首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The variety of applications utilizing molecularly imprinted polymers (MIPs) requires synthetic strategies yielding different MIP formats including films, irregular particles, or spheres, along with precise knowledge on the specific material characteristics, such as binding capacity and binding efficiency of these materials. In response to this demand, MIPs are prepared in different formats by variation of the polymerization methodology. It is commonly agreed that micro- and sub-microspheres are particularly advantageous MIP formats, due to their monodispersity and facile synthesis procedures in contrast to conventional imprinted polymers prepared by bulk polymerization. However, the differences in actual rebinding characteristics of different MIP formats based on molecular interactions under a variety of binding/rebinding conditions have not been studied in detail to date. Consequently, the present work details an analytical strategy generically applicable to MIP systems for rebinding studies including equilibrium binding, non-equilibrium binding, and release experiments enabling more profound understanding on the molecular interactions between the imprinted materials and the template molecules. In this study, three MIP formats were considered for the same template molecule, 17beta-estradiol: irregularly shaped particulate polymers prepared by bulk polymerization and grinding, microspheres, and sub-microspheres. The latter two formats were synthesized via precipitation polymerization using different processing strategies. The morphologies and porosities of the resulting imprinted materials were characterized by scanning electron microscopy (SEM) and Brunauer-Emmett-Teller (BET) analysis, respectively. The obtained results indicate that microspheres prepared by precipitation polymerization provide superior rebinding properties during equilibrium binding in contrast to bulk polymers and sub-microspheres, and that the rebinding properties are different during equilibrium binding versus non-equilibrium binding. The median binding affinity constant determined during non-equilibrium rebinding is higher than the values obtained from equilibrium rebinding. Furthermore, the binding site distribution appears more homogeneous thief derived from non-equilibrium rebinding, as reflected in a heterogeneity index of m=0.725. Moreover, it is hypothesized that the specific interactions between template and monomers are related to the porosity of the imprinted polymers, which implies that the amount of binding sites and the pore sized distribution of the imprinted materials are a critical factor in achieving the desired MIP performance in various analytical applications. The BET results indicate that particles prepared with lower cross-linker-to-template ratio have a reduced surface area. Furthermore, it can be expected that there are less specific binding sites available at particles with reduced surface area and pore volume given similar distribution of the binding sites, as confirmed by the equilibrium binding isotherm studies. The pore size distribution results reveal that control of the pore size in the range of 100-180 A is essential to obtain the desired retention properties and Gaussian peak shape during HPLC analysis of small molecules.  相似文献   

2.
For the first time in this work, uniform molecularly imprinted polymer (MIP) nanoparticles were prepared using nalidixic acid as a template. The MIP nanoparticles were successfully synthesized by precipitation polymerization applying methacrylic acid (MAA) as a functional monomer and trimethylolpropane trimethacrylate (TRIM) as a cross-linking monomer at different mole ratios. The morphology, binding, recognition, selectivity, and in vitro release behaviors of obtained particles were studied. The produced polymers were characterized by Fourier transform infrared spectroscopy and differential scanning calorimetric. Furthermore, their morphology was analyzed accurately by scanning electron microscopy, photon correlation spectroscopy, and Brunauer-Emmett-Teller analysis. The nanospheres and microspheres with mean diameter values of 94 nm, 256 nm, and 1.2 μm were obtained using nalidixic acid-MAA-TRIM various mole ratios. Among the MIPs, the product with nalidixic acid-MAA-TRIM mole ratio of 1:12:12 established nanospheres with the lowest polydispersity index (0.003), an average pore diameter (12 nm), and the highest specific surface area (280 m(2) g(-1)) and selectivity factor (10.4). Results from binding experiments demonstrated that the imprinted nanospheres with a 94-nm mean diameter and a binding capacity of 28 mg of nalidixic acid per gram of polymer had higher specific affinity to nalidixic acid in contrast with the other imprinted nanospheres, microspheres, and nonimprinted particles. However, the binding performance of imprinted nanospheres in human serum was estimated using high-performance liquid chromatography analysis (binding approximately 98% of nalidixic acid). In addition, release experiments proved to be successful in the controlled release of nalidixic acid during a long period. The 20% of loaded nalidixic acid was released from the imprinted nanospheres within the first 20 h, whereas the remaining 80% was released in the after 120 h. The nalidixic acid release kinetics from the MIPs was highly affected by properties of the particles.  相似文献   

