首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract. Question: The aim of the present study is to determine whether seed/seedling predation will increase and Fagus survival will decline with the recovery of the Sasa cover. Methods: We examined Fagus crenata regeneration for seven years in an old‐growth Fagus‐Sasa forest near Lake Towada, northern Japan, by examining the effects of simultaneous death of Sasa, tree canopy gap formation, mast seeding of Fagus and seed and seedling predation by rodents on the survival of Fagus seeds and current year seedlings. We established four types of sites differing in forest canopy (closed or gap) and Sasa status (dead or alive) following the simultaneous flowering and death of Sasa kurilensis (dwarf bamboo) in 1995. Results: Fallen Fagus seed was abundant in 1997 and 2000 (mast years). In sites with alive Sasa, survival from the first growing season was low due to high seed and seedling predation. In sites with dead Sasa, seed survival under the canopy was high for both mast years, but in gaps it varied between years. Seedling survival was highest in canopy gaps with dead Sasa (gap‐dead) in 1998, because of higher light levels and lower predation by rodents. However, seedling survival in these plots was low in 2001, apparently because rapid Sasa recovery favoured rodent predation. In both mast years, Sasa die‐back had significant positive effects on seed and seedling survival under closed canopies because the seedlings there were more successful in escaping predation. Conclusion: The change in successful sites for the early stage of regeneration of Fagus appears to reflect the combined effects of canopy gap, seed/seedling predation and revegetation of Sasa.  相似文献   

2.
Seedling recruitment and survivorship of beech (Fagus crenata) were studied with special reference to the simultaneous death of undergrowing bamboo (Sasa kurilensis). The survival rate of beech seedlings on the floor whereSasa had withered was much higher than that on the floor whereSasa survived. Damping off caused the largest mortality among beech seedlings. However, the allocation pattern of matter to different parts of the seedlings indicated that their survival was greatly affected by production economy. The dense cover of dwarf bamboo prevented the establishment of beech seedling banks on the forest floor. The interval between the times when simultaneous death ofSasa occur and the length of its recovery period are thus important factors controlling the dynamics of beech forests in Japan.  相似文献   

3.
The effects of dwarf bamboo,Sasa, cover on the initial morrality of hardwood seedlings were investigated by transplanting 1-year-old beech (Fagus crenata) and current-year oak (Quercus mongolica var.grosseserrata) seedling to three different stands; old-growth beech and secondary oak forests withSasa undergrowth, and aSasa grassland in a grassland-forest series near the top of Mt Jippo, southwestern Japan. The most frequent cause of seedling morrality was gnawing of the stems by rodents. In the beech forest, the gnawing was more likely to occur underSasa cover, suggesting that it provides a good habitat for rodents on the beech forest floor. TheSasa under growth may thus play an imporrant role in regeneration of beech forest. In the oak floor, mortality of both species was low and only a little gnawing occurred during a year. However, no natural oak seedling were found in the forest even after a mast year. This may be because most of the acorns disappeated before establishment. The early-stage demography of hardwood seedling as oak may thus play an imporrant role in regeneration of oak forest. In theSasa grassland where the seed supply is small, almost all of the seedlings died fromo gnawing regardless of the presence ofSasa cover. These factors prevent the recruitment of a sizable seedling bank. Rodents may thus play an imporrant role in maintenance of theSasa grassland.  相似文献   

4.
Abstract. We examined the response of tree seedling emergence and survival to the dieback of Sasa and canopy gap formation in an old‐growth forest near Lake Towada, northern Japan. Synchronous death of Sasa occurred in 1995. We established four types of sampling sites differing in forest canopy conditions (Closed or Gap) and Sasa status (Dead or Live). Gap‐Dead sites had the highest light levels and the greatest fluctuation in soil temperatures. The death of Sasa alone facilitated the emergence (Acer japonicum, Fagus crenata, Fraxinus lanuginosa, and Tilia japonica) and survival (Acanthopanax sciadophylloides, F. crenata, F. lanuginosa, Kalopanax pictus, and Sorbus commixta) of species with a seedling bank strategy. Cercidiphyllum japonicum grew at all sites at a higher density than other species, but survived well only in Gap‐Dead sites. This behaviour was associated with a seed rain strategy. The additive effects of Sasa death and canopy gap formation promoted seedling emergence of pioneer tree species (Betula maximowicziana, Lindera umbellata, and Magnolia obovata), probably through break of dormancy by the large temperature fluctuation. In addition, the scarcity of advance regeneration in canopy gaps due to Sasa cover facilitates the regeneration of pioneer species. The dominance and dieback cycle of Sasa contributes to species diversity in this forest.  相似文献   

