首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 26 毫秒
1.
Juvenile hormone (JH) III esterase and JH III epoxide hydrolase activity was found in the integument, midgut, fat body, and brain during last instar development of the tobacco hornworm, Manduca sexta. JH esterase activity was primarily located in the cytosol in these tissues while the majority of the JH epoxide hydrolase activity was found in the microsomes. A prewandering (on day 3) and postwandering (on day 8) peak in plasma JH III esterase activity occurs in the last instar of gate I M. sexta. The JH esterase activity profile in integument, midgut, fat body, and brain followed a similar pattern to that of the plasma. The only exception to this was the absence of the postwandering, prepupal (on day 8) JH esterase peak in the fat body. The topical application of the juvenoid, (RS)-methoprene, failed to induce fat body JH esterase activity but increased activity in the plasma, integument, midgut, and brain in M. sexta prepupae. These results indicate that the source of plasma JH esterase activity is not always the fat body as previously hypothesized. The developmental profile of tissue JH epoxide hydrolase activity was also similar to that of JH esterase suggesting that both enzymes may be regulated partly by the same factors and that JH epoxide hydrolase may also have an important, previously unrecognized functional role in JH regulation and insect metamorphosis. Multiple isoelectric forms of tissue-specific JH esterases and JH epoxide hydrolases were found in integument, midgut, fat body, and brain. The JH esterases in these tissues had isoelectric points more acidic than that for plasma. Tissue α-naphthyl acetate esterase, developmental profiles, and inhibitor sensitivity to 3-(octylthio)-1,1,1-trifluoropropan-2-one differed significantly from that for JH esterase, suggesting that they represent different enzymes. ©1992 Wiley-Liss, Inc.  相似文献   

2.
A thin-layer chromatographic assay was developed for the resolution of hydrolytic and conjugative catabolites of juvenile hormone (JH). A single-dimension, dual-development thin-layer system allowed complete resolution of the catabolites. Thus, this system provided a means for the rapid and economic analysis of JH hydrolysis even when different hydrolytic activities were present concurrently. Purified hydrolytic enzymes were found to be superior to chemical methods for the generation of small amounts of standards of JH catabolites. The relative levels of activities of an epoxide hydrolase and an esterase toward JH III were found to be similar in microsomal preparations from three lines of adult Drosophila melanogaster isolated from a field population. However, selection of flies by exposure to cut orange resulted in the elevation of levels of epoxide hydrolase activities, whereas esterase levels were not affected to the same extent. The formation of the JH acid-diol was not detected under the conditions of this study, suggesting that the JH acid and diol were not good substrates for epoxide hydrolase and juvenile hormone esterase, respectively.  相似文献   

3.
保幼激素的代谢   总被引:4,自引:0,他引:4  
李胜  蒋容静  曹梅讯 《昆虫学报》2004,47(3):389-393
保幼激素的代谢由保幼激素酯酶、保幼激素环氧水解酶和保幼激素二醇激酶等共同催化完成。在这些代谢酶的作用下,保幼激素代谢成保幼激素酸、保幼激素二醇、保幼激素酸二醇和保幼激素二醇磷酸。作者总结了保幼激素代谢的研究方法;按实验室和昆虫种类为线索,归纳和概括了每一种保幼激素代谢酶的研究进程;对保幼激素酯酶和保幼激素环氧水解酶作了序列分析;最后对保幼激素的代谢研究进行了展望。  相似文献   