3.
Molecularly imprinted nanomaterials are gaining substantial importance. As a simple and efficient synthetic method, precipitation polymerization has been used to prepare uniform molecularly imprinted microspheres for numerous template compounds. Despite of its general applicability, the difficulty of obtaining uniform particles for some difficult templates by precipitation polymerization has been reported. In this work, we attempted to produce uniform atrazine-imprinted nanoparticles using propranolol as an auxiliary template under standard precipitation polymerization condition. When propranolol was added in the prepolymerization mixture for atrazine imprinting, it displayed a significant effect on particle size and size distribution of atrazine-imprinted polymers. The molecular binding characteristics of the molecularly imprinted polymer (MIP) nanoparticles were found to be dependent on the relative ratios of the two templates. Under an optimal template propranolol-atrazine ratio of 1:3 mol/mol, very uniform imprinted nanoparticles (d(H) =?106?nm) with a polydispersity index of 0.07 were obtained. The loading of the auxiliary template (propranolol) could be reduced to as low as 5% without sacrificing the uniformity of the MIP nanoparticles. The uniform MIP nanoparticles could be easily encapsulated into polyethylene terephthalate nanofibers using a simple electrospinning technique. The composite nanofibers containing the MIP nanoparticles maintained specific molecular binding capability for both atrazine and propranolol.  相似文献   

4.
Bisphenol A (BPA) and propranolol‐imprinted polymers have been prepared via both reversible addition–fragmentation chain transfer “bulk” polymerization (RAFTBP) and traditional radical “bulk” polymerization (TRBP) under similar reaction conditions, and their equilibrium binding properties were compared in detail for the first time. The chemical compositions, specific surface areas, equilibrium bindings, and selectivity of the obtained molecularly imprinted polymers (MIPs) were systematically characterized. The experimental results showed that the MIPs with molecular imprinting effects and quite fast binding kinetics could be readily prepared via RAFTBP, but they did not show improved template binding properties in comparison with those prepared via TRBP, which is in sharp contrast to many previous reports. This could be attributed to the heavily interrupted equilibrium between the dormant species and active radicals in the RAFT mechanism because of the occurrence of fast gelation during RAFTBP. The findings presented here strongly demonstrates that the application of controlled radical polymerizations (CRPs) in molecular imprinting does not always benefit the binding properties of the resultant MIPs, which is of significant importance for the rational use of CRPs in generating MIPs with improved properties. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

5.
Biomimetic testosterone receptors were synthesized via molecular imprinting for use as antibody mimics in immunoassays. As evaluated by radioligand binding assays, imprinted polymers prepared in acetonitrile were very specific for testosterone because the nonimprinted control polymers bound virtually no radiolabeled testosterone. The polymers present an appreciable affinity, with association constants of K(a) = 3.3 x 10(7) M(- 1) (high-affinity binding sites). The binding characteristics of the polymers were also evaluated in aqueous environment to study their viabilities as alternatives to antibodies in molecularly imprinted sorbent assays. Compared with the testosterone-specific antibodies present in commercial kits, our molecularly imprinted polymers are somewhat less sensitive but show a high selectivity.  相似文献   

