首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Myeloblastosis-associated virus (MAV)-2(0), a virus which was derived from avian myeloblastosis virus and induced a high incidence of osteopetrosis, was compared with avian lymphomatosis virus 5938, a recent field isolate which induced a high incidence of lymphomatosis. The following information was obtained. (i) MAV-2(0) induced osteopetrosis, nephroblastoma, and a very low incidence of hepatocellular carcinoma. No difference was seen in the oncogenic spectrum of end point and plaque-purified MAV-2(0). (ii) 125I-labeled RNA sequences from MAV-2(0) formed hybrids with DNA extracted from osteopetrotic bone at a rate suggesting five proviral copies per haploid cell genome. The extent of hybridization of MAV-2(0) RNA with DNA from osteopetrotic tissue was more extensive (87%) than was observed in reactions with DNA from uninfected chicken embryos (52%). (iii) Competition of unlabeled viral RNA in hybridization reactions between the radioactive RNA from the two viruses and their respective proviral sequences present in tumor tissues showed that 15 to 20% of the viral sequences detected in these reactions were unshared. In contrast, no differences were detected in competition analyses of RNA sequences from the two viruses detected in DNA of normal chicken cells. (iv) MAV-2(0) 35S RNA was indistinguishable in size from avian lymphomatosis virus 5938 35S RNA by polyacrylamide gel electrophoresis.  相似文献   

2.
Recombinant viruses were made between myeloblastosis-associated virus MAV-2(O) and UR2AV to examine the relationship between regions of the MAV-2(O) genome and disease induction. The env-long terminal repeat (LTR) portion of MAV-2(O), when substituted into UR2AV, was sufficient to induce osteopetrosis identical to that caused by the parent MAV-2(O). When this region was reduced to the gp37 and LTR of MAV-2(O), osteopetrosis more severe than that caused by the parent virus was induced. Recombinant viruses that contained all or part of the MAV-2(O) env gene in the absence of the MAV-2(O) LTR induced a severe, chronic anemia and late-onset osteopetrosis, leading to the conclusion that the MAV-2(O) LTR, in addition to env, was required for rapid induction of osteopetrosis. A viral recombinant, pEU, which contained the gp85 segment of UR2AV substituted into MAV-2(O), induced an ataxia/cerebellar dysfunction not seen during infection with the other chimeric or parent viruses. In vitro studies of the parent and recombinant viruses demonstrated that the ability to form plaques on chicken embryo fibroblasts correlated with the presence of the MAV-2(O) gp37 and LTR except for construct pEU. When the viruses were inoculated into 10-day-old chickens, chimeras containing the env-LTR of gp37-LTR region of MAV-2(O) induced severe regenerative anemia similar to that induced by MAV-2(O). pEU was the exception, suggesting that the unique configuration of this chimera is responsible for its unusual pathogenic properties.  相似文献   

3.
The major species of unintegrated linear viral DNA identified in chicken embryonic fibroblasts infected with either the avian myeloblastosis-associated viruses (MAV-1, MAV-2) or the standard avian myeloblastosis virus complex (AMV-S) has a mass of 5.3 X 10(6) daltons. An additional minor DNA component observed only in AMV-S-infected cells has a mass of 4.9 X 10(6) daltons. The unintegrated linear viral DNAs and integrated proviruses of MAV-1 and MAV-2 have been analyzed by digestion with the restriction endonucleases EcoRI and HindIII. MAV-2 lacks a HindIII site present in MAV-1. These fragments have been compared to those generated by EcoRI and HindIII digestion of linear viral DNAs of AMV-S. Restriction enzyme digestion of AMV-S viral DNA produced unique fragments not found with either MAV-1 or MAV-2 viral DNAs. The major viral component present in AMV-S stocks has the HindIII restriction pattern of MAV-1. Restriction enzyme analysis of the 5.3 X 10(6)-dalton unintegrated MAV viral DNAs and their integrated proviruses suggests that the DNAs have a direct terminal redundancy of approximately 0.3 megadaltons and integrate colinearly with respect to the unintegrated linear DNA.  相似文献   