4.
JH III esterase and JH III epoxide hydrolase (EH) in vitro activity was compared in whole body Trichoplusia ni homogenates at each stage of development (egg, larva, pupa and adult). While activity of both enzymes was detected at all ages tested, JH esterase was significantly higher than EH activity except for day three of the fifth (last) stadium (L5D3). For both enzymes, activity was highest in eggs. Adult virgin females had 4.6- and 4.0-fold higher JH esterase and EH activities, respectively, than adult virgin males. JH III metabolic activity also was measured in whole body homogenates of fifth stadium T. ni that were fed a nutritive diet (control) or starved on a non-nutritive diet of alphacel, agar and water. With larvae that were starved for 6, 28 and 52 h, EH activity per insect equivalent was 48%, 5% and 1%, respectively, of the control insects. At the same time points, JH esterase activity levels in starved T. ni were 29%, 4% and 3% of that of insects fed the nutritive diet. Selected insect hormones and xenobiotics were administered topically or orally to fifth stadium larvae for up to 52 h, and the effects on whole body EH and JH esterase activity analyzed. JH III increased the JH III esterase activity as high as 2.2-fold, but not the JH III EH activity. The JH analog, methoprene, increased both JH esterase and EH activity as high as 2.5-fold. The JH esterase inhibitor, 3-octylthio-1,1,1-trifluoropropan-2-one (OTFP), had no impact on EH activity. The epoxides trans- and cis-stilbene oxide (TSO and CSO) in separate experiments increased the EH activity approximately 2.0-fold. TSO did not alter JH esterase levels when topically applied, but oral administration reduced activity to 70% of the control at 28 h, and then increased the activity 1.8-fold at 52 h after the beginning of treatment. CSO had no effect on JH esterase activity. Phenobarbital increased EH activity by 1.9-fold, but did not change JH esterase levels. Clofibrate and cholesterol 5alpha,6alpha-epoxide had no effect on EH. JH esterase activity also was not affected by clofibrate, but cholesterol 5alpha,6alpha-epoxide reduced the JH esterase activity to 60-80% of the control. The biological significance of these results is discussed.  相似文献   

5.
6.
Juvenile hormone (JH) undergoes metabolic degradation by two major pathways involving JH esterase and JH epoxide hydrolase (EH). While considerable effort has been focussed on the study of JH esterase and the development of inhibitors for this enzyme, much less has been reported on the study of JH-EH. In this work, the asymmetric synthesis of two classes of inhibitors of recombinant JH-EH from Trichoplusia ni, a glycidol-ester series and an epoxy-ester series is reported. The most effective glycidol-ester inhibitor, compound 1, exhibited an I(50) of 1.2x10(-8) M, and the most effective epoxy-ester inhibitor, compound 11, exhibited an I(50) of 9.4x10(-8) M. The potency of the inhibitors was found to be dependent on the absolute configuration of the epoxide. In both series of inhibitors, the C-10 R-configuration was found to be significantly more potent that the corresponding C-10 S-configuration. A mechanism for epoxide hydration catalyzed by insect EH is also presented.  相似文献   

7.
In vitro metabolism of juvenile hormone III (JH III) and juvenile hormone III bisepoxide was investigated using purified mouse liver cytosolic epoxide hydrolase (cEH) and cell fractions from Drosophila melanogaster. JH III was metabolized faster than JH III bisepoxide by epoxide hydrolase activity in D. melanogaster cell fractions and by cEH. After incubation with JH III bisepoxide, all cell fractions and cEH produced epoxy-diol, cis- and trans-tetrahydrofuran-diols, and tetraol as metabolites. An increase in the concentration of cEH resulted in an increase in the proportion of tetraol as a JH III bisepoxide metabolite but this trend was not observed in the D. melanogaster cell fractions. Differences between cell fractions in the metabolism of JH III and JH III bisepoxide suggests the presence of juvenile hormone epoxide hydrolase isozymes.  相似文献   

8.
A convenient reversed-phase liquid chromatographic method was developed to separate juvenile hormone (JH) and its metabolites. The known metabolites including JH acid, JH diol, and JH acid-diol, as well as an unknown metabolite, were efficiently separated within 25 min on a 50 X 4.6 mm polymer column using a linear gradient of acetonitrile:5 mM Hepes (pH 7.4) buffer. Use of the polymer column diminished tailing observed for the diol metabolite on a C18 silica column, and allowed use of slightly basic buffers without concern of column instability. Use of buffer was essential to give good peak shape and reproducible retention behavior for the acidic metabolites. Using this method, an in vivo JH catabolism study was performed in fifth stadium larvae of Manduca sexta. Injected (10R)-[3H]JH III was rapidly converted to JH acid-diol and to an unknown compound(s) indicating that, in addition to JH esterase, epoxide hydrolase and other reactions play an important role in the catabolism of JH.  相似文献   