5.
郭柯 《植物生态学报》2000,24(4):385-390
 千金榆(Carpinus cordata var.chinensis)和千筋树(Carpinus fargesiana)是四川省北部山地水青冈林中的两种主要落叶阔叶树。两种植物种子萌发和幼苗生存与生长的实验研究结果显示:千金榆种子秋季成熟落地后有一年多的休眠期,种子主要在落地后的第二和第三个生长季萌发;千筋树种子成熟落地后有的可在来年萌发,但大部分是在第二个生长季萌发;由于每2~3年两种树就有一个较大的结实年,每年都会有一些新的幼苗在林中出土;尽管两种树是耐荫的,但幼苗在较好光照条件下(如林窗)生存和生长明显好于在林冠遮荫的地方;施肥会加速幼苗的死亡,特别是在阴暗的林下,但在光照较好的条件下能促进幼苗的生长。结果说明两种鹅耳枥的幼苗可以在林下持续存在,但只有在较好的光照条件下,如稀疏的林冠下或林窗下才会有明显的净生长。  相似文献   

6.
The survival and growth of natural beech regeneration after canopy removal is variable and little is known about ecophysiological mechanisms of these responses. Biomass, nonstructural carbohydrate levels and nitrogen concentrations were measured in an Italian population of European beech seedlings. Seedlings were container-grown in two types of soil, organic and mineral, collected at the study site. The seedlings were grown under three light treatments: under full beech canopy (understory), exposed to full sun only during midday (gap) and under full sun (clearing). Leaf gas exchange and chlorophyll a fluorescence parameters were measured and then foliar analyses were conducted for chlorophyll, phenolic and tannin levels. Biomass and allocation were significantly affected by light and soil treatments. The clearing seedlings and those in organic soil were larger than seedlings in the other light treatments or soil type. Total nonstructural carbohydrate concentrations were lower in the understory seedlings and significant differences between soil types were present in the gap and clearing seedlings. Nitrogen concentrations were higher in the understory seedlings and those growing in the organic soil compared to the other treatments. Gas exchange rates were highest in clearing and the organic soil seedlings. Gap seedlings exhibited photosynthetic acclimation that allowed them to utilize high light of midday and any sunflecks during the morning and afternoon. Relative fluorescence was significantly influenced by both light treatment and soil type, with the highest values observed in the gap seedlings. Light response curves showed decreasing apparent maximum quantum efficiency from the understory to clearing, while maximum photosynthetic rate was highest in the gap seedlings. Chlorophyll concentration was highest in understory seedlings and those growing in organic soil and higher in seedlings growing in organic than in mineral soil. Both foliar tannin and phenolic levels were highest in clearing seedlings, and only tannin concentrations were affected by soil type. Understory seedlings had the highest mortality and insect herbivory; the latter was found to be inversely related to tannin concentration. Overall, growth and photosynthesis in beech seedlings responded positively to high light associated with small canopy gaps. Organic soil increased seedling size, particularly in the gap and clearing environments. We conclude that forest gaps are favorable for photosynthesis and growth of European beech seedlings.  相似文献   

