首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The baculovirus–insect cell expression system is widely used to produce recombinant proteins for various biomedical applications. Our previous study demonstrated that EpCAM, a colorectal cancer vaccine candidate protein, can be expressed in the baculovirus–insect cell expression system. However, its functionality (the ability to elicit an immune response), which is important for its possible use as a colorectal cancer vaccine for immunotherapy, still needed to be confirmed. In this study, we examined the ability of recombinant EpCAM to induce maturation of immature dendritic cells (DCs) derived from CD34+ cells isolated from human umbilical cord blood. We demonstrated that EpCAM induces the expression of four DC maturation markers: CD80, CD83, CD86 and MHC II. These results suggest that EpCAM produced in the baculovirus–insect cell expression system is functional in terms of its ability to trigger maturation of human DCs.  相似文献   

2.
Dendritic cells produce IL-12 both in response to microbial stimuli and to T cells, and can thus skew T cell reactivity toward a Th1 pattern. We investigated the capacity of dendritic cells to elaborate IL-12 with special regard to their state of maturation, different maturation stimuli, and its regulation by Th1/Th2-influencing cytokines. Monocyte-derived dendritic cells were generated with GM-CSF and IL-4 for 7 days, followed by another 3 days +/- monocyte-conditioned media, yielding mature (CD83(+)/dendritic cell-lysosome-associated membrane glycoprotein(+)) and immature (CD83(-)/dendritic cell-lysosome-associated membrane glycoprotein(-)) dendritic cells. These dendritic cells were stimulated for another 48 h, and IL-12 p70 was measured by ELISA. We found the following: 1) Immature dendritic cells stimulated with CD154/CD40 ligand or bacteria (both of which concurrently also induced maturation) secreted always more IL-12 than already mature dendritic cells. Mature CD154-stimulated dendritic cells still made significant levels (up to 4 ng/ml). 2) Terminally mature skin-derived dendritic cells did not make any IL-12 in response to these stimuli. 3) Appropriate maturation stimuli are required for IL-12 production: CD40 ligation and bacteria are sufficient; monocyte-conditioned media are not. 4) Unexpectedly, IL-4 markedly increased the amount of IL-12 produced by both immature and mature dendritic cells, when present during stimulation. 5) IL-10 inhibited the production of IL-12. Our results, employing a cell culture system that is now being widely used in immunotherapy, extend prior data that IL-12 is produced most abundantly by dendritic cells that are beginning to respond to maturation stimuli. Surprisingly, IL-12 is only elicited by select maturation stimuli, but can be markedly enhanced by the addition of the Th2 cytokine, IL-4.  相似文献   

3.
Dendritic cell (DC) maturation results in changes in antigen processing and presentation, governing the fate of adaptive immunity. Understanding the intracellular signaling pathways governing DC maturation is therefore critical. In this study, we observed that the kinase, GSK-3β, is present in its active form in resting immature DCs isolated from the spleen and bone marrow of mice. Induction of DC maturation using GM-CSF, IL-4 and TNF-α resulted in GSK-3β inhibition, as reflected by increased phosphorylation of Serine 9 on the kinase, and concomitant stabilization of its substrate, β-catenin. Treatment of immature DCs with a GSK-3β inhibitor increased cell surface expression of CD80, CD86 and CD40 on DCs, enhancing their ability to present antigen and activating IL-2 secretion by T cells. GSK-3β inhibition also parallels dendritic cell maturation in vivo. Our results show that GSK-3β signaling controls DC maturation and suggest that this kinase could be manipulated to modulate adaptive immunity.  相似文献   

