首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The validation of a LC/MS/MS method for the determination of 8-methoxypsoralen (8-MOP) in human plasma and microdialysates after topical application is described. Plasma samples were extracted by liquid-liquid extraction with diisopropylether using 4,5',8-trimethylpsoralen (TMP) as internal standard. Chromatographic separation of plasma sample extracts was carried out using a short narrow-bore Nucleosil C18 column (30 mm x 2.0 mm i.d.) with acetonitrile/(2 mM ammonium acetate buffer, 2 mM acetic acid) (80:20, v/v). For mass spectrometric analysis an API 3000 triple quadrupole mass spectrometer was employed. The mass transitions used were m/z 217.2-->174.0 for 8-MOP and m/z 229.1-->142.1 for TMP. Microdialysis samples diluted with an equal amount of acetonitrile did not require any extraction and were analyzed directly on a narrow-bore Nucleosil C18 column (70 mm x 2.0mm i.d.) with acetonitrile/(2 mM ammonium acetate buffer, 2 mM acetic acid) (50:50, v/v) with the mass transition m/z 217.2-->174.0. The assays were validated over the concentration ranges of 0.5-50 ng/ml for plasma samples and 0.25-50 ng/ml for microdialysates, respectively.  相似文献   

2.
Ezetimibe (Ezetrol) is a novel cholesterol lowering drug which disposition is not fully understood in man. We developed a selective and high-sensitive assay to measure serum concentration-time profiles, renal and fecal elimination of ezetimibe in pharmacokinetic studies. Ezetimibe glucuronide, the major metabolite of ezetimibe was determined by enzymatic degradation to the parent compound. Ezetimibe was measured after extraction with methyl tert-butyl ether using 4-hydroxychalcone as internal standard and liquid chromatography coupled via an APCI interface with tandem mass spectrometry (LC-MS/MS) for detection. The chromatography (column XTerra) MS, C(18), 2.1 mm x 100 mm, particle size 3.5 microm) was done isocratically with acetonitrile/water (60/40, v/v; flow rate 200 microl/min). The MS/MS analysis was performed in the negative ion mode (m/z transition: ezetimibe 408-271, internal standard 223-117). The validation ranges for ezetimibe and total ezetimibe were as follows: serum 0.0001-0.015 microg/ml and 0.001-0.2 microg/ml; urine and fecal homogenate 0.025-10 microg/ml and 0.1-20 mg/ml, respectively. The assay was successfully applied to measure ezetimibe disposition in two subjects genotyped for the hepatic uptake transporter SLCO1B1.  相似文献   

3.
A selective and sensitive high performance liquid chromatography-electrospray ionization-tandem mass spectrometry (ESI-MS/MS) method for simultaneous determination of metformin and rosiglitazone in human plasma using phenformin as internal standard (IS) has been first developed and validated. Plasma samples were precipitated by acetonitrile and the analytes were separated on a prepacked Phenomenex Luna 5u CN 100A (150 mm x 2.0 mm I.D.) column using a mobile phase comprised of methanol:30 mM ammonium acetate pH 5.0 (80:20, v/v) delivered at 0.2 ml/min. Detection was performed on a Finnigan TSQ triple-quadrupole tandem mass spectrometer in positive ion selected reaction monitoring (SRM) mode using electrospray ionization. The ion transitions monitored were m/z 130.27-->71.11 for metformin, m/z 358.14-->135.07 for rosiglitazone and m/z 206.20-->105.19 for the IS. The standard curves were linear (r(2)>0.99) over the concentration range of 5-3000 ng/ml for metformin and 1.5-500 ng/ml for rosiglitazone with acceptable accuracy and precision, respectively. The within- and between-batch precisions were less than 15% of the relative standard deviation. The limit of detection (LOD) of both metformin and rosiglitazone was 1 ng/ml. The method described is precise and sensitive and has been successfully applied to the study of pharmacokinetics of compound metformin and rosiglitazone capsules in 12 healthy Chinese volunteers.  相似文献   