9.
The role of juvenile hormone (JH) esterase (JHE) and epoxide hydrolase (EH) in reproduction of the cotton bollworm, Helicoverpa zea, was investigated. Peak emergence of male and female bollworm adults occurred early in the scotophase. Female adults were added to males in a 1:2 ratio, respectively, at the beginning of the first photophase after emergence (d0). The highest oviposition rates for mated females were noted on d 2-4. The in vitro JH III esterase and JH III EH activity was measured in whole body homogenates of virgin and mated females from d0 to d8 post-emergence. Maximal JHE activity for virgin females occurred on d2 (1.09+/-0.14(+/-1 SEM) nmol of JH III degraded/min/mg protein), which was approximately twice that of mated females on the same day. The same results were observed for EH where the activity peaked on d2 at 0.053+/-0.003 as compared to 0.033+/-0.003 nmol of JH III degraded/min/mg protein, respectively. By d4, both JHE and JH EH activities declined significantly in virgin and mated females and were the same through d7. The developmental changes and effects of mating on JH degradation were similar when measured per insect. The highest levels of JHE and JH EH activity/min/mg protein in d2 virgin and mated females was found in ovaries followed by the carcass and then haemolymph; no EH activity was found in haemolymph as expected. For ovary, the JHE and JH EH activity was highest in virgin compared to mated females. The role of both enzymes in the regulation of reproduction is discussed.  相似文献   

10.
Focusing on directed evolution to tailor enzymes as usable biocatalysts for fine chemistry, we have studied in detail several colorimetric assays for quantitative analysis of epoxide hydrolase (EH) activity. In particular, two assays have been optimized to characterize variants issued from the directed evolution of the EH from Aspergillus niger. Assays described in this paper are sufficiently reliable for quantitative screening of EH activity in microtiter plates and are low cost alternatives to GC or MS analysis. Moreover, they are usable for various epoxides and not restricted to a type of substrate, such as those amenable to assay by UV absorbancy. They can be used to assay EH activity on any epoxide and to directly assay enantioselectivity when both (R) and (S) substrates are available. The advantages and drawbacks of these two methods to assay EH activity of a large number of natural samples are summarized.  相似文献   

11.
cDNAs encoding two different epoxide hydrolases (nCfEH1 and nCfEH2) were cloned from a cDNA library prepared from the wandering larval stage of the cat flea, Ctenocephalides felis. Predicted translations of the open reading frames indicated the clones encoded proteins of 464 (CfEH1) and 465 (CfEH2) amino acids. These proteins have a predicted molecular weight of 53 kDa and a putative 22 amino acid N-terminal hydrophobic membrane anchor. The amino acid sequences are 77% identical, and both are homologous to previously isolated epoxide hydrolases from Manduca sexta, Trichoplusia ni, and Rattus norvegicus. Purification of native juvenile hormone epoxide hydrolase (JHEH) from unfed adult cat fleas generated a partially pure protein that hydrolyzed juvenile hormone III to juvenile hormone III-diol. The amino terminal sequence of this;50-kDa protein is identical to the deduced amino terminus of the protein encoded by the nCfEH1 clone. Affinity-purified rabbit polyclonal antibodies raised against Escherichia coli-expressed HisCfEH1 recognized a approximately 50-kDa protein present in the partially purified fraction containing JHEH activity. Immunohistochemistry experiments using the same affinity-purified rabbit polyclonal antibodies localized the epoxide hydrolase in developing oocytes, fat body, and midgut epithelium of the adult flea. The presence of JHEH in various flea life stages and tissues was assessed by Northern blot and enzymatic activity assays. JHEH mRNA expression remained relatively constant throughout the different flea larval stages and was slightly elevated in the unfed adult flea. JHEH enzymatic activity was highest in the late larval, pupal, and adult stages. In all stages and tissues examined, JHEH activity was significantly lower than juvenile hormone esterase (JHE) activity, the other enzyme responsible for JH catalysis.  相似文献   