4.
The umbilical cord represents the link between mother and fetus during pregnancy. This cord is usually discarded as a biological waste after the child’s birth; however, its importance as a “store house” of stem cells has been explored recently. We developed a method of simultaneous isolation of endothelial cells (ECs) from the vein and mesenchymal stem cells from umbilical cord Wharton’s jelly of the same cord. The isolation protocol has been simplified, modified, and improvised with respect to choice of enzyme and enzyme mixture, digestion time, cell yield, cell growth, and culture medium. Isolated human umbilical vascular ECs (hUVECs) were positive for von-Willibrand factor, a classical endothelial marker, and could form capillary-like structures when seeded on Matrigel, thus proving their functionality. The isolated human umbilical cord mesenchymal stem cells (hUCMSCs) were found positive for CD44, CD90, CD 73, and CD117 and were found negative for CD33, CD34, CD45, and CD105 surface markers; they were also positive for cytoskeleton markers of smooth muscle actin and vimentin. The hUCMSCs showed multilineage differentiation potential and differentiated into adipogenic, chondrogenic, osteogenic, and neuronal lineages under influence of lineage specific differentiation medium. Thus, isolating endothelial cells as well as mesenchymal cells from the same umbilical cord could lead to complete utilization of the available tissue for the tissue engineering and cell therapy.  相似文献   

5.
6.
In vivo, dendritic cells (DC) are programmed to orchestrate innate and adaptive immunity in response to pathogen-derived "danger" signals. Under particular circumstances, DC can also be directly cytotoxic against tumor cells, potentially allowing them to release tumor associated Ags from dying cells and then prime antitumor immunity against them. In this study, we describe the innate characteristics of DC (OK-DC) generated in vitro after exposure of immature human myeloid-derived DC to OK432, a penicillin-inactivated and lyophilized preparation of Streptococcus pyrogenes. OK-DC produced proinflammatory cytokines, stimulated autologous T cell proliferation and IFN-gamma secretion, expressed CCR7, and migrated in response to MIP-3beta. Moreover, OK-DC displayed strong, specific cytotoxicity toward tumor cell targets. This cytotoxicity was associated with novel, OK432-induced up-regulation of CD40L on the cell surface of OK-DC, and was absolutely dependent on expression of CD40 on the tumor targets. These data demonstrate that maturation of human DC with OK432, an adjuvant suitable for clinical use, induces direct tumor cell killing by DC, and describes a novel CD40/CD40L-mediated mechanism for specific DC antitumor cytotoxicity.  相似文献   

7.
Dendritic cells, the most potent antigen presenting cells, have been shown in murine models to induce immune responses against many antigens. Their role in the initiation of antitumour immunity has received enormous attention. Their ability to process and present antigen is dependent on their state of maturation. This study examines the activity of human monocyte-derived dendritic cells at two different time points and the corresponding changes in the proteolytic enzyme activity. Dendritic cells were produced from peripheral blood mononuclear cells of normal volunteers. Plastic adherent cells were cultured for 5 or 7 days with recombinant human (rh)GM-CSF and rhIL-4. Flow cytometry showed that day 5 dendritic cells (DC) were less mature than day 7 DC as indicated by the expression of CD1a, CD11c, CD14, CD80, CD83, CD86 and MHC-II. Proteolytic activity of the enzymes cathepsin C and cathepsin G and phagocytosis of particulate antigens also showed significant differences between d5 dendritic cells and d7 dendritic cells. Allogeneic costimulatory activity of d7 dendritic cells was also significantly increased. Induction of immunity requires active presentation of antigens by antigen processing cells on their MHC-I and/or MHC-II molecules. Study of peptide carriers and peptide precursor molecules showed a significant decrease in CLIP levels in the day 7 DC, suggesting their decreased ability to process antigens but no difference in their ability to load MHC-II molecules. These findings indicate that the length of time in culture, in the absence of exogenous maturation - inducing stimuli affects dendritic cell maturation. Intracellular enzymatic activities of dendritic cells also changed rapidly with small changes in phenotype.  相似文献   