4.
A liquid chromatography/tandem mass spectrometric (LC/MS/MS) assay was developed for the quantitative determination of salirasib (S-trans,trans-farnesylthiosalicylic acid, FTS) in human plasma. Sample pretreatment involved liquid-liquid extraction with methyl t-butyl ether of 0.5-mL aliquots of lithium heparin plasma spiked with the internal standard, S-trans,trans-5-fluoro-farnesylthiosalicylic acid (5-F-FTS). Separation was achieved on Waters X-Terra C(18) (50 mm x 2.1 mm i.d., 3.5 microm) at room temperature using isocratic elution with acetonitrile/10 mM ammonium acetate buffer mobile phase (80:20, v/v) containing 0.1% formic acid at a flow rate of 0.20 mL/min. Detection was performed using electrospray MS/MS by monitoring the ion transitions from m/z 357.2-->153.0 (salirasib) and m/z 375.1-->138.8 (5-F-FTS). Calibration curves were linear in the concentration range of 1-1000 ng/mL. A 5000 ng/mL sample that was diluted 1:10 (v/v) with plasma was accurately quantitated. The values for both within day and between day precision and accuracy were well within the generally accepted criteria for analytical method (<8.0%). This assay was subsequently used for the determination of salirasib concentrations in plasma of cancer patients after oral administration of salirasib at a dose of 400 mg.  相似文献   

5.
A rapid, sensitive and novel narrow-bore liquid chromatography-mass spectrometric method was developed and fully validated for the quantification of citalopram in human plasma. The analyte and internal standard (imipramine) were extracted by liquid-liquid extraction with a mixture of hexane-heptane-isopropanol (88:10:2, v/v/v). The use of a Hypersil BDS C(8) micro-bore column (250 mm x 2.1 mm i.d.; 3.5 microm particle size), results in substantial reduction in solvent consumption. The mobile phase consisted of 10 mM ammonium formate-formic acid (pH 4.5) and acetonitrile (30:70, v/v), pumped at a flow rate of 0.15 ml min(-1). The analytes were detected after positive electrospray ionization using the selected ion-monitoring mode of the species at m/z 325 for citalopram and m/z 281 for imipramine. The method had a chromatographic run time of 10.0 min and a linear calibration curve over the range 0.50-250 ng ml(-1) (r(2) > 0.996). The limit of quantitation was 0.50 ng ml(-1). Accuracy and precision were below the acceptance limits of 15%.  相似文献   

6.
A sensitive and specific liquid chromatography-tandem mass spectrometry (LC-MS/MS) method has been developed and validated for the determination of hydroxysafflor yellow A (HSYA) in human plasma. HSYA was extracted from human plasma by using solid-phase extraction technique. Puerarin was used as the internal standard. A Shim-pack VP-ODS C(18) (150mm x 4.6mm, 5 microm) column and isocratic elution system composing of methanol and 5mM ammonium acetate (80:20, v/v) provided chromatographic separation of analytes followed by detection with mass spectrometry. The mass transition ion-pair was followed as m/z 611.19-->491.19 for HSYA and m/z 415.19-->295.10 for puerarin. The proposed method has been validated with a linear range of 1-1000 ng/ml for HSYA with a correlation coefficient >/=0.999. The lower limit of quantitation was 1 ng/ml. The intra-batch and inter-batch precision and accuracy were within 10%. The average extraction recovery was 81.7%. The total run time was 5.5 min. The validated method was successfully applied to the study on pharmacokinetics of HSYA in 12 healthy volunteers after a single oral administration of safflower oral solution containing 140 mg of HSYA.  相似文献   

7.
A sensitive and specific method for determination of viaminate in human plasma by using high-performance liquid chromatography coupled with electrospray tandem mass spectrometry (LC-MS/MS) was developed in this study. The plasma samples were simply deproteinated, extracted, evaporated, and then reconstituted in 200 microl of methanol prior to analysis. Chromatographic separation was carried out on a Shimadzu VP-ODS column (250 mm x 2.0 mm, 5 microm) with a mobile phase of methanol-water (95:5, v/v) at a flow rate of 0.2 ml/min. Quantification was performed in the negative-ion electrospray ionization mode by selected ion monitoring of the product ions at m/z 164 for viaminate and m/z 109 for testosterone propionate which was used as the internal standard. The corresponding parent ions were m/z 446 and m/z 345. A linear calibration curve was observed within the concentration range of 0.10-200 ng/ml. The lowest limit of quantitation (LLOQ) was 0.1 ng/ml. The extraction-efficiency at three concentrations was 100.7, 93.6, and 99.7%. Practical utility of this new LC-MS/MS method was confirmed in pilot pharmacokinetic studies in humans following oral administration.  相似文献   