4.
Two lambda proviral DNA recombinants were characterized with a number of restriction endonucleases. One recombinant contained a complete presumptive avian myeloblastosis virus (AMV) provirus flanked by cellular sequences on either side, and the second recombinant contained 85% of a myeloblastosis-associated virus type 1 (MAV-1)-like provirus with cellular sequences adjacent to the 5' end of the provirus. Comparing the restriction maps for the proviral DNAs contained in each lambda hybrid showed that the putative AMV and MAV-1-like genomes shared identical enzyme sites for 3.6 megadaltons beginning at the 5' termini of the proviruses with respect to viral RNA. Two enzyme sites near the 3'-end of the MAV-1-like provirus were not present in the putative AMV genome. We also examined a number of leukemic myeloblast clones for proviral content and cell-provirus integration sites. The presumptive AMV provirus was present in all the leukemic myeloblast clones regardless of the endogenous proviral content of the target cells or the AMV pseudotype used for conversion. Multiple cellular sites were suitable for integration of the putative AMV genome and the helper genomes. The proviral genomes were all integrated colinearly with respect to linear viral DNA.  相似文献   

5.
The proviral DNA of chicken peripheral blood leukemic myeloblasts was analyzed by restriction endonuclease digestion and Southern blotting. Two restriction endonuclease-generated fragments, an EcoRI 2.2-megadalton (Md) and a HindIII 2.6-Md fragment, were present upon enzyme cleavage of all leukemic myeloblast DNA preparations in addition to endogenous or helper-specific fragments. Neither of these fragments was derived from viral DNA of the two known myeloblastosis-associated viruses (MAV-1 and MAV-2). In contrast, DNA similarly treated from the erythrocytes of leukemic chickens showed only small amounts of the two avian myeloblastosis virus-specific fragments, whereas the helper virus-specific fragments were present in the amount seen in MAV-producing chicken embryo fibroblasts. The appearance of the EcoRI 2.2-Md and HindIII 2.6-Md specific fragments in all leukemic myeloblast DNA preparations indicates they are presumably part of the leukemogenic genome that must be present to induce acute myeloblastic leukemia.  相似文献   

6.
Specificity of avian leukosis virus-induced hyperlipidemia   总被引:2,自引:0,他引:2       下载免费PDF全文
Rous-associated virus 7 (RAV-7) is a subgroup C avian leukosis virus which does not transform cells in vitro or carry an oncogene. When injected into 1-day-old hatched chicks, RAV-7 causes a low incidence of lymphoid leukosis after a latent period of several months. In contrast, infection of 10-day-old chicken embryos with RAV-7 leads to a disease syndrome characterized by stunting, obesity, atrophy of the bursa and the thymus, high triglyceride and cholesterol levels, reduced thyroxine levels, and increased insulin levels (Carter et al., Infect. Immun. 39:410-422, 1983; J.K. Carter and R.E. Smith, Infect. Immun. 40:795-805, 1983). Histopathological examination of tissues from affected chicks revealed an accumulation of lipid in the liver and an extensive infiltration of the thyroid and pancreas by lymphoblastoid cells. In the present investigation, the subgroup specificity of this syndrome was investigated. Other subgroup C avian leukosis viruses (transformation-defective B77, transformation-defective Prague C strain of Rous sarcoma virus, and RAV-49) caused stunting, infiltration of the thyroid and pancreas, increased liver weights, decreased thyroxine levels, and increased insulin levels, but they did not cause a uniform, profound increase in triglyceride and cholesterol levels. Avian leukosis viruses of subgroup A [myeloblastosis-associated virus 1 causing osteopetrosis [MAV-1(O)] and RAV-1], subgroup B [MAV-2(O), MAV-2 causing nephroblastoma [MAV-2(N)], and RAV-2], subgroup D (RAV-50), and subgroup F (ring-necked pheasant virus and RAV-61) did not cause a syndrome identical to that induced by RAV-7. All of the viruses examined induced some stunting and a reduction in thyroxine levels which correlated with the stunting. The two subgroup F viruses caused an infiltration of the thyroid which may have been secondary to severe lung involvement. We conclude that the RAV-7 syndrome is unique, particularly in the induction of a hyperlipidemia.  相似文献   