8.
Immature dendritic cells (DCs) induce tolerance and mature DCs induce inflammatory immune responses. However, the likelihood of maturation of immature DCs in vivo limits its potential application for suppression of unwanted immune reactions in vivo. The aim of this study was to generate DCs with anti-inflammatory properties in both the immature and mature states. GM-CSF combined with IL-4 drives monocyte differentiation into DCs. As M-CSF is a critical cytokine in development of the monocytic lineage and its level is dramatically elevated in immunosuppressive conditions, we investigated whether M-CSF could replace GM-CSF and generate DCs with distinct functions from umbilical cord blood monocytes. Highly purified umbilical cord blood monocytes cultured with M-CSF and IL-4, in a GM-CSF-independent fashion, differentiated into IL-10(high)IL-12absent cells with a DC phenotype (termed M-DC). Single time stimulation with immature DCs (both M-DCs and DCs) derived from cord blood induced hyporesponsive and regulatory CD4+ T cells. In contrast to mature DCs, mature M-DCs induced decreased Th1 differentiation and proliferation of naive CD4+ T cells in both primary and secondary allogeneic MLR and showed tolerogenic potential. These results demonstrate an unrecognized role for M-CSF in alternative differentiation of monocytes into anti-inflammatory M-DCs and suggest that M-CSF-induced DCs may be of use for suppressing unwanted immune responses.  相似文献   

9.
Primary immune responses are thought to be induced by dendritic cells. To promote such responses, dendritic cells must be activated by exogenous agonists, such as LPS, or by products of activated leukocytes, such as TNF-alpha and IL-1. How dendritic cells might be activated in the absence of exogenous stimuli, or without the immediate presence of activated leukocytes, as might occur in immunity to tumor cells or transplants, is unknown. We postulated that heparan sulfate, an acidic, biologically active polysaccharide associated with cell membranes and extracellular matrices, which is rapidly released under conditions of inflammation and tissue damage, might provide such a stimulus. Incubation of immature murine dendritic cells with heparan sulfate induced phenotypic maturation evidenced by up-regulation of I-A, CD40, CD54 (ICAM-1), CD80 (B7-1), and CD86 (B7-2). Dendritic cells exposed to heparan sulfate exhibited a markedly lowered rate of Ag uptake and increased allostimulatory capacity. Stimulation of dendritic cells with heparan sulfate induced release of TNF-alpha, IL-1beta, and IL-6, although the maturation of dendritic cells was independent of these cytokines. These results suggest that soluble heparan sulfate chains, as products of the degradation of heparan sulfate proteoglycan, might induce maturation of dendritic cells without exogenous stimuli, thus contributing to the generation and maintenance of primary immune responses.  相似文献   

10.
Dendritic cells are important for the induction of T-lymphocyte-mediated immunity by acting as antigen-presenting cells. We have previously reported that dendritic cells are prevalent in the chronic non-expanding phase of rat apical periodontitis. To characterize these cells further, immunoelectron microscopy with three dendritic cell markers (CD11c, OX6, OX62) was conducted for samples from rat models of apical periodontitis. Dendritic cells were divided into two types (type I or type II). Most of the type I dendritic cells expressed CD11c, showed an irregular large profile, had typical cytoplasmic processes, and were recognized as the major dendritic cell population. Most of the type II dendritic cells expressed OX62, showed oval small profiles with a few thin short processes, and were sometimes observed infiltrating from blood vessels. Cell-to-cell contacts between type I dendritic cells and lymphocytes were the most frequently observed associations. These results suggest that dendritic cells are composed of heterogeneous populations that exhibit different phenotypes, morphologies, and maturation/differentiation/activation. This study was supported by Grants-in-Aid for Scientific Research (no. 11470402 to T.O., and nos. 15791091 and 18791393 to T.K.) from the Japan Society for the Promotion of Sciences.  相似文献   