6.
In this work, living/controlled radical polymerization (LRP) is compared with conventional free radical polymerization in the creation of highly and weakly cross-linked imprinted poly(methacrylic acid-co-ethylene glycol dimethacrylate) networks. It elucidates, for the first time, the effect of LRP on the chain level and begins to explain why the efficiency of the imprinting process is improved using LRP. Imprinted polymers produced via LRP exhibited significantly higher template affinity and capacity compared with polymers prepared using conventional methods. The use of LRP in the creation of highly cross-linked imprinted polymers resulted in a fourfold increase in binding capacity without a decrease in affinity; whereas weakly cross-linked gels demonstrated a nearly threefold increase in binding capacity at equivalent affinity when LRP was used. In addition, by adjusting the double bond conversion, we can choose to increase either the capacity or the affinity in highly cross-linked imprinted polymers, thus allowing the creation of imprinted polymers with tailorable binding parameters. Using free radical polymerization in the creation of polymer chains, as the template-monomer ratio increased, the average molecular weight of the polymer chains decreased despite a slight increase in the double bond conversion. Thus, the polymer chains formed were shorter but greater in number. Using LRP neutralized the effect of the template. The addition of chain transfer agent resulted in slow, uniform, simultaneous chain growth, resulting in the formation of longer more monodisperse chains. Reaction analysis revealed that propagation time was extended threefold in the formation of highly cross-linked polymers when LRP techniques were used. This delayed the transition to the diffusion-controlled stage of the reaction, which in turn led to the observed enhanced binding properties, decreased polydispersity in the chains, and a more homogeneous macromolecular architecture.  相似文献   

7.
In this study, molecularly imprinted polymers (MIPs) prepared using a multifunctional and a monofunctional monomer were compared with respect to their affinities, selectivities, and imprinting efficiencies for organophosphates. This is of interest because multifunctional monomers have higher affinities than traditional monofunctional monomers for their target analytes and thus should yield MIPs with higher affinities and selectivities. However, polymers containing multifunctional monomer may also have a higher number of unselective, non-templated binding sites. This increase in background binding sites could lead to a decrease in the magnitude of the imprinting effect and in the selectivity of the MIP. Therefore, phosphate selective imprinted and non-imprinted polymers (NIPs) were prepared using a novel multifunctional triurea monomer. The binding properties of these polymers were compared with polymers prepared using a monofunctional monourea monomer. The binding affinities and selectivities of the monomers, imprinted polymers, and NIPs were characterized by NMR titration, binding uptake studies, and binding isotherms. MIPs prepared with the triurea monomer showed higher binding affinity and selectivity for the diphenylphosphate anion in organic solvents than the MIPs prepared with the monofunctional monomer. Surprisingly, the binding properties of the NIPs revealed that the polymers prepared using the multifunctional and monofunctional monomers were very similar in affinity and selectivity. Thus, the multifunctional monomers increase not only the affinity of the MIP but also enhance the imprinting effect.  相似文献   

8.
The use of molecularly imprinted polymers (MIPs) in chemical and bioanalytical applications has been gaining in interest in recent years. Compared to their biological receptor counterparts, MIPs are easy to prepare, have long shelf stability and can be used under a variety of harsh conditions. The majority of MIPs currently used are produced by traditional free radical polymerization. One drawback with the use of standard free radical initiators is that little control can be exerted over the chemical processes that form the final imprinted cavities. In this study we set out to investigate the application of controlled (living) free radical polymerization to the preparation of MIPs. This was exemplified by the synthesis of cholesterol-imprinted bulk polymers by nitroxide-mediated polymerization (NMP). A sacrificial covalent bond was employed to maintain imprinting fidelity at elevated temperature. Selective uptake of cholesterol from solutions in hexane was studied with imprinted polymers prepared under different conditions. The imprinted hydrolyzed MIP prepared by NMP displayed higher selective cholesterol binding than that prepared by a traditional radical polymerization.  相似文献   