8.
A sensitive and specific high-performance liquid chromatographic assay with electrospray ionization mass spectrometry detection (LC-ESI-MS) has been developed and validated for the identification and quantification of the novel anticholinergic drug phencynonate in rat blood and urine. The sample pretreatment involves basification and iterative liquid-liquid extraction with ethyl ether-dichloromethane (2:1, v/v) solution, followed by LC separation and positive electrospray ionization mass spectrometry detection. The chromatography was on BetaBasic-18 column (150 mm x 2.1mm i.d., 3 microm). The mobile phase was composed of methanol-water (85:15, v/v), containing 0.5 per thousand formic acid, which was pumped at a flow-rate of 0.2 ml/min. Thiencynonate was selected as the internal standard (IS). Simultaneous MS detection of phencynonate and IS was performed at m/z 358.4 (phencynonate), m/z 364 (thiencynonate), and the selected reaction ion monitoring (SRM) of the two compounds was at 156. Phencynonate eluted at approximately 5.25 min, thiencynonate eluted at approximately 5.10 min and no endogenous materials interfered with their measurement. Linearity was obtained over the concentration range of 1-100 ng/ml in rat blood and 1-500 ng/ml in rat urine. The lower limit of quantification (LLOQ) was reproducible at 1 ng/ml in both of rat blood and urine. The precision measured was obtained from 2.92 to 9.76% in rat blood and 4.17 to 9.76% in rat urine. Extraction recoveries were in the range of 69.57-79.49% in blood and 56.85-64.86% in urine. This method was successfully applied to the identification and quantification of phencynonate in pharmacokinetic studies.  相似文献   

9.
A simple and rapid liquid chromatography tandem mass spectrometry (LC-MS/MS) method was developed for the quantification of tetrahydrobiopterin (BH4) and dopamine in rat brain using epsilon-acetamidocaproic acid (AACA) as an internal standard. Proteins in the samples were precipitated with acetonitrile and then the supernatants were separated by a Sepax Polar-Imidazole (2.1 × 100 mm, i.d., 3 μm) column using a mixture of 10mM ammonium formate in acetonitrile/water (75:25, v/v) as the mobile phase at a flow rate of 300 μl/min. Quantification was performed on a triple quadrupole mass spectrometer employing electrospray ionization with the operating conditions as multiple reaction monitoring (MRM) and positive ion mode from m/z 242.1 → 166.0 for BH4, m/z 154.1 → 90.0 for dopamine and m/z 174.1 → 114.0 for AACA (IS). The total chromatographic run time was for 5.5 min. The method was validated for the analysis of samples: the limit of detection was 10 ng/g. The calibration curve was linear between 10-2000 ng/g for BH4 (r(2)=0.995) and 10-5000 ng/g for dopamine (r(2)=0.997) in the rat brain. Thus, good correlated LC-ESI/MS/MS results were obtained and found to be a powerful tool for the quantitative analysis of BH4 and dopamine in the rat brain.  相似文献   

10.
Methods based on high-performance liquid chromatography (HPLC) with atmospheric-pressure chemical ionization (APCI) mass spectrometric (MS) detection using either single (MS) or triple (MS/MS) quadrupole mass spectrometric detection for the determination of (2R)-[1(R)-(3,5-bis-trifluoromethylphenyl)ethoxy]-3(S)-(4-fluoro-phenyl)morpholin-4-ylmethyl]-5-oxo-4,5-dihydro-[1,2,4]triazol)methyl morpholine (Aprepitant, Fig. 1) in human plasma has been developed. Aprepitant (I) and internal standard (II, Fig. 1) were isolated from the plasma matrix buffered to pH 9.8 using a liquid-liquid extraction with methyl-t-butyl ether (MTBE). The analytes were separated on a Keystone Scientific's Javelin BDS C-8 2 mm x 4.6 mm 3 microm guard column coupled to BDS C-8 50 mm x 4.6 mm 3 microm analytical column, utilizing a mobile phase of 50% acetonitrile and 50% water containing 0.1% formic acid and 10 mM ammonium acetate delivered at a flow rate of 1 ml/min. The single quadrupole instrument was operated in a single ion monitoring (SIM) mode analyzing the protonated molecules of Aprepitant and II at m/z 535 and 503, respectively. The triple quadrupole mass spectrometer was operated in multiple reaction monitoring mode (MRM) monitoring the precursor --> ion combinations of m/z 535 --> 277 and 503 --> 259 for Aprepitant and II, respectively. The linear calibration range for both single and triple quadrupole detectors was from 10 to 5000 ng/ml of plasma with coefficients of variation less than 8% at all concentrations. Both single and triple quadrupole instruments yielded similar precision and accuracy results. Matrix effect experiments performed on both instruments demonstrated the absence of any significant change in ionization of the analytes when comparing neat standards to analytes in the presence of plasma matrix. Both instruments were used successfully to support numerous clinical trials of Aprepitant.  相似文献   