7.
The cellular sites of integration of the avian myeloblastosis-associated virus type 2 (MAV-2) DNA have been examined by Southern blot analysis of cellular DNA from infected cloned and uncloned chicken embryonic fibroblasts. Provirus-cell juncture fragments were not detected in restriction enzyme digests of DNA from MAV-2-infected uncloned cells. However, each MAV-2-infected cell clone examined produced a unique set of junctive bands. Thse findings indicate that multiple sites of integration exists for MAV-2 proviruses in cellular DNA.  相似文献   

8.
Brown Leghorn chicken embryo fibroblasts were transfected with a mixture of avian myeloblastosis virus (AMV) and myeloblastosis-associated virus type 1 (MAV1) proviral DNA purified from lambda-Charon 4A recombinant clones. A transformed cell line (T1AM) able to grow without anchorage in semisolid medium was obtained. The presence of both proviral AMV and MAV sequences was detected in T1AM DNA by hybridization with v-myb- and MAV1-specific probes. Altered AMV and MAV1 proviral genomes were found in T1AM genome. Characterization of the RNA species expressed in transformed cells showed that in addition to a 2.5-kilobase (kb) putative subgenomic v-myb-specific RNA, three other myb-containing RNAs (9.4, 8.4, and 7.0 kb) were present in T1AM cells. No AMV genomic RNA was detected. Also, a new 5.0-kb MAV1-specific RNA species was expressed in transformed cells in addition to MAV1 genomic RNA species (7.8 kb). No infectious AMV virions are released by T1AM cells. Chicken embryo fibroblasts infected by T1AM-released virions contained and expressed all MAV1 sequences detected in T1AM transformed cells but did not express any transformation parameter. These results indicated that the presence of AMV proviral sequences in T1AM cells is responsible for their transformed phenotype.  相似文献   

9.
RNA sequence relatedness among avian RNA tumor virus genomes was analyzed by inhibition of DNA-RNA hybrid formation between 3H-labeled 35S viral RNA and an excess of leukemic or normal chicken cell DNA with increasing concentrations of unlabeled 35S viral RNA. The avian viruses tested were Rous associated virus (RAV)-3, avian myeloblastosis virus (AMV), RAV-60, RAV-61, and B-77 sarcoma virus. Hybridization of 3H-labeled 35S AMV RNA with DNA from normal chicken cells was inhibited by unlabeled 35S RAV-0 RNA as effeciently (100%) as by unlabeled AMV RNA. Hybridization between 3H-labeled 35S AMV RNA and DNA from leukemic chicken myeloblasts induced by AMV was suppressed 100 and 68% by unlabeled 35S RNA from AMV and RAV-0, respectively. Hybridization between 3H-labeled RAV-0 and leukemic chicken myeloblast DNA was inhibited 100 and 67% by unlabeled 35S RNA from RAV-0 and AMV, respectively. It appears therefore that the AMV and RAV-0 genomes are 67 to 70% homologous and that AMV hybridizes to RAV-0 like sequences in normal chicken DNA. Hybridization between AMV RNA and leukemic chicken DNA was inhibited 40% by RNA from RAV-60 or RAV-61 and 50% by B-77 RNA. Hybridization between RAV-0 RNA and leukemic chicken DNA was inhibited 80% by RAV-60 or RAV-61 and 70% by B-77 RNA. Hybridization between 3H-labeled 35S RNA from RAV-60 or RAV-61 and leukemic chicken myeloblast DNA was reduced equally by RNA from RAV-60, RAV-61, AMV or RAV-0; this suggests that RNA from RAV-60 and RAV-61 hybridizes with virus-specific sequences in leukemic DNA which are shared by AMV, RAV-0, RAV-60, and RAV-61 RNA'S. Hybridization between 3H-labeled 35S RNA from RAV-61 and normal pheasant DNA was inhibited 100% by homologous viral RNA, 22 TO 26% BY RNA from AMV or RAV-0, and 30 to 33% by RNA from RAV-60 or B-77. Nearly complete inhibition of hybricization between RAV-0 RNA and leukemic chicken DNA by a mixture of AMV and B-77 35S RNAs indicates that the RNA sequences shared by B-77 virus and RAV-0. It appears that different avian RNA tumor virus genomes have from 50 to 80% homology in nucleotide sequences and that the degree of hybridization between normal chicken cell DNA and a given viral RNA can be predicted from the homology that exists between the viral RNA tested and RAV-0 RNA.  相似文献   

