首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Xia Q  Pang W  Pan H  Zheng Y  Kang JS  Zhu SG 《Regulatory peptides》2004,122(3):173-178
Ghrelin, a novel gut--brain peptide predominantly produced by the stomach, displays strong growth hormone (GH)-releasing activity mediated by the hypothalamus-pituitary GH secretagogue receptor (GHS-R). Recently, the ghrelin receptor has also been detected in peripheral systems including immune tissues, suggesting that ghrelin may play an important role in the regulation of immune function. In this paper, we assessed the presence and function of the ghrelin receptor in murine splenic T cells. The enriched T cells express the mRNA of ghrelin and ghrelin receptor mRNA, and there is a significantly positive correlation between them. Moreover, we showed that ghrelin dose-dependently inhibits proliferation of splenic T cells when they are costimulated by anti-CD3. In addition, ghrelin suppressed Th(1) (IL-2 and IFN-gamma) and Th(2) (IL-4 and IL-10) cytokines mRNA expression. These results demonstrate the presence of the ghrelin receptor in murine spleen T lymphocytes and a functional role of ghrelin as a modulator of lymphocyte function. This function of ghrelin may have some relevance to the pathophysiology of immunologic alterations related to metabolism.  相似文献   

2.
Mouse splenic dendritic cells (DCs) produce IFN-gamma in response to IL-12. In the present study, we analyzed effects of Th1 and Th2 cytokines on IFN-gamma production by DCs. IL-18 produced by DCs and macrophages acts in an autocrine manner and augments IL-12-induced IFN-gamma production by DCs as also observed in T and NK cells. Surprisingly, IL-4, a Th2 cytokine, also acts synergistically with IL-12 on IFN-gamma production by DCs. In addition, IL-4 markedly enhances IFN-gamma production when DCs are stimulated through CD40 or MHC class II. These results indicate that both Th1 and Th2 cytokines act on DCs during T cell-DC interaction upon Ag presentation. p38 mitogen-activated protein kinase is constitutively activated in mature DCs and is required for IFN-gamma production by DCs. IL-18 but not IL-4 or IL-12 further activates the p38 mitogen-activated protein kinase activity, suggesting that IL-4 and IL-18 enhance IFN-gamma production through distinct intracellular signal transduction pathways in DCs.  相似文献   

3.
IL-4 enhances keratinocyte expression of CXCR3 agonistic chemokines   总被引:6,自引:0,他引:6  
IFN-induced protein of 10 kDa (IP-10), monokine induced by IFN-gamma (Mig), and IFN-inducible T-cell alpha-chemoattractant (I-TAC) belong to the non-glutamate-leucine-arginine motif CXC chemokine family and act solely through the CXCR3 receptor for potent attraction of T lymphocytes. In this study, we evaluated the capacity of the T cell-derived cytokines IL-4, IL-10, and IL-17 to modulate IP-10, Mig, and I-TAC in cultured human keratinocytes and CXCR3 expression in T cells from allergic contact dermatitis (ACD). IL-4, but not IL-10 or IL-17, significantly up-regulated IFN-gamma- or TNF-alpha-induced IP-10, Mig, and I-TAC mRNA accumulation in keratinocytes and increased the levels of IP-10 and Mig in keratinocyte supernatants. Immunohistochemistry of skin affected by ACD revealed that >70% of infiltrating cells were reactive for CXCR3 and that CXCR3 staining colocalized in CD4+ and CD8+ T cells. Nickel-specific CD4+ and CD8+ T cell lines established from ACD skin produced IFN-gamma and IL-4 and expressed moderate to high levels of CXCR3. Finally, CXCR3 agonistic chemokines released by stimulated keratinocytes triggered calcium mobilization in skin-derived nickel-specific CD4+ T cells and promoted their migration, with supernatant from keratinocyte cultures stimulated with IFN-gamma and IL-4 attracting more efficaciously than supernatant from keratinocytes activated with IFN-gamma alone. In conclusion, IL-4 exerts a proinflammatory function on keratinocytes by potentiating IFN-gamma and TNF-alpha induction of IP-10, Mig, and I-TAC, which in turn may determine a prominent recruitment of CXCR3+ T lymphocytes at inflammatory reaction sites.  相似文献   