11.
Polymorphonuclear neutrophils (PMNs) are a key component of the innate immune system. Their activation leads to the release of potent antimicrobial agents through degranulation. Simultaneously, PMNs release cell surface-derived microvesicles, so-called ectosomes (PMN-Ect). PMN-Ect are rightside-out vesicles with a diameter of 50-200 nm. They expose phosphatidylserine in the outer leaflet of their membrane and down-modulate monocyte/macrophage-activation in vitro. In this study, we analyzed the effects of PMN-Ect on maturation of human monocyte-derived dendritic cells (MoDCs). Intriguingly, exposing immature MoDCs to PMN-Ect modified their morphology, reduced their phagocytic activity, and increased the release of TGF-beta1. When immature MoDCs were incubated with PMN-Ect and stimulated with the TLR4 ligand LPS, the maturation process was partially inhibited as evidenced by reduced expression of cell surface markers (CD40, CD80, CD83, CD86, and HLA-DP DQ DR), inhibition of cytokine-release (IL-8, IL-10, IL-12, and TNF-alpha), and a reduced capacity to induce T cell proliferation. Together these data provide evidence that PMN-Ect have the ability to modify MoDC maturation and function. PMN-Ect may thus represent an as yet unidentified host-factor influencing MoDC maturation at the site of injury, thereby possibly impacting on downstream MoDC-dependent immunity.  相似文献   

12.
Due to chronic morbidity, the risk of increasing drug resistance and the existence of the hypnozoite stage in Plasmodium vivax malaria, there is a need to find out how hosts develop immunity to compromise the malaria parasites. Here we focused on an in vitro model for immunotherapy and vaccine development. Immunosuppressive mechanisms in malaria include inhibition of T cell response and suppression of dendritic cell function. Using in vitro activation of lymphocytes by malaria antigen-pulsed dendritic cells could overcome the limitation of antigen presentation during acute infections. Here we showed that the sporozoite-pulsed dendritic cell could elicit cytotoxicity against liver stage of P. vivax. Analysis using immunophenotypic markers showed maturation of the dendritic cells and stimulation of cytotoxic T cells. Functional assay of the in vitro-activated cytotoxic T cells showed enhancement of specific killing of the P. vivax exoerythrocytic stages within infected hepatocytes. This model may be useful for vaccine development against human malaria.  相似文献   

13.
The capacity of dendritic cells to initiate T cell responses is related to their ability to redistribute MHC class II molecules from the intracellular MHC class II compartments to the cell surface. This redistribution occurs during dendritic cell development as they are converted from an antigen capturing, immature dendritic cell into an MHC class II-peptide presenting mature dendritic cell. During this maturation, antigen uptake and processing are down-regulated and peptide-loaded class II complexes become expressed in a stable manner on the cell surface. Here we report that the tetraspanin CD63, that associates with intracellularly localized MHC class II molecules in immature dendritic cells, was modified post-translationally by poly N-acetyl lactosamine addition during maturation. This modification of CD63 was accompanied by a change in morphology of MHC class II compartments from typical multivesicular organelles to structures containing densely packed lipid moieties. Post-translational modification of CD63 may be involved in the functional and morphological changes of MHC class II compartments that occur during dendritic cell maturation.  相似文献   

14.
Targeting of human dendritic cells by autologous NK cells   总被引:7,自引:0,他引:7  
NK cells have the capacity to spontaneously kill tumor cell lines, in particular cell lines of hemopoietic origin. In contrast, they do not generally kill nontransformed autologous cells. However, here we demonstrate that short-term activated polyclonal human NK cells, as well as human NK cell lines, efficiently lyse autologous dendritic cells (DC) derived from peripheral blood monocytes as well as Langerhans-like cells derived from CD34+ stem cells isolated from umbilical cord blood. Lysis of autologous DC by short-term activated NK cells and NK cell lines was dependent on granule exocytosis, since total abrogation of lysis was observed in the presence of EGTA. Induction of DC maturation by LPS, monocyte conditioned media (MCM), or stimulation through CD40 ligand (CD40L) rendered the DC less susceptible to lysis by NK cells. Infection of DC with influenza virus was likewise associated with a reduced susceptibility to lysis by NK cells. Thus, susceptibility to lysis by autologous NK cells is a particular property of immature DC. The present results are discussed in relation to the ability of DC to interact with NK cells and to the ability of NK cells to regulate development of specific immunity.  相似文献   