9.
Molecular imprinting and solid phase extraction of flavonoid compounds   总被引:4,自引:0,他引:4  
Molecularly imprinted polymers (MIPs) for quercetin have been successfully prepared by a thermal polymerization method using 4-vinylpyridine (4-VP) and ethylene glycol dimethacrylate (EDMA) as functional monomer and cross-linker, respectively. The obtained molecularly imprinted polymers were evaluated by HPLC using organic eluents, with respect to their selective recognition properties for quercetin and related compounds of the flavonoid class. Two equivalent control polymers, a blank polymer and a polymer imprinted with a structural analogous template, were synthesized, in order to confirm the obtained results. Furthermore, preliminary experiments confirm the applicability of the prepared MIPs for solid phase extraction (SPE), as rapid and facile clean-up of wine samples for HPLC analysis is an envisaged field of application. The successful preparation of molecularly imprinted polymers for flavones provides an innovative opportunity for the development of advanced separation materials, with applications in the field of wine and fermentation analysis.  相似文献   

10.
Molecular imprinting is a technique for the synthesis of polymers capable to bind target molecules selectively. The imprinting of large proteins, such as cell adhesion proteins or cell receptors, opens the way to important and innovative biomedical applications. However, such molecules can incur into important conformational changes during the preparation of the imprinted polymer impairing the specificity of the recognition cavities. The "epitope approach" can overcome this limit by adopting, as template, a short peptide sequence representative of an accessible fragment of a larger protein. The resulting imprinted polymer can recognize both the template and the whole molecule thanks to the specific cavities for the epitope. In this work two molecularly imprinted polymer formulations (a macroporous monolith and nanospheres) were obtained using the protected peptide Z-Thr-Ala-Ala-OMe, as template, and Z-Thr-Ile-Leu-OMe, as analogue for the selectivity evaluation, methacrylic acid, as functional monomer, and trimethylolpropane trimethacrylate and pentaerythritol triacrylate (PETRA), as cross-linkers. Polymers were synthesized by precipitation polymerization and characterized by standard techniques. Polymerization and rebinding solutions were analyzed by high performance liquid chromatography. The highly cross-linked polymers retained about 70% of the total template amount, against (20% for the less cross-linked ones). The extracted template amount and the rebinding capacity decreased with the cross-linking degree, while the selectivity showed the opposite behaviour. The PETRA cross-linked polymers showed the best recognition (MIP 2-, alpha=1.71) and selectivity (MIP 2+, alpha'=5.58) capabilities. The cytotoxicity tests showed normal adhesion and proliferation of fibroblasts cultured in the medium that was put in contact with the imprinted polymers.  相似文献   

11.
Density Functional Theory calculations have been used to select, among a set of chemicals traditionally used in the formulation of non-covalent molecularly imprinted polymers (MIPs), the best functional monomer and porogenic solvent for the construction of a recognition element for the dopamine metabolite homovanillic acid (HVA). Theoretical predictions were confirmed through batch binding assays and voltammetric detection. The computational method predicts that trifluoromethacrylic acid and toluene are the monomer and solvent rendering the highest stabilization energy for the pre-polymerization adducts. HVA-MIP prepared using this formulation gives rise to a binding isotherm that is accurately modelled by the Freundlich isotherm. The binding properties of this polymer were estimated using affinity distribution analysis. An apparent number of sites of 13 micromol g(-1) with an average affinity constant of 2 x 10(4) M(-1) was obtained in the concentration window studied.  相似文献   

12.
We present a new concept of synthesis for preparation of molecularly imprinted polymers using a functionalized initiator to replace the traditional functional monomer. Using propranolol as a model template, a carboxyl-functionalized radical initiator was demonstrated to lead to high-selectivity polymer particles prepared in a standard precipitation polymerization system. When a single enantiomer of propranolol was used as template, the imprinted polymer particles exhibited clear chiral selectivity in an equilibrium binding experiment. Unlike the previous molecular imprinting systems where the active free radicals can be distant from the template-functional monomer complex, the method reported in this work makes sure that the actual radical polymerization takes place in the vicinity of the template-associated functional groups. The success of using functional initiator to synthesize molecularly imprinted polymers brings in new possibilities to improve the functional performance of molecularly imprinted synthetic receptors.  相似文献   