4.
In murine schistosomiasis, granulomas form around ova deposited in the liver and intestines of infected mice. The granulomas have eosinophils that produce vasoactive intestinal peptide (VIP) and T cells that display VIP receptors. IL-5 is a lymphokine important for the development and maturation of eosinophils. It seemed plausible that VIP, released from eosinophils, may interact with lymphocyte VIP receptors and modulate IL-5 production as part of a feedback regulatory circuit. Thus, we determined whether granuloma T cells make IL-5 and whether VIP modulates IL-5 production. Isolated granuloma cells enriched for T lymphocytes spontaneously released IL-5. Culture of these cells in the presence of VIP increased IL-5 secretion. Spleen cells were also studied. Spleen cells from infected mice did not spontaneously release IL-5 or express IL-5 mRNA and VIP did not stimulate these resting spleen cells to produce this IL. However, these cells did express IL-5 mRNA and secreted IL-5 in response to Con A or soluble egg Ag. VIP could not appreciably modulate IL-5 release when cells were cultured with VIP and the Ag or mitogen. Spleen cells washed free of Con A ceased IL-5 secretion within 24 h. These preactivated splenic T cells resumed vigorous IL-5 secretion in response to either Con A or VIP. Yet only Con A prominently induced IL-5 mRNA expression. VIP was an effective stimulus at concentrations equal to or above the kDa of the VIP receptor on both splenic and granuloma T cells (10(-8) M). It is concluded that, in murine schistosomiasis, VIP invokes IL-5 release from activated T cells that are not undergoing immediate TCR stimulation.  相似文献   

5.
NK T lymphocytes are characterized by their ability to promptly generate IL-4 and IFN-gamma upon TCR engagement. Here, we demonstrate that these cells can also be fully activated in the absence of TCR cross-linking in response to the proinflammatory cytokine IL-18 associated with IL-12. NK T cells stimulated with IL-18 plus IL-12 proliferated, killed Fas+ target cells, and produced high levels of IFN-gamma without IL-4. In these conditions, IFN-gamma production was at least 10-fold higher than that upon TCR cross-linking. Interestingly, a 2-h pretreatment with IL-12 plus IL-18 sufficed to maintain the high IFN-gamma-producing potential during subsequent stimulation with anti-TCR mAbs or with the specific Ag alpha-galactosylceramide. Similar effects were observed in vivo, because splenic CD4+ NK T cells from MHC class II-deficient mice secreted IFN-gamma without further stimulation when removed 2 h after a single injection of IL-12 plus IL-18. In conclusion, our evidence for activation of NK T lymphocytes in response to IL-18 plus IL-12 in the absence of TCR engagement together with the maintenance of preferential IFN-gamma vs IL-4 production upon subsequent exposure to specific Ags is consistent with the active participation of this cell population in innate as well as acquired cellular immune responses.  相似文献   

6.
7.
Expression of high affinity IL-12 receptors is required for IL-12-mediated IFN-gamma production. Activation of this pathway has been shown to be critical in generating optimal cell-mediated immunity. Therefore, increased IL-12 receptor expression might be expected in the host response after infection by an intracellular bacterial pathogen. In the present study, we have made the surprising discovery that infection with Salmonella results in an early reduction of high affinity IL-12 receptor expression and activation. After oral inoculation with Salmonella, the level of mRNA expression encoding IL-12 receptor beta2 (IL-12Rbeta2) subunit was diminished 12 h postinfection in the mesenteric lymph nodes and subsequently in the spleen. Furthermore, decreased IL-12Rbeta2 mRNA expression was observed in CD4+ T lymphocytes isolated from the mesenteric lymph nodes and spleens of infected mice. Attenuated IL-12Rbeta2 mRNA expression correlated with reduced receptor signaling, as demonstrated by reduced IL-12-induced STAT4 phosphorylation in enriched T lymphocytes isolated from the mesenteric lymph nodes and spleens of Salmonella-infected mice. These in vivo results were substantiated with an in vitro model system. In this model system, T lymphocytes cocultured with Salmonella-infected macrophages expressed less IL-12Rbeta2 mRNA. The cocultured T cells were also less responsive to IL-12 as assessed by reduced phosphorylation of STAT4 and limited IFN-gamma secretion. Together, these studies suggest that Salmonella can limit an optimal host immune response by reducing the expression and activity of high affinity IL-12 receptors.  相似文献   