15.
It is critical to identify the developmental stage of dendritic cells (DCs) that is most efficient at inducing CD8+ T cell responses. Immature DCs can be generated from monocytes with GM-CSF and IL-4, while maturation is accomplished by the addition of stimuli such as monocyte-conditioned medium, CD40 ligand, and LPS. We evaluated the ability of human monocytes and immature and mature DCs to induce CD8+ effector responses to influenza virus Ags from resting memory cells. We studied replicating virus, nonreplicating virus, and the HLA-A*0201-restricted influenza matrix protein peptide. Sensitive and quantitative assays were used to measure influenza A-specific immune responses, including MHC class I tetramer binding assays, enzyme-linked immunospot assays for IFN-gamma production, and generation of cytotoxic T cells. Mature DCs were demonstrated to be superior to immature DC in eliciting IFN-gamma production from CD8+ effector cells. Furthermore, only mature DCs, not immature DCs, could expand and differentiate CTL precursors into cytotoxic effector cells over 7 days. An exception to this was immature DCs infected with live influenza virus, because of the virus's known maturation effect. Finally, mature DCs pulsed with matrix peptide induced CTLs from highly purified CD8+ T cells without requiring CD4+ T cell help. These differences between DC stages were independent of Ag concentrations or the number of immature DCs. In contrast to DCs, monocytes were markedly inferior or completely ineffective stimulators of T cell immunity. Our data with several qualitatively different assays of the memory CD8+ T cell response suggest that mature cells should be considered as immunotherapeutic adjuvants for Ag delivery.  相似文献   

16.
The ability of dendritic cells (DC) to initiate immune responses in naive T cells is dependent upon a maturation process that allows the cells to develop their potent Ag-presenting capacity. Although immature DC can be derived in vitro by treatment of peripheral blood monocytes with GM-CSF and IL-4, additional signals such as those provided by TNF-alpha, CD40 ligand, or LPS are required for complete maturation and maximum APC function. Because we recently found that microbial lipoproteins can activate monocytes and DC through Toll-like receptor (TLR) 2, we also investigated whether lipoproteins can drive DC maturation. Immature DC were cultured with or without lipoproteins and were monitored for expression of cell surface markers indicative of maturation. Stimulation with lipopeptides increased expression of CD83, MHC class II, CD80, CD86, CD54, and CD58, and decreased CD32 expression and endocytic activity; these lipopeptide-matured DC also displayed enhanced T cell stimulatory capacity in MLR, as measured by T cell proliferation and IFN-gamma secretion. The lipid moiety of the lipopeptide was found to be essential for induction of maturation. Preincubation of maturing DC with an anti-TLR2 blocking Ab before addition of lipopeptide blocked the phenotypic and functional changes associated with DC maturation. These results demonstrate that lipopeptides can stimulate DC maturation via TLR2, providing a mechanism by which products of bacteria can participate in the initiation of an immune response.  相似文献   

17.
TNF-alpha-related apoptosis-inducing ligand (TRAIL) is characterized by its preferential induction of apoptosis of tumor cells but not normal cells. Dendritic cells (DCs), besides their role as APCs, now have been demonstrated to exert cytotoxicity or cytostasis on some tumor cells. Here, we report that both human CD34(+) stem cell-derived DCs (CD34DCs) and human CD14(+) monocyte-derived DCs (MoDCs) express TRAIL and exhibit cytotoxicity to some types of tumor cells partially through TRAIL. Moderate expression of TRAIL appeared on CD34DCs from the 8th day of culture and was also seen on freshly isolated monocytes. The level of TRAIL expression remained constant until DC maturation. TRAIL expression on immature CD34DCs or MoDCs was greatly up-regulated after IFN-beta stimulation. Moreover, IFN-beta could strikingly enhance the ability of CD34DCs or MoDCs to kill TRAIL-sensitive tumor cells, but LPS did not have such an effect. The up-regulation of TRAIL on IFN-beta-stimulated DCs partially contributed to the increased cytotoxicity of DCS: Pretreatment of TRAIL-sensitive tumor cells with caspase-3 inhibitor could significantly increase their resistance to the cytotoxicity of IFN-beta-stimulated DCS: In contrast, NF-kappaB inhibitor could significantly increase the sensitivity of tumor cells to the killing by nonstimulated or LPS-stimulated DCS: Our studies demonstrate that IFN-beta-stimulated DCs are functionally cytotoxic. Thus, an innate mechanism of DC-mediated antitumor immunity might exist in vivo in which DCs act as effectors to directly kill tumor cells partially via TRAIL. Subsequently, DCs act as APCs involved in the uptake, processing, and presentation of apoptotic tumor Ags to cross-prime CD8(+) CTL cells.  相似文献   