10.
During serial passages of an avian leukosis virus (the transformation-defective, src deletion mutant of Bratislava 77 avian sarcoma virus, designated tdB77) in chicken embryo fibroblasts, viruses which transformed chicken embryo fibroblasts in vitro emerged. Chicken embryo fibroblasts infected with these viruses (SK770 and Sk780) had a distinctive morphology, formed foci in monolayer cultures, and grew independent of anchorage in semisolid agar. Bone marrow cells were not transformed by these viruses. Another virus (SK790) with similar properties emerged during serial subcultures of chicken embryo fibroblasts after a single infection with tdB77. The 50S to RNAs isolated from these viruses contained a tdB77-sized genome (7.6 kilobases), 8.7- and 5.7-kilobase RNAs, and either a 4.1-kilobase RNA or a 4.6-kilobase RNA. These RNAs did not hybridize with cDNA's representing the src, erb, mac, and myb genes of avian acute transforming viruses. Cells transformed by any one of the Sk viruses (SK770, SK780, or SK790) synthesized two novel gag-related polyproteins having molecular weights of 110,000 (p110) and 125,000 (p125). We investigated the compositions of these proteins with monospecific antiviral protein sera. We found that p110 was a gag-pol fusion protein which contained antigenic determinants, leaving 49,000 daltons which was antigenically unrelated to the structural and replicative proteins of avian leukosis viruses. An analysis of the SK viral RNAs with specific DNA probes indicated that the 5.7-kilobase RNA contained gag sequences but lacked pol sequences and, therefore, probably encoded p125. The transforming ability, the deleted genome, and the induced polyproteins of the SK viruses were reminiscent of the properties of several replication-defective acute transforming viruses.  相似文献   

11.
3H-labeled 35S RNA from avian myeloblastosis virus (AMV), Rous associated virus (RAV)-0, RAV-60, RAV-61, RAV-2, or B-77(w) was hybridized with an excess of cellular DNA from different avian species, i.e., normal or leukemic chickens, normal pheasants, turkeys, Japanese quails, or ducks. Approximately two to three copies of endogenous viral DNA were estimated to be present per diploid of normal chicken cell genome. In leukemic chicken myeloblasts induced by AMV, the number of viral sequences appeared to have doubled. The hybrids formed between viral RNA and DNA from leukemic chicken cells melted with a Tm 1 to 6 C higher than that of hybrids formed between viral RNA and normal chicken cell DNA. All of the viral RNAs tested, except RAV-61, hybridized the most with DNA from AMV-infected chicken cells, followed by DNA from normal chicken cells, and then pheasant DNA. RAV-61 RNA hybridized maximally (39%) with pheasant DNA, followed by DNA from leukemic (34%), and then normal (29%) chicken cells. All viral RNAs tested hybridized little with Japanese quail DNA (2 to 5%), turkey DNA (2 to 4%), or duck DNA (1%). DNA from normal chicken cells contained only 60 to 70% of the RAV-60 genetic information, and normal pheasant cells lacked some RAV-61 DNA sequences. RAV-60 and RAV-61 genomes were more homologous to the RAV-0 genome than to the genome of RAV-2, AMV, or B-77(s). RAV-60 and RAV-61 appear to be recombinants between endogenous and exogenous viruses.  相似文献   

12.
13.
P E Neiman  H G Purchase  W Okazaki 《Cell》1975,4(4):311-319
Genome sequences of two recent field isolates of avian leukosis viruses in the DNA of normal and neoplastic chicken cells were studied by DNA-RNA hybridization under conditions of DNA excess. Comparisons were made between 60-70S RNA from these viruses and that of a chicken endogenous type C virus (RAV-0), and of a series of "laboratory" leukosis and sarcoma viruses, by competitive hybridization analysis. A minimum of 18% of the genome sequences of both ALV isolates detected in DNA from lymphomas they induced were not detected in normal chicken DNA. The vast majority of the fraction of RNA sequences from ALV which do form hybrids with normal chick DNA appear to be reacting with the endogenous provirus of RAV-0. The genomic representation of a variety of avian leukosis and sarcoma viruses in normal chicken cells could not be distinguished by these methods (except that 13% of the RAV-0 genome was not shared with any of the other viruses). In contrast, the portion of the ALV genome exogenous to the normal chicken geome showed significant divergence from that of two sarcoma viruses (Pr RSV-C and B-77). The increased hybridization of ALV RNA with lymphoma DNA was used to detect the appearance of ALV specific sequences in the bursa of Fabricius following infection.increased hybridization was correlated with both the time after infection and the extent of replacement of the bursa by lymphoma. About one half of the increase in hybridization preceded histologic evidence of transformation.  相似文献   