8.
IL-2 and IL-15 are lymphocyte growth factors produced by different cell types with overlapping functions in immune responses. Both cytokines costimulate lymphocyte proliferation and activation, while IL-15 additionally promotes the development and survival of NK cells, NKT cells, and intraepithelial lymphocytes. We have investigated the effects of IL-2 and IL-15 on proliferation, cytotoxicity, and cytokine secretion by human PBMC subpopulations in vitro. Both cytokines selectively induced the proliferation of NK cells and CD56(+) T cells, but not CD56(-) lymphocytes. All NK and CD56(+) T cell subpopulations tested (CD4(+), CD8(+), CD4(-)CD8(-), alphabetaTCR(+), gammadeltaTCR(+), CD16(+), CD161(+), CD158a(+), CD158b(+), KIR3DL1(+), and CD94(+)) expanded in response to both cytokines, whereas all CD56(-) cell subpopulations did not. Therefore, previously reported IL-15-induced gammadelta and CD8(+) T cell expansions reflect proliferations of NK and CD56(+) T cells that most frequently express these phenotypes. IL-15 also expanded CD8alpha(+)beta(-) and Valpha24Vbeta11 TCR(+) T cells. Both cytokines stimulated cytotoxicity by NK and CD56(+) T cells against K562 targets, but not the production of IFN-gamma, TNF-alpha, IL-2, or IL-4. However, they augmented cytokine production in response to phorbol ester stimulation or CD3 cross-linking by inducing the proliferation of NK cells and CD56(+) T cells that produce these cytokines at greater frequencies than other T cells. These results indicate that IL-2 and IL-15 act at different stages of the immune response by expanding and partially activating NK receptor-positive lymphocytes, but, on their own, do not influence the Th1/Th2 balance of adaptive immune responses.  相似文献   

9.
10.
The aim of this study was to evaluate the roles of IL-18 and IL-12 in potentiating the encephalitogenic activity of T cell lines specific for myelin oligodendrocyte glycoprotein (MOG(35-55)). MOG-specific T cells stimulated with anti-CD3 and anti-CD28 in the presence of IL-12 or IL-18 alone transferred only mild experimental autoimmune encephalomyelitis (EAE) into a low percentage of recipients. However, T cells cocultured with both cytokines transferred aggressive clinical and histological EAE into all recipients. Coculture of T cells with IL-12 enhanced the secretion of IFN-gamma, but not TNF-alpha, whereas coculture with IL-18 enhanced the secretion of TNF-alpha, but not INF-gamma. However, coculture with both IL-18 and IL-12 induced high levels of both TNF-alpha and IFN-gamma. Additionally, IL-12 selectively enhanced mRNA expression of CCR5, whereas IL-18 selectively enhanced the expression of CCR4 and CCR7, and CCR4 and CCR5 were coexpressed on the surface of T cells cocultured with IL-12 and IL-18. Finally, estrogen treatment, previously found to inhibit both TNF-alpha and IFN-gamma production, completely abrogated all signs of passive EAE. These data demonstrate that optimal potentiation of encephalitogenic activity can be achieved by conditioning MOG-specific T cells with the combination of IL-12 and IL-18, which, respectively, induce the secretion of IFN-gamma/CCR5 and TNF-alpha/CCR4/CCR7, and that estrogen treatment, which is known to inhibit both proinflammatory cytokines, can completely ablate this aggressive form of passive EAE.  相似文献   

11.
NKT cells are a remarkably versatile population whose functional capacities are determined by cytokines present in their microenvironment. In this study, we provide evidence for a new immunoregulatory effect of the proinflammatory cytokine IL-18 on NKT cells. We found that IL-18, mainly known for its involvement in NK cell activation and in Th 1 immune responses, substantially enhanced IL-4 production as well as the percentage of IL-4(+) cells among NKT lymphocytes activated by their specific ligand alpha-galactosylceramide (alpha-GalCer). The effect of IL-18 on IL-4 production by activated NKT cells took place both in vivo and in vitro and was not affected by IL-12 which increased IFN-gamma secretion in the same conditions. We show that NKT cells are the main targets for IL-18-induced IL-4 production since it occurred neither in NKT-deficient mice nor after stimulation of Th2 lymphocytes. Finally, we provide evidence that the IL-4 promptly generated by NKT cells in response to IL-18 plus alpha-galactosylceramide in vivo can effectively contribute to the adaptive Th2 immune response by up-regulating the early activation marker CD69 on B cells. Our data support the notion that, in contrast to the exclusive IFN-gamma inducer IL-12, IL-18 acts in a more subtle manner as a costimulatory factor in both pro-Th1 and pro-Th2 responses depending on the nature of the stimulation and the target cells.  相似文献   