18.
Mainali ES  Tew JG 《Cellular immunology》2004,232(1-2):127-136
Perinatal dexamethasone (Dx) alters the immune system leading to increased infections and developmental abnormalities. Dendritic cells (DCs) derived from cord-blood monocytes are especially Dx sensitive and we sought to determine the effects of Dx on cord-blood CD34+-DCs. Distinct stages of cord-blood CD34+-DC development were delineated: pre-DC, immature, and mature DCs. Dx added during development of pre-DCs did not suppress precursor number, or translocate the glucocorticoid receptor (GcR) from the cytoplasm to the nucleus. However, Dx added during pre-DCs differentiation into immature DCs, prompted GcR translocation to the nucleus, enhanced DC apoptosis, suppressed differentiation to CD1a+ cells, inhibited expression of CD86, reduced subsequent CD83 expression, maintained DC endocytic activity, suppressed IL-6 secretion, enhanced IL-10 secretion, and reduced DC-mediated T cell stimulation. Dx added during the maturation stage caused less dramatic effects. Thus, Dx stalled maturation, selectively induced apoptosis of developing DCs and the sensitivity peaked during pre-DCs differentiation into immature DCs.  相似文献   

19.
Glioblastoma (GBM) is the most common and aggressive intraparenchymal primary brain tumor in adults. The principal reasons for the poor outcomes of GBM are the high rates of recurrence and resistance to chemotherapy. The aim of this study was to determine the role of tailored cellular therapy for GBM with a poor prognosis and compare the activity of dendritic cells (DCs) that have encountered GBM cells. Detecting the correlations between methylation and expression of MGMT and PTEN genes and GBM cancer stem cells (CSCs) markers after co-cultures with a mononuclear cell cocktail are also aims for this study. Allogenic umbilical cord blood (UCB)-derived DCs were labeled with the CD11a and CD123 for immature DCs, and CD80 and CD11c for mature DCs. CD34, CD45, and CD56 cells were isolated from allogenic UCB for using in DCs maturation. GBM CSCs were detected with CD133/1 and CD111 antibodies after co-culture studies. DC activation was carried out via GBM cells including CD133 and CD111 cells and a mononuclear cells cocktail including CD34, CD45, and CD56 natural killer cells. Real-time PCR was performed to detect the expression and promoter methylation status of PTEN and MGMT genes. The expression of CSCs markers was found in all GBM cases, and a statistically significant correlation was found among them after co-culture studies. The most pronounced affinity of DCs to GBM cells was observed at dilutions between 1/4 and 1/256 in co-cultures. There was a statistically significant correlation between cellularity and granularity ratios for CD123 and CD11c. PTEN and MGMT gene expression and methylation values were evaluated with respect to CSCs expression and no statistical significance was found. Activation of DCs might associate with CSCs and the mononuclear cells cocktail including CD34, CD45, and CD56 cells which were obtained from allogenic UCB.  相似文献   

20.
目的 从脐带中分离培养脐带间充质干细胞(mesenchymal stem cell, MSC) 并进行鉴定,阐明其多向分化的潜在作用.方法 收集健康胎儿脐带,分离培养脐带中的间充质干细胞,以流式细胞仪对培养的间充质干细胞进行细胞表面标志检测,多种成分联合诱导其向脂肪、成骨方向分化,细胞化学染色检测诱导后的细胞变化.结果 脐带中分离培养的间充质干细胞不表达造血细胞系的标志CD34、CD45、HLA-DR,强表达CD105、CD44、CD90,在适当的诱导条件下可向脂肪及成骨方向分化.结论 脐带中存在具有多向分化潜能的间充质干细胞.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号