12.
Purification of hepoxilin epoxide hydrolase from rat liver   总被引:3,自引:0,他引:3  
Hepoxilin epoxide hydrolase activity was demonstrated in rat liver cytosol using as substrate [1-14C] hepoxilin A3, a recently described hydroxy epoxide derivative of arachidonic acid. The enzyme was isolated and purified to apparent homogeneity using conventional chromatographic procedures resulting in 41-fold purification. The protein eluted during isoelectric focusing at a pI in the 5.3-5.4 range. The specific activity of the purified protein was 1.2 ng/microgram protein/20 min at 37 degrees C. On sodium dodecyl sulfate-polyacrylamide gel electrophoresis, under denaturing conditions, a molecular mass value of 53 kDa was observed. Using native polyacrylamide gel electrophoresis, enzyme activity corresponded to the main protein band. The purified protein used hepoxilin A3 as preferred substrate converting it to trioxilin A3. The enzyme was marginally active toward other epoxides such as leukotriene A4 and styrene oxide. The Mr, pI, and substrate specificity of the hepoxilin epoxide hydrolase indicate that this enzyme is different from the recently reported leukotriene A4 hydrolase from human erythrocytes and rat and human neutrophils and constitutes a hitherto undescribed form of epoxide hydrolase with specificity toward hepoxilin A3. Tissue screening for enzyme activity revealed that this enzyme is ubiquitous in the rat.  相似文献   

13.
Antibodies raised to homogeneous rat liver microsomal epoxide hydrolase were used to distinguish microsomal epoxide hydrolase from epoxide hydrolase of cytosolic origin in mice and rats. Using double diffusion analysis in agarose gels, we show that anti-rat liver microsomal epoxide hydrolase forms a single precipitin line with solubilized microsomes from rat and mouse liver, but no reaction is seen with the corresponding cytosolic fractions. Rat or mouse microsomal epoxide hydrolase activity (using benzo[a]pyrene 4,5-oxide as substrate) can be completely precipitated out of solubilized preparations by the antibody, which is equipotent against rat and mouse microsomal epoxide hydrolase. No precipitation of cytosolic hydrolase activity (using trans-beta-ethyl styrene oxide as substrate) is seen with any concentration of the antibody tested. Thus, in the case of microsomal epoxide hydrolase, extensive immunological cross-reactivity exists between the two species, rat and mouse. In contrast, no cross-reactivity is detectable between cytosolic and microsomal epoxide hydrolase, even when enzymes from the same species are compared. We conclude that microsomal and cytosolic epoxide hydrolase activities represent distinct and immunologically non-cross-reactive protein species.  相似文献   

14.
《Insect Biochemistry》1990,20(6):593-604
Juvenile hormone (JH) esterase activity was found in the plasma of larvae, pupae and adults of wild-type tobacco hornworms, Manduca sexta. There was a single peak of plasma JH esterase activity approx. 28 h prior to ecdysis in each instar from the second through the fourth instar and a peak of activity prior to both wandering and pupation in the fifth (last) instar. JH esterase activity was high in newly formed male and female pupae but declined to minimal levels by day 1 of the pupal stage. For the remainder of the pupal period, activity was at background levels. JH esterase activity increased again in newly emerged, virgin male and female adults but declined and remained at a low level 1 day after emergence through death. Gel filtration analysis of larval, pupal and adult plasma resolved a single peak of JH esterase activity with an apparent molecular weight of 66,000. However, isoelectric focusing revealed three forms with isoelectric points of 5.5, 5.8 and 6.1. These isoelectric forms were also found in black and white mutants of last instar M. sexta and in purified JH esterase from wild-type larvae. The plasma JH esterase activity metabolized JH I 2–3 times faster than JH III and was sensitive to inhibition by octylthio-1,1,1-trifluoro-2-propanone and insensitive to O,O-diisopropyl phosphorofluoridate. Gel filtration, isoelectric focusing, substrate specificity and developmental studies suggest that the same JH esterases are found in the plasma of larvae, pupae and adults and appear to be different from general (α-NA) esterase.  相似文献   

