first case in fungi and the second in eukaryotes. Transmission frequencies ranged from 1% to 15% in different crosses, but some crosses showed no detectable male transmission. Second, we show leakage of male mitochondrial DNA (mtDNA), the second case in fungi. Some of the resulting progeny have only the male mtDNA type, but some are heteroplasmons. Heteroplasmons show novel restriction fragments attributable to recombination or rearrangement. Heteroplasmy of mtDNA through male transmission has not been reported previously in any eukaryote. In addition we have shown paternal leakage of circular mitochondrial plasmids, supporting another reported case. In a male bearing a linear and a circular plasmid, these plasmids and the mtDNA are transmitted in different combinations. These results show a potential for mitochondrial segregation and assortment during the sexual cycle in anisogamous fungi, pointing to more potential avenues for novel associations between genomic compartments, and between genomic and extragenomic elements.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号