11.
An LC-MS/MS method was developed to quantitate the potential antitumor agent halofuginone in plasma. The assay uses 0.2 ml of plasma; chlorohalofuginone internal standard; acetonitrile for protein precipitation; a Phenomenex SYNERGI 4 micro Polar RP 80A (4 microm, 100 mm x 2 mm) column; an isocratic mobile phase of methanol:water:formic acid (80:20:0.02, v/v/v); and positive-ion electrospray ionization with selective reaction monitoring detection. Halofuginone eluted at approximately 2.4 min, internal standard eluted at approximately 2.9 min, and no endogenous materials interfered with their measurement. The assay was accurate, precise, and linear between 0.1 and 100 ng/ml. Halofuginone could be quantitated in dog plasma for at least 24 h after an i.v. dose of 0.1mg/kg. The assay is being used in ongoing pharmacokinetic studies of halofuginone.  相似文献   

12.
A rapid, sensitive and reliable method was developed to quantitate omeprazole in human plasma using liquid chromatography-tandem mass spectrometry. The assay is based on protein precipitation with acetonitrile and reversed-phase liquid chromatography performed on an octadecylsilica column (55 mm x 2mm, 3 microm particles), the mobile phase consisted of methanol-10 mM ammonium acetate (60:40, v/v). Omeprazole and flunitrazepam, the internal standard, elute at 0.80+/-0.10 min with a total run time 1.35 min. Quantification was through positive ion mode and selected reaction monitoring mode at m/z 346.1-->197.9 for omeprazole and m/z 314.0-->268.0 for flunitrazepam, respectively. The lower limit of quantitation was 1.2 ng/ml using 0.25 ml of plasma and linearity was observed from 1.2 to 1200 ng/ml. Within-day and between-day precision expressed by relative standard deviation was less than 5% and inaccuracy did not exceed 12%. The assay was applied to the analysis of samples from a pharmacokinetic study.  相似文献   

13.
A new method for the determination of tranexamic acid (TA) in human plasma using high performance liquid chromatography with tandem mass spectrometric detection was described. TA and the internal standard, methyldopa, was extracted from a 200 l plasma sample by a one-step deproteination using perchloric acid. Chromatographic separation was performed on an Xtrra MS C18 Column (2.1 mm x 100 mm, 3.5 microm) with the mobile phase consisting of 10% acetonitrile in 2 mM ammonium acetate buffer (pH 3.5) at a flow rate of 0.15 ml/min. The total run time was 5 min for each sample. Detection and quantitation was performed by the mass spectrometer using the multiple reaction monitoring of the precursor-product ion pair m/z 158 --> 95 for TA and m/z 212 --> 166 for methyldopa, respectively. The method was linear over the concentration range of 0.02-10.00 g/ml with lower limit of quantification of 0.02 microg/ml for TA. The intra- and inter-day precision was less than 11% and accuracy ranged -10.88 to 11.35% at the TA concentrations tested. The present method provides a relatively simple and sensitive assay with short turn-around time. The method has been successfully applied to a clinical pharmacokinetic study of TA in 12 healthy subjects.  相似文献   

14.
The alkaloids from Piper longum L. showed protective effects on Parkinson's disease models in our previous study and piperine and piperlonguminine were the two main constituents in the alkaloids. The present study aimed at developing a rapid, sensitive, and accurate UFLC-ESI-MS/MS method and validating it for the simultaneous determination of piperine and piperlonguminine in rat plasma using terfenadine as the internal standard. The analytes and internal standard (IS) were extracted from rat plasma using a simple protein precipitation by adding methanol/acetonitrile (1:1, v/v). A Phenomenex Gemini 3 u C18 column (20 mm × 2.00 mm, 3 μm) was used to separate the analytes and IS using a gradient mode system with a mobile phase consisting of water with 0.1% formic acid (mobile phase A) and acetonitrile with 0.1% formic acid (mobile phase B) at a flow rate of 0.4 mL/min and an operating column temperature of 25°C. The total analytical run time was 4 min. The detection was performed using the positive ion electrospray ionization (ESI) in multiple reaction monitoring (MRM) mode with transitions at m/z 286.1-201.1 for piperine, m/z 274.0-201.1 for piperlonguminine, and m/z 472.4-436.4 for the IS. The calibration curves were both linear (r>0.995) over a concentration range of 1.0 to 1000 ng/mL; the lower limit of quantification (LLOQ) was 1.0 ng/mL for both piperine and piperlonguminine. The intra-day and inter-day precisions (RSD %) were <12.1%, accuracies ranged from 86.6 to 120%, and recoveries ranged from 90.4 to 108%. The analytes were proven stable in the short-term, long-term, and after three freeze-thaw cycles. The method was successfully applied to pharmacokinetic studies of piperine and piperlonguminine in rats after oral administration of alkaloids from P. longum L.  相似文献   