12.
NK and T cell-derived IFN-gamma is a key cytokine that stimulates innate immune responses and directs adaptive T cell response toward Th1 type. IL-15, IL-18, and IL-21 have significant roles as activators of NK and T cell functions. We have previously shown that IL-15 and IL-21 induce the expression of IFN-gamma, T-bet, IL-12R beta 2, and IL-18R genes both in NK and T cells. Now we have studied the effect of IL-15, IL-18, and IL-21 on IFN-gamma gene expression in more detail in human NK and T cells. IL-15 clearly activated IFN-gamma mRNA expression and protein production in both cell types. IL-18 and IL-21 enhanced IL-15-induced IFN-gamma gene expression. IL-18 or IL-21 alone induced a modest expression of the IFN-gamma gene but a combination of IL-21 and IL-18 efficiently up-regulated IFN-gamma production. We also show that IL-15 activated the binding of STAT1, STAT3, STAT4, and STAT5 to the regulatory sites of the IFN-gamma gene. Similarly, IL-21 induced the binding of STAT1, STAT3, and STAT4 to these elements. IL-15- and IL-21-induced STAT1 and STAT4 activation was verified by immunoprecipitation with anti-phosphotyrosine Abs followed by Western blotting with anti-STAT1 and anti-STAT4 Abs. IL-18 was not able to induce the binding of STATs to IFN-gamma gene regulatory sites. IL-18, however, activated the binding of NF-kappa B to the IFN-gamma promoter NF-kappa B site. Our results suggest that both IL-15 and IL-21 have an important role in activating the NK cell-associated innate immune response.  相似文献   

13.
14.
Resistance or susceptibility to most infectious diseases is strongly determined by the balance of type 1 vs type 2 cytokines produced during infection. However, for viruses, this scheme may be applicable only to infections with some cytopathic viruses, where IFN-gamma is considered as mandatory for host defense with little if any participation of type 2 responses. We studied the role of signature Th1 (IL-12, IFN-gamma) and Th2 (IL-4, IL-10) cytokines for immune responses against vaccinia virus (VV). IL-12-/- mice were far more susceptible than IFN-gamma-/- mice, and primary CTL responses against VV were absent in IL-12-/- mice but remained intact in IFN-gamma-/- mice. Both CD4+ and CD8+ T cells from IL-12-/- mice were unimpaired in IFN-gamma production, although CD4+ T cells showed elevated Th2 cytokine responses. Virus replication was impaired in IL-4-/- mice and, even more strikingly, in IL-10-/- mice, which both produced elevated levels of the proinflammatory cytokines IL-1alpha and IL-6. Thus, IL-4 produced by Th2 cells and IL-10 produced by Th2 cells and probably also by macrophages counteract efficient anti-viral host defense. Surprisingly, NO production, which is considered as a major type 1 effector pathway inhibited by type 2 cytokines, appears to play a limited role against VV, because NO sythetase 2-deficient mice did not show increased viral replication. Thus, our results identify a new role for IL-12 in defense beyond the induction of IFN-gamma and show that IL-4 and IL-10 modulate host protective responses to VV.  相似文献   

15.
Dendritic cells (DCs) are professional APCs able to initiate innate and adaptive immune responses against invading pathogens. Different properties such as the efficient Ag processing machinery, the high levels of expression of costimulatory molecules and peptide-MHC complexes, and the production of cytokines contribute in making DCs potent stimulators of naive T cell responses. Recently we have observed that DCs are able to produce IL-2 following bacterial stimulation, and we have demonstrated that this particular cytokine is a key molecule conferring to early bacterial activated DCs unique T cell priming capacity. In the present study we show that many different microbial stimuli, but not inflammatory cytokines, are able to stimulate DCs to produce IL-2, indicating that DCs can distinguish a cytokine-mediated inflammatory process from the actual presence of an infection. The capacity to produce IL-2 following a microbial stimuli encounter is a feature shared by diverse DC subtypes in vivo, such as CD8 alpha(+) and CD8 alpha(-) splenic DCs and epidermal Langerhans cells. When early activated DCs interact with T cells, IL-2 produced by DCs is enriched at the site of cell-cell contact, confirming the importance of DCs-derived IL-2 in T cell activation.  相似文献   