7.
We investigated the effect of (a) different local climate and (b) thinning of the forest canopy on growth and N status of naturally regenerated European beech seedlings in a beech forest on shallow rendzina soil in southern Germany. For this purpose, a 15N-tracing experiment was conducted during the growing season of the year 2000 with beech seedlings growing on a warm, dry SW-exposed site and a cooler, moist NE-exposed site, and in a thinned and a control stand at each site. Biomass, 15N uptake and partitioning and total N concentrations of beech seedlings were determined. Site and thinning produced clear differences, particularly at the end of the growing season. Biomass and cumulative 15N uptake of beech seedlings then increased due to thinning on the NE site and decreased on the SW site. Total N concentrations in leaves, roots and stems of beech seedlings responded similarly. Therefore, growth and N status of beech seedlings are found to be favoured by thinning under cool-moist conditions. However, under higher temperature and reduced water availability—conditions that are prognosticated in the near future—thinning reduces N uptake and plant N concentration and, thus, impairs N balance and growth of beech regeneration.  相似文献   

8.
Emergence, survival and mortality patterns of current-year oak (Quercus crispula Blume) seedlings were investigated for 4 consecutive years in a secondary oak forest in Hokkaido, northern Japan. Despite the emergence of a considerable number of oak seedlings in the years following masting, few current-year seedlings survived until the end of the growing season. Almost all of the seedlings died from damage to their stems caused by the gnawing of rodents. Rodent gnawing on transplanted oak seedlings was also observed in the year following masting but not in the year following a bad crop year. Cuttings of dwarf bamboo, Sasa, did not reduce the seedling mortality caused by gnawing. However, transplanted oak seedlings were gnawed more quickly when they were placed on the forest floor with a thicker Sasa covering. All rodents trapped in the vicinity of the study area were Apodemus speciosus Temminck. These results suggest that rodents strongly influence the recruitment of oak trees not only through the predation and dispersal of acorns but also through gnawing seedlings.  相似文献   

9.
Factors limiting tree invasion in the Inland Pampas of Argentina were studied by monitoring the establishment of four alien tree species in remnant grassland and cultivated forest stands. We tested whether disturbances facilitated tree seedling recruitment and survival once seeds of invaders were made available by hand sowing. Seed addition to grassland failed to produce seedlings of two study species, Ligustrum lucidum and Ulmus pumila, but did result in abundant recruitment of Gleditsia triacanthos and Prosopis caldenia. While emergence was sparse in intact grassland, seedling densities were significantly increased by canopy and soil disturbances. Longer-term surveys showed that only Gleditsia became successfully established in disturbed grassland. These results support the hypothesis that interference from herbaceous vegetation may play a significant role in slowing down tree invasion, whereas disturbances create microsites that can be exploited by invasive woody plants. Seed sowing in a Ligustrum forest promoted the emergence of all four study species in understorey and treefall gap conditions. Litter removal had species-specific effects on emergence and early seedling growth, but had little impact on survivorship. Seedlings emerging under the closed forest canopy died within a few months. In the treefall gap, recruits of Gleditsia and Prosopis survived the first year, but did not survive in the longer term after natural gap closure. The forest community thus appeared less susceptible to colonization by alien trees than the grassland. We conclude that tree invasion in this system is strongly limited by the availability of recruitment microsites and biotic interactions, as well as by dispersal from existing propagule sources.  相似文献   

10.
六盘山区辽东栎的实生苗更新及其影响因子   总被引:3,自引:2,他引:1       下载免费PDF全文
研究了六盘山区辽东栎(Quercus liaotungensis)灌丛的种子产量、土壤种子库组成、湿沙和风干贮藏对种子寿命的影响以及动物取食子叶对种子萌发和幼苗建立的影响。结果表明, 辽东栎灌丛种子的完好率为27.51%, 被动物取食或搬运种子的比例(41.51%)显著高于其他类型种子(p < 0.01); 辽东栎次生林土壤种子库中萌发和虫蛀种子分别占35.16%和38.29%, 完好种子仅占13.65%, 捕食动物主要通过贮藏或搬运而影响土壤种子库中的种子密度。湿沙贮藏60天的辽东栎种子自动萌发率高达96.67%, 短期贮藏可加快种子的萌发进程, 提高萌发率和萌发指数, 但随着贮藏时间的延长, 种子萌发进程延迟, 萌发率、萌发指数和活力指数均不同程度地降低。排除动物取食处理的幼苗在林窗和林下生境的存活率分别为80%和83%, 而不排除动物取食幼苗在2种生境中分别仅有25%和31%能够存活, 表明子叶在幼苗建立中具有重要作用。林窗中幼苗子叶的动物取食率(85.00%)高于林下(71.00%), 子叶留存的幼苗在林窗中的存活率(6.00%)低于林下(15.50%), 而子叶被取食幼苗的存活率在两种环境中基本相等(分别为18.50%和18.00%)。  相似文献   