15.
An analytical method based upon liquid chromatography coupled to ion trap mass spectrometry (MS) detection with electrospray ionization interface has been developed for the simultaneous identification and quantification of droperidol and ondansetron in human plasma. The two drugs were isolated from 0.5 mL of plasma using a basic liquid-liquid extraction with diethyl ether/heptane (90/10, v/v) and tropisetron and haloperidol as internal standards, with satisfactory extraction recoveries. They were separated on a 5-μm C(18) Highpurity column (150 mm×2.1 mm I.D.) maintained at 30°C. The elution was achieved isocratically with a mobile phase of 2 mM HCOONH(4) pH 3.8 buffer/acetonitrile (60/40, v/v) at a flow rate of 200 μL/min. Data were collected either in full-scan MS mode at m/z 100-450 or in full-scan MS-MS mode, selecting the [M+H] (+) ion at m/z=294.0 for ondansetron, m/z=285.2 for tropisetron, m/z=380.0 for droperidol and m/z=376.0 for haloperidol. The most intense daughter ion of ondansetron (m/z=212.0) and droperidol (m/z=194.0) were used for quantification. Retention times for tropisetron, ondansetron, droperidol and haloperidol were 2.50, 2.61, 3.10 and 4.68 min, respectively. Calibration curves were linear for both compounds in the 0.50-500 ng/mL range. The limits of detection and quantification were 0.10 ng/mL and 0.50 ng/mL, respectively. The intra- and inter-assay precisions were lower than 6.4% and intra- and inter-assay recoveries were in the 97.6-101.9% range for the three 3, 30 and 300 ng/mL concentrations. This method allows simultaneous and rapid measurement of droperidol and ondansetron, which are frequently co-administrated for the prevention of postoperative nausea and vomiting.  相似文献   

16.
A sensitive method using liquid chromatography with tandem mass spectrometric detection (LC-MS/MS) was developed and validated for the analysis of antihistamine drug azatadine in human plasma. Loratadine was used as internal standard (IS). Analytes were extracted from human plasma by liquid/liquid extraction using ethyl acetate. The organic phase was reduced to dryness under a stream of nitrogen at 30 °C and the residue was reconstituted with the mobile phase. 5 μL of the resulting solution was injected onto the LC-MS/MS system. A 4.6 mm × 150 mm, I.D. 5 μm, Agilent TC-C(18) column was used to perform the chromatographic analysis. The mobile phase consisted of ammonium formate buffer 0.010 M (adjusted to pH 4.3 with 1M formic acid)/acetonitrile (20:80, v/v) The chromatographic run time was 5 min per injection and flow rate was 0.6 mL/min. The retention time was 2.4 and 4.4 min for azatadine and IS, respectively. The tandem mass spectrometric detection mode was achieved with electrospray ionization (ESI) iron source and the multiple reaction monitoring (MRM) (291.3 → 248.2m/z for azatadine, 383.3 → 337.3m/z for IS) was operated in positive ion modes. The low limit of quantitation (LLOQ) was 0.05 ng/mL. The intra-day and inter-day precision of the quality control (QC) samples was 8.93-11.57% relative standard deviation (RSD). The inter-day accuracy of the QC samples was 96.83-105.07% of the nominal values.  相似文献   