16.
Cervical cancer is the second most common cancer in the women worldwide and the most frequent in developing countries, including India. Human papilloma virus (HPV) is the major etiological factor in cervical cancer patients. Host factors are also critical in regulating tumor growth and cytokines that modulate immunologic control may be of particular importance. In the present study, we investigated the correlation between the presence of HPV and type of cytokines expressed in cervical carcinomas and attempted to elucidate the possible reasons for the immune suppression. Cytokines investigated were type-1 cytokine IFN-gamma (shows immunostimulatory function and capable of limiting tumor growth) and type-2 cytokines IL-4, IL-10 and IL-6 (show immunosuppressive function and capable of stimulating tumor growth). Our data demonstrated the presence of HPV sub-types 16 and 18 in 86% and 13.8% of cervical tumor biopsies, respectively. The cervical tumor biopsies showed increased presence for mRNA for IL-10 and IL-1alpha, while none of the biopsies showed expression for IFN-gamma. A correlation was observed between the presence of HPV in cervical tumor biopsies and mRNA for IL-10. Increased percentages of CD4+CD25+ regulatory T cells (Tregs) were observed in circulation in cervical cancer patients, providing evidence for increased immune suppression. IL-10 may play a key role in maintenance of Tregs and explains the immunosuppressive state of cervical cancer patients.  相似文献   

17.
18.
The effects of 17beta-estradiol (E2) on immune function have been extensively reported. The effects are dependent on concentration and duration of exposure and potential differences in signaling between the known E2 receptors, estrogen receptors (ER) alpha and ERbeta. Through the use of ER-deficient mice, we and others have begun to demonstrate the role of the two known receptors in modulating immune functional activities. Previous studies have shown that cells of the innate immune system have altered function (bactericidal capacity) and patterns of cytokine expression (increased proinflammatory cytokine expression) through amelioration of ERalpha signaling. In this study, we extend these studies to analysis of T cell differentiation and proliferation in APC-dependent and APC-independent in vitro assay systems. Our results demonstrate that ERalpha deficiency in splenic macrophages, but not CD11c+ splenic dendritic cells pulsed with OVA significantly enhances proliferative responses and IFN-gamma production by transgenic OVA peptide-specific (OT-II) CD4+ T cells when compared with Ag-pulsed APC from wild-type littermates. The addition of E2 in this culture system did not significantly affect the production of IFN-gamma. In addition, when purified CD4+ T cells from ERalpha-deficient and wild-type littermates were stimulated with anti-CD3/CD28 Ab in the absence of E2, there were no significant differences in IFN-gamma or IL-4 production. However, the addition of E2 significantly increased IL-4 secretion, as well as increased GATA-3 mRNA levels from ERalpha-replete CD4+ T cells, while this effect was abrogated in ERalpha-deficient CD4+ T cells.  相似文献   

19.
Delayed type hypersensitivity reaction (DTH) consists of a sequential cascade of steps depending on different types of T cells, as well as mast cells, endothelial cells and macrophages. Recently it has been shown that CD4+ TH1 lymphocytes ("inflammatory type") play a central role in DTH reaction. Activated TH1 cells produce a characteristic pattern of cytokines: IL-2, IL-3, TNF-beta, IFN-gamma. Using the contact sensitivity (CS) reaction on mice as a model system, the role of cytokines in the regulation of DTH is presented, particularly the significance of IL-3 and IL-6. The recent data can be interpreted to show that IL-6 released by activated macrophages (APC cells) in the induction phase of the CS reaction probably stimulate CD8+ T suppressor cells. These in turn inhibit the production of IL-2 and IL-3 by CD4+ TH1 cells followed by a state of unresponsiveness.  相似文献   

20.
IL-4 and IL-13 play key roles in Th2 immunity and asthma pathogenesis. Although the function of these cytokines is partially linked through their shared use of IL-4Ralpha for signaling, the interplay between these cytokines in the development of memory Th2 responses is not well delineated. In this investigation, we show that both IL-4 and IL-13 influence the maturation of dendritic cells (DC) in the lung and their ability to regulate secretion of IFN-gamma and Th2 cytokines by memory CD4(+) T cells. Cocultures of wild-type T cells with pulmonary DC from allergic, cytokine-deficient mice demonstrated that IL-4 enhanced the capacity of DC to stimulate T cell secretion of Th2 cytokines, whereas IL-13 enhanced the capacity of DC to suppress T cell secretion of IFN-gamma. Because IL-4Ralpha is critical for IL-4 and IL-13 signaling, we also determined how variants of IL-4Ralpha influenced immune cell function. T cells derived from allergic mice expressing a high-affinity IL-4Ralpha variant produced higher levels of IL-5 and IL-13 compared with T cells derived from allergic mice expressing a low-affinity IL-4Ralpha variant. Although DC expressing different IL-4Ralpha variants did not differ in their capacity to influence Th2 cytokine production, they varied in their capacity to inhibit IFN-gamma production by T cells. Thus, IL-4 and IL-13 differentially regulate DC function and the way these cells regulate T cells. The affinity of IL-4Ralpha also appears to be a determinant in the balance between Th2 and IFN-gamma responses and thus the severity of allergic disease.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号