13.
Immunoassays are a class of analytical techniques based on the selective affinity of a biological antibody for its antigen. Competitive binding assays, of which the radioimmunoassay (RIA) was the first example, are based on the competition between analyte and a labelled probe for a limited number of binding sites. Molecularly imprinted polymers (MIPs) have been shown to be suitable replacements for biological antibodies in such techniques. Molecularly imprinted sorbent assays (MIAs) similar to RIA have been developed for a range of analytes of clinical and environmental interest. Limits of detection and selectivities of such assays are often similar to those using biological antibodies. Some assays have been used for measurements directly in biological fluids. The field is reviewed and it is shown that some perceived disadvantages of MIPs do not hinder their application in competitive binding assays: many MIAs have been demonstrated in aqueous solvents, and it has been shown that the quantity of template required to prepare imprinted polymers can be drastically reduced, and that binding site heterogeneity is not a problem as long as the sites which bind the probe most strongly are selective. Finally, recent developments including assays in microtitre plates, the use of enzyme-labelled probes, flow-injection assays and a scintillation proximity MIA are discussed.  相似文献   

14.
This review article deals with preparation methods for spherical and monodispersed molecularly imprinted polymers (MIPs) in micrometer sizes. Those methods include suspension polymerization in water, liquid perfluorocarbon and mineral oil, seed polymerization and dispersion/precipitation polymerization. The other methods are the use of beaded materials such as a spherical silica or organic polymer for grafting MIP phases onto the surfaces of porous materials or filling the pores of silica with MIPs followed by dissolution of the silica. Furthermore, applications of MIP microspheres as affinity-based chromatography media, HPLC stationary phases and solid-phase extraction media, will be discussed for pharmaceutical, biomedical and environmental analysis.  相似文献   

15.
Joe I  Ramirez VD 《Steroids》2001,66(6):529-538
In this study rat brain solubilized plasmalemma-microsomal fractions (B-P3) or cytosolic fractions were applied to P-3-BSA (progesterone linked to BSA at C-3 position) and E-6-BSA (17beta-estradiol linked to BSA at C-6 position) affinity columns. It is interesting that a 37 kDa protein was retained by both columns which was identified as glyceraldehyde-3-phosphate dehydrogenase (GAPDH) by N-terminal sequencing. The 37 kDa protein (GAPDH) was not retained by either a control BSA conjugated affinity column or a corticosterone-BSA affinity column. E-6-BSA bound to GAPDH with higher binding affinity than P-3-BSA or T-3-BSA (testosterone linked to BSA at C-3 position) affinity columns. In addition, the binding of 17beta-E-6-BSA to GAPDH was impeded by free estrogen (17beta-estradiol) completely. Binding studies of E-6-BSA and P-3-BSA to commercial GAPDH from rabbit skeletal muscle using radiolabeled ligand binding assays revealed that P-3-BSA had 10x lower GAPDH binding affinity than E-6-BSA. Next, the effects of estrogen and progesterone on GAPDH activity were studied. Rapid and significant increases in V(max) and changes in K(m) were observed by the addition of 10 nM estradiol, whereas 100 nM progesterone decreased only V(max) significantly. Testosterone, corticosterone, 17alpha-estradiol, and diethylstilbestrol did not affect the enzyme activity. The results indicate that GAPDH is a target site for 17beta-estradiol and progesterone and suggest possible roles in the regulation of cellular metabolism and synaptic remodeling in which GAPDH has been reported to be involved.  相似文献   

16.
Molecularly imprinted polymers (MIPs) for the recognition of enalapril and lisinopril were prepared using 4-vinylpyridine as the functional monomer. Following thermal polymerisation the resulting materials were crushed, ground and sieved. First generation MIPs were produced in protic polar porogenic solvents (mixture of methanol (MeOH) and acetonitrile (ACN)). These MIPs were used and validated as sorbents for solid phase extraction and binding assays. Second generation MIPs were produced with polar aprotic porogenic solvent (DMSO). These polymers were packed in HPLC columns in order to investigate their molecular recognition properties in a dynamic mode. The study of the mobile phase composition included two major parameters: organic modifier content and pH value. Retention factors illustrate selective binding of the template from the imprinted polymers, compared to structurally related compounds.  相似文献   