17.
The method describes quantification and confirmation of flunixin in equine plasma by liquid chromatography-quadrupole time-of-flight mass spectrometry (LC/Q-TOF/MS/MS). Samples were screened by enzyme-linked immunosorbent assay (ELISA) and only those samples presumptively declared positive were subjected to quantification and confirmation for the presence of flunixin by this method. The method is also readily adaptable to instrumental screening for the analyte. Flunixin was recovered from plasma by liquid-liquid extraction (LLE). The sample was diluted with 2 ml saturated phosphate buffer (pH 3.10) prior to LLE. The dried extract was reconstituted in acetonitrile:water:formic acid (50:50:0.1, v/v/v) and subsequently analyzed on a Q-TOF tandem mass spectrometer (Micromass) operated under electrospray ionization positive ion mode. The concentration of flunixin was determined by the internal standard (IS) calibration method using the peak area ratio with clonixin as the IS. The limits of detection (LOD) and quantification (LOQ) for flunixin in equine plasma were 0.1 and 1 ng/ml, respectively, whereas the limit of confirmation (LOC) was 2.5 ng/ml. The qualifying ions for the identification of flunixin were m/z 297 [M+H](+), 279 (BP), 264, 259, 239 and those for clonixin (IS) were m/z 263 [M+H](+), 245 (BP) and 210. The measurement uncertainty about the result was 8.7%. The method is simple, sensitive, robust and reliably fast in the quantification and confirmation of flunixin in equine plasma. Application of this method will assist racing authorities in the enforcement of tolerance plasma concentration of flunixin in the racehorse on race day.  相似文献   

18.
Nateglinide (NTG), an insulin secretogogue, has been studied in rats for drug-drug interaction with cilostazol (CLZ), an antiplatelet agent commonly used in diabetics. We developed a liquid chromatography tandem mass spectrometry (LC-MS/MS) based method that is capable of simultaneous monitoring plasma levels of nateglinide, cilostazol, and its active metabolite 3,4-dehydro-cilostazol (DCLZ). All analytes including the internal standard (Repaglinide) were chromatographed on reverse phase C(18) column (50 mm x 4.6mm i.d., 5 microm) using acetonitrile: 2mM ammonium acetate buffer, pH 3.4 (90:10, v/v) as mobile phase at a flow rate 0.4 ml/min in an isocratic mode. The detection of analyte was performed on LC-MS/MS system in the multiple reaction monitoring (MRM) mode. The quantitations for analytes were based on relative concentration. The method was validated over the concentration range of 20-2000 ng/ml and the lower limit of quantitation was 20 ng/ml. The recoveries from spiked control samples were >79% for all analytes and internal standard. Intra- and inter-day accuracy and precision of validated method were with in the acceptable limits of <15% at all concentration. The quantitation method was successfully applied for simultaneous estimation of NTG, CLZ and DCLZ in a pharmacokinetic drug-drug interaction study in Wistar rats.  相似文献   

19.
An HPLC/MS/MS method for determination of butenafine hydrochloride in human plasma with testosterone propionate as the internal standard (IS) was developed and validated. Plasma samples were extracted with an n-hexane/diethyl ether (1:2, v/v) mixture and separated using a C(18) column by a gradient elution with the mobile phase containing acetonitrile and 5mM ammonium acetate buffer. Quantification was performed using multiple reaction monitoring (MRM) mode with transition of m/z 318.4→141.0 for butenafine hydrochloride and m/z 345.5→97.0 for testosterone propionate (IS). This method was validated in terms of specificity, linearity, precision, accuracy, and stability. The lower limit of quantification (LLOQ) of this method was 0.0182 ng/ml and the calibration curve was linear over the 0.0182-1.82 ng/ml. The intra- and inter-run coefficient of variance was less than 11.53% and 10.07%, respectively. The samples were stable under all the tested conditions. The method was successfully applied to study the pharmacokinetics of butenafine hydrochloride in healthy Chinese volunteers following its topical administration.  相似文献   

20.
A rapid, sensitive and accurate liquid chromatographic-tandem mass spectrometry method is described for the simultaneous determination of nebivolol and valsartan in human plasma. Nebivolol and valsartan were extracted from plasma using acetonitrile and separated on a C18 column. The mobile phase consisting of a mixture of acetonitrile and 0.05 mM formic acid (50:50 v/v, pH 3.5) was delivered at a flow rate of 0.25 ml/min. Atmospheric pressure ionization (API) source was operated in both positive and negative ion mode for nebivolol and valsartan, respectively. Selected reaction monitoring mode (SRM) using the transitions of m/z 406.1-->m/z 150.9; m/z 434.2-->m/z 179.0 and m/z 409.4-->m/z 228.1 were used to quantify nebivolol, valsartan and internal standard (IS), respectively. The linearity was obtained over the concentration range of 0.01-50.0 ng/ml and 1.0-2000.0 ng/ml and the lower limits of quantitation were 0.01 ng/ml and 1.0 ng/ml for nebivolol and valsartan, respectively. This method was successfully applied to the pharmacokinetic study of fixed dose combination (FDC) of nebivolol and valsartan formulation product after an oral administration to healthy human subjects.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号