14.
DNA-RNA hybridization studies between 70S RNA from avian myeloblastosis virus (AMV) and an excess of DNA from (i) AMV-induced leukemic chicken myeloblasts or (ii) a mixture of normal and of congenitally infected K-137 chicken embryos producing avian leukosis viruses revealed the presence of fast- and slow-hybridizing virus-specific DNA sequences. However, the leukemic cells contained twice the level of AMV-specific DNA sequences observed in normal chicken embryonic cells. The fast-reacting sequences were two to three times more numerous in leukemic DNA than in DNA from the mixed embryos. The slow-reacting sequences had a reiteration frequency of approximately 9 and 6, in the two respective systems. Both the fast- and the slow-reacting DNA sequences in leukemic cells exhibited a higher Tm (2 C) than the respective DNA sequences in normal cells. In normal and leukemic cells the slow hybrid sequences appeared to have a Tm which was 2 C higher than that of the fast hybrid sequences. Individual non-virus-producing chicken embryos, either group-specific antigen positive or negative, contained 40 to 100 copies of the fast sequences and 2 to 6 copies of the slowly hybridizing sequences per cell genome. Normal rat cells did not contain DNA that hybridized with AMV RNA, whereas non-virus-producing rat cells transformed by B-77 avian sarcoma virus contained only the slowly reacting sequences. The results demonstrate that leukemic cells transformed by AMV contain new AMV-specific DNA sequences which were not present before infection.  相似文献   

15.
Two subgroup F avian leukosis viruses, ring-necked pheasant virus (RPV) and RAV-61, were previously shown to induce a high incidence of a fatal proliferative disorder in the lungs of infected chickens. These lung lesions, termed angiosarcomas, appear rapidly (4 to 5 weeks after infection), show no evidence of proto-oncogene activation by proviral integration, and are not induced by avian leukosis viruses belonging to other subgroups. To identify the viral sequences responsible for induction of these tumors, we constructed recombinant viruses by exchanging genomic segments of molecularly cloned RPV with those of a subgroup A leukosis virus, UR2AV. The ability to induce rapid lung tumors segregated only with the env sequences of RPV; the long terminal repeat of RPV was not required. However, recombinants carrying both env and long terminal repeat sequences of RPV induced lung tumors with a shorter latency. In several cases, recombinant viruses exhibited pathogenic properties differing from those of either parental virus. Recombinants carrying the gag-pol region of RPV and the env gene of UR2AV induced a high incidence of a muscle lesion termed infiltrative intramuscular fibromatosis. One recombinant, EU-8, which carries the gag-pol and LTR sequences of RPV, and the env gene of UR2AV, induced lymphoid leukosis after an unusually short latent period. The median time of death from lymphoid leukosis was 6 to 7 weeks after infection with EU-8 compared with approximately 5 months for UR2AV.  相似文献   

16.
Liquid hybridization of progressively smaller fragments (35S, 27S, 15.5S, 12.5S, and 8S) of poly(A)-selected avian myeloblastosis virus RNA with excess DNA from leukemic chicken myeloblasts revealed that all sizes of RNA contained sequences complementary to both slowly and rapidly hybridizing cellular DNA sequences. Apparently, the RNA sequences which hybridize rapidly with excesses of cellular DNA are not restricted to any one region of the avian myeloblastosis virus 35S RNA. Instead, they appear to be randomly distributed over the entire 35S avian myeloblastosis virus RNA molecule with some positioned within 200 nucleotides of the poly(A) tract at the 3' end of the RNA.  相似文献   