17.
Molecular imprinting is a powerful synthetic technique for generating template-defined binding sites in cross-linked polymers. One scientific challenge in molecular imprinting research is to understand the intermolecular interactions leading to molecular complexation and the process of binding site formation during polymerization. In this work, we present a novel method for studying the molecular imprinting process in precipitation polymerization systems. This method employs solution (1) H NMR and dynamic light scattering (DLS) to investigate the association of template molecules with colloidal particles and the dynamic process of particle growth. Under precipitation polymerization conditions, the colloidal particles formed did not interfere with NMR signals from the soluble components, allowing unreacted monomers and free template to be easily quantified. To examine the process of particle nucleation and growth, DLS was used to measure the hydrodynamic particle size at different reaction times. To corroborate the interpretation of the NMR and DLS results, imprinted nanoparticles were collected at different reaction times and their binding characteristics were evaluated using radioligand-binding analysis. Our experimental results provide new insights into the molecular imprinting process that will be useful in the development of new imprinted nanoparticles.  相似文献   

18.
Naturally occurring steroids such as progesterone, testosterone and 17β-estradiol were analyzed in this study. These bio-identical molecules paradoxically can be either beneficial or harmful. Unfortunately as growth promoters can be toxic and cancerogenic at elevated levels. Due to difficulty in monitoring at trace quantities of these hormones in biological matrices specific adsorption materials molecularly imprinted polymers (MIPs) were used for preconcentration and clean up in sample preparation step. A non-covalent imprinting approach was used for bulk polymerization of progesterone, testosterone and 17β-estradiol imprinted polymers. Synthesis of MIPs was achieved by thermal, UV and γ irradiation initiated polymerization whereby were used methacrylic acid (MAA), 4-vinylpyridine (4-VP) as functional monomers, ethylene glycol dimethacrylate (EDMA), trimethylolpropane trimethacrylate (TRIM) as cross-linking agents and acetonitrile, isooctane–toluene (1:99, v/v) and chloroform as porogen solvents. It was also used as initiator 2,2′-azobis(2-methylpropionitrile) (AIBN) or benzyl methyl ether (BME). The MIPs were applied as selective sorbents in solid-phase extraction (SPE). Molecularly imprinted solid-phase extraction (MISPE) considered as hyphenated technique were applied in extraction step before HPLC-DAD analysis of steroids from human urine.  相似文献   

19.
Improved specificity and binding affinity by molecularly imprinted polymers is possible by development of novel functional materials. Furthermore, increasing the cross-link density of imprinted polymers by using cross-linking functional groups was anticipated to improve polymer molecular recognition. A novel cross-linking monomer derived from an L-aspartic acid precursor was synthesized and employed in molecularly imprinted polymers to mimic more closely the scaffolding of proteins, and thus provide more protein-like selectivity. Chromatographic results revealed a more than 7-fold improvement in polymers imprinted using the new monomer versus a traditionally formulated polymer imprinted with methacrylic acid as the functional monomer.  相似文献   

20.
Molecular recognition-based separation and sensing systems have received much attention in various fields because of their high selectivity for target molecules. Molecular imprinting has been recognized as a promising technique for the development of such systems, where the molecule to be recognized is added to a reaction mixture of a cross-linker(s), a solvent(s), and a functional monomer(s) that possesses a functional groups(s) capable of interacting with the target molecule. Binding sites in the resultant polymers involve functional groups originating from the added functional monomer(s), which can be constructed according to the shape and chemical properties of the target molecules. After removal of the target molecules, these molecularly imprinted complementary binding sites exhibit high selectivity and affinity for the template molecule. In this article, recent developments in molecularly imprinted polymers are described with their applications as separation media in liquid chromatography, capillary electrophoresis, solid-phase extraction, and membranes. Examples of binding assays and sensing systems using molecularly imprinted polymers are also presented.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号