15.
P Wang  J Meijer  F P Guengerich 《Biochemistry》1982,21(23):5769-5776
Epoxide hydrolase (EC 3.3.2.3) was purified to electrophoretic homogeneity from human liver cytosol by using hydrolytic activity toward trans-8-ethylstyrene 7,8-oxide (TESO) as an assay. The overall purification was 400-fold. The purified enzyme has an apparent monomeric molecular weight of 58 000, significantly greater than the 50 000 found for human (or rat) liver microsomal epoxide hydrolase or for another TESO-hydrolyzing enzyme also isolated from human liver cytosol. Purified cytosolic TESO hydrolase catalyzes the hydrolysis of cis-8-ethylstyrene 7,8-oxide 10 times more rapidly than does the microsomal enzyme, catalyzes the hydrolysis of TESO and trans-stilbene oxide as rapidly as the microsomal enzyme, but catalyzes the hydrolysis of styrene 7,8-oxide, p-nitrostyrene 7,8-oxide, and naphthalene 1,2-oxide much less effectively than does the microsomal enzyme. Purified cytosolic TESO hydrolase does not hydrolyze benzo[a]pyrene 4,5-oxide, a substrate for the microsomal enzyme. The activities of the purified enzymes can explain the specific activities observed with subcellular fractions. Anti-human liver microsomal epoxide hydrolase did not recognize cytosolic TESO hydrolase in purified form or in cytosol, as judged by double-diffusion immunoprecipitin analysis, precipitation of enzymatic activity, and immunoelectrophoretic techniques. Cytosolic TESO hydrolase and microsomal epoxide hydrolase were also distinguished by peptide mapping. The results provide evidence that physically different forms of epoxide hydrolase exist in different subcellular fractions and can have markedly different substrate specificities.  相似文献   

16.
The influence of metyrapone, chalcone epoxide, benzil and clotrimazole on the activity of microsomal epoxide hydrolase towards styrene oxide, benzo[a]pyrene 4,5-oxide, estroxide and androstene oxide was investigated. The studies were performed using liver microsomes from rats, rabbits, mice and humans; epoxide hydrolase purified from rat liver microsomes to apparent homogeneity; and the purified enzyme incorporated into liposomes composed of egg-yolk phosphatidylcholine or total rat liver microsomal lipids. All four effectors were found to activate the hydrolysis of styrene oxide by epoxide hydrolase in situ in rat liver microsomal membranes, in agreement with earlier findings. Epoxide hydrolase activity towards styrene oxide in liver microsomes from mouse, rabbit and man was also increased by all four effectors. The most striking effect was a 680% activation by clotrimazole in rat liver microsomes. However, none of the effectors activated microsomal epoxide hydrolase more than 50% when benzo[a]pyrene 4,5-oxide, estroxide or androstene oxide was used as substrate. Indeed, clotrimazole was found to inhibit microsomal epoxide hydrolase activity towards estroxide 30-50% and towards androstene oxide 60-90%. The effects of these four compounds were found to be virtually identical in the preparations from rats, rabbits, mice and humans. The effects of metyrapone, chalcone epoxide, benzil and clotrimazole on purified epoxide hydrolase were qualitatively the same as those on epoxide hydrolase in intact microsomes, but much smaller in magnitude. These effects were increased in magnitude only slightly by incorporation of the purified enzyme into liposomes made from egg-yolk phosphatidylcholine. However, when incorporation into liposomes composed of total microsomal lipids was performed, the effects seen were essentially of the same magnitude as with intact microsomes. When the extent of activation was plotted against effector concentration, three different patterns were found with different effectors. Activation of epoxide hydrolase activity towards styrene oxide by clotrimazole was found to be uncompetitive with the substrate and highly structure specific. On the other hand, inhibition of epoxide hydrolase activity towards androstene oxide by clotrimazole was found to be competitive in microsomes. It is concluded that the marked effects of these four modulators on microsomal epoxide hydrolase activity are due to an interaction with the enzyme protein itself, but that the presence of total microsomal phospholipids allows the maximal expression leading to similar degrees of modulation as those observed in intact microsomes.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