17.
Stocks of cloned helper-independent Rous sarcoma virus (RSV) spontaneously segregate transformation-defective (td) mutants that appear to have an RNA genome composed of smaller subunits than those of the patent virus. Differential hybridization and competitive hybridization techniques involving reactions between viral RNA and proviral sequences in host cell DNA (under conditions of initial DNA excess) were used to measure the extent of the deletion in a td mutant of Prague strain (Pr) of RSV (Pr RSV-C). Viral 60 to 70S RNA sequences labeled to 1 to 5 x 10(7) counts per min per mug with (125)I were characterized with respect to their properties in hybridization reactions and used to reinforce data obtained with [(3)H]RNA of lower specific activity. By these techniques, about 13% +/- 3% of the sequences Pr RSV-C that formed hybrids with DNA from virus-induced sarcomas appeared to be deleted from the genome of td Pr RSV-C. Studies comparing hybridization of RNA from Pr RSV-C and td Pr RSV-C with RSV-related sequences in normal cells, and competition experiments with RNA from the endogenous chicken oncornavirus Rous-associated virus type 0 (RAV-0) provided evidence that the majority, if not all, of the RNA sequences of Pr RSV-C deleted from its transformation-defective mutant are not represented in normal chicken DNA. Competition studies with a leukosis virus, RAV-7, indicated this virus also lacks a genome segment of about the same size as the deletion in the td mutant. Finally, the genome of all three "exogenous" viruses was found to lack a small segment (about 12%) of sequences present in the endogenous provirus of RAV-O.  相似文献   

18.
The distribution of oncornavirus DNA sequences in various tissues of normal chickens and of chickens with leukemia or kidney tumors induced by avian myeloblastosis virus (AMV) was analyzed by DNA-RNA hybridization using 35S AMV RNA as a probe. All the tissues from normal chickens which were tested contained the same average cellular concentration of endogenous oncornavirus DNA. In contrast, different tissues from lekemic chickens and from chickens bearing kidney tumors contained different concentrations of AMV homologous DNA: in some tissues there was no increase whereas other tissues acquired additional AMV-specific DNA sequences. The increase was the greatest in tissues which can become neoplastic after infection, such as myeloblasts, erythrocytes, and kidney cells. It was directly demonstrated that DNA from AMV-induced kidney tumor contains AMV sequences which are absent in DNA from normal cells. A similar finding had been previously obtained with leukemic cells (15). 3H-labeled 35S RNA from purified AMV was exhaustively hybridized with an excess of normal chicken DNA to remove all the viral RNA sequences which are complementary to DNA from uninfected cells. The 3H-labeled RNA which failed to hybridize was isolated by hydroxylapatite column chromatography which separates DNA-RNA hybrids from single-stranded RNA. The residual RNA hybridized to chicken kidney tumor DNA but did not rehybridize with normal chicken DNA.  相似文献   

19.
The coding strand of the integrated proviral DNA of avian myeloblastosis virus (AMV) was isolated from the DNA of leukemic chicken myeloblast. The three-step isolation procedure employed a combination of affinity chromatography with Sepharose-linked RNA, nucleic acid hybridization, and hydroxypatite chromatography techniques. At each step of purification the product was analyzed for the enrichment of AMV coding strand by hybridization with AMV RNA. The final product was the coding strand of the AMV DNA (90% pure). These results show that such a procedure can be used for the isolation and analysis of a specific structural gens of eukaryotic cells.  相似文献   

20.
Avian myeloblastosis virus contains a continuous sequence of approximately 1,000 nucleotides which may represent a gene (amv) responsible for acute myeloblastic leukemia in chickens. This sequence appears to have been acquired from chicken DNA and to be substituted for the envelope gene in the viral genome. We used hybridization probes enriched for the amv sequences and conditions that facilitate annealing of partially homologous nucleotide sequences to show that cellular sequences related to amv are present in the genomes of all vertebrates ranging from amphibians to humans but were not detected in fish, sea urchins, or Escherichia coli. In contrast to the preceding findings, nontransforming endogenous proviral nucleotide sequences closely related to the remainder of the avian myeloblastosis virus genome and to the entire myeloblastosis-associated helper virus are present only in chicken DNA. The amv-related cellular sequences appear to be highly conserved during evolution and to be contained at only one or a few locations in the genome of vertebrates. Within closely related species, they appear to share common evolutionary genetic loci. These findings and similar ones obtained with other highly oncogenic retroviruses containing a transforming gene suggest a general mechanism for acquisition of viral oncogenic sequences and an essential role for these sequences in the normal cellular state.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号