17.
The physiological balance of juvenile hormone (JH) in insects depends on its biosynthesis and degradation pathway. Three key enzymes namely, juvenile hormone esterase (JHE), juvenile hormone epoxide hydrolase (JHEH) and juvenile hormone diol kinase (JHDK) are required for degradation in insects. Our present results showed that JHE and JHEH exhibited expression in almost all the tissues. This indicated that JHE and JHEH might degrade JH simultaneously. In addition, the highest levels of JHDK were observed in the midgut, with trace level being found in the malpighian tubule and haemocytes. Since the midgut is a digestive organ and not a JH target, it was hypothesized that both JHE and JHEH hydrolyzed JH to JH diol (JHd) which was then transported to midgut and hydrolyzed further by JHDK, to be finally excreted out of the body. Also the expression studies on JH degradation enzymes in different tissues and stages indicated that the activities of the three enzymes are specific and coincident with the JH functions in silkworm, Bombyx mori L.  相似文献   

18.
A spectrophotometric method to assay epoxide hydrolase activity.   总被引:2,自引:0,他引:2  
The Aspergillus niger epoxide hydrolase activity was assayed by spectrophotometric using (rac) p-nitrostryrene oxide (pNSO) as substrate. Both the substrate (pNSO) and the reaction product, p-nitrostryrene diol (pNSD), had a strong absorbance in UV at 280 nm. The assay was based on the measure of the pNSD absorbance of the water phase after extraction of the non-reacted pNSO with a solvent. Among the five solvents tested, chloroform was selected since it extracted more than 99% of the epoxide and only 32% of the produced diol. This extraction yield was independent of the diol and epoxide concentrations and it was fairly reproducible. Using different enzyme amounts, the reaction kinetics were linear for the first 10 min corresponding to degrees of conversion less than 5% for the epoxide. Two controls were run simultaneously, one with the substrate alone (epoxide hydrolysis and non-complete extraction) and one with the enzyme alone (enzyme absorbance at 280 nm). The resulting DeltaOD/min was linear with the amount of enzyme added within a large range from 2 to 80 microg of the EH preparation. The new spectrophotometric assay correlates well with the previous HPLC assay and could be used routinely for an easy and fast evaluation of EH activity. The kinetic parameters of (rac) pNSO hydrolysis by A. niger epoxide hydrolase could be easily determined and K(M) (1.1 mM) compared well with that previously reported (1.0 mM).  相似文献   

19.
Juvenile hormone (JH) esterase was purified greater than 1000-fold in one step from hemolymph and whole larval homogenates from the last larval instar of Trichoplusia ni to give a single diffuse band that migrates at Mr = 64,000 on sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The purification was based on an affinity chromatography procedure that employs trifluoromethyl ketone ligands. Isoelectric focusing of the purified preparations resulted in multiple bands that coincided to all significant hydrolysis of juvenile hormone detected in this manner. Kinetic experiments using optically pure enantiomers of JH II as substrates showed the two main electromorphs of JH esterase from the hemolymph to have apparently identical kinetic parameters as well as a similar capability to distinguish between substrates that differ in the orientation of the epoxide moiety of JH. However, the enzyme could hydrolyze esters lacking the JH structure. The proteins were shown to be monomers and to have asparagine-linked oligosaccharides, most likely of hybrid structure. Immunochemical and other evidence showed that the affinity-purified proteins were responsible for all significant JH esterase activity during periods of rapid esterolysis in vivo.  相似文献   

20.
Tholander F  Haeggström JZ 《Proteins》2007,67(4):1113-1118
Leukotriene A4 hydrolase is a bifunctional zinc metalloenzyme with an epoxide hydrolase activity as well as an arginyl tri-peptidase activity. Detailed enzymological and mechanistic investigations of the latter activity have been hampered by the lack of a rapid and convenient enzyme assay. Here we have developed a new method allowing direct spectrophotometric assessment of the tri-peptide cleaving activity of leukotriene A4 hydrolase, as well as other peptidases. The method utilizes two competing substrates, one chromogenic reference substrate together with the tri-peptide substrate of interest, and relies on computer-assisted analysis of progress curves. The chromogenic reference substrate serves to disclose the "invisible" tri-peptide substrate for kinetic analysis. The method is fast and simple and will allow detailed kinetic studies and screening for natural peptide substrates of leukotriene A4 hydrolase as well as other members of the M1 family of aminopeptidases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号