11.
The persistence of seedlings in the forest understorey is of major importance for the maintenance and regeneration of canopy trees in several forested ecosystems. In the present study, we examine the small-scale spatial pattern of a mixed beech and oak seedling–sapling bank in two areas of an unmanaged temperate deciduous forest with different environmental conditions. We used environmental, biotic and spatial variables to establish the main factors that explain the spatial pattern of these seedling–sapling banks at different scales. The stand structure in both areas was similar, but while in plot A beech dominated the canopy, plot B was dominated by oaks. In both areas, established beech individuals showed a clear reverse J-shaped distribution, whereas established oaks showed a unimodal distribution with only a few young individuals. Seedlings of beech and oak were distributed in aggregates, whereas beech saplings had a random distribution. At broader scales, the abundance of seedlings and saplings is affected by the environment as well as by inter-species competition, while at finer scales the spatial pattern is mainly influenced by stochastic processes, probably related to seed predation and establishment. The structure of the seedling–sapling bank indicates an advantage of beech over oak as far as regeneration is concerned. Beech seedlings and saplings tolerate the stress induced by the canopy and the understorey and persist for many years, while oak seedlings decline in a few years. Therefore, if current conditions persist, after canopy opening beech seedlings and saplings can grow rapidly into the canopy and the stands will move towards beech dominance.  相似文献   

12.
The seed and seedling mortality ofFagus crenata Blume after a mast year (1993) was examined in relation to density and distance from the nearest conspecific adult tree in a mixed conifer-hardwood forest in Ohdaigahara, western Japan. The mortality of fallen seeds during winter amounted to 93.7%, and 79.2% of the current-year seedlings died in the first growing season. The most important factor of death for both seeds and seedlings was predation by vertebrates. The mortality of seeds during winter was positively correlated with sound seed density. The mortality of seedlings was positively correlated with density but not significantly related to the distance from the nearest crown edge of a conspecific adult tree. Mortality patterns varied with stages and spatial scales due to the behavior of predators; it is thus important to investigate the spatial pattern of seeds and seedling mortality at various temporal and spatial scales. After the first growing season, the difference in seedling density between distance classes was not significant at <4m from the nearest adult trees due to density-dependent mortality. However, seedling density was significantly lower in the ≥4 m class than in the <4 m classes.  相似文献   

13.
This paper reviews the differences in the distribution and regeneration ofFagus crenata between two types of Japanese beech forests, the Japan Sea (JS)-type and the Pacific Ocean (PO)-type, and discusses the causal factors and characteristics of these forests, particularly the PO-type.F. crenata in PO-type forests regenerates sporadically rather than constantly, whereas regeneration in the JS-type forests is relatively constant with gap dynamics.F. crenata has dominated in snowy areas both in the past, after the last glacial age, when there was less human disturbance, and in the present. Snow accumulation facilitates beech regeneration in snowy JS-type forests, but not in the less snowy PO-type. Snow protects beechnuts from damage caused by rodents, desiccation, and freezing. In addition, snow suppresses dwarf bamboo in the spring, thus increasing the amount of sunlight available for beech seedlings on the forest floor. Snow also supplies melt water during the growing season and limits the distribution of herbivores. Moreover, snow reduces the number of forest fires during the dry winter and early spring seasons. The low densities ofF. crenata impede its regeneration, because disturbed wind pollination lowers seed fertility and predators are less effectively satiated. In snowy JS-type beech forests,F. crenata dominates both at the adult and the juvenile stages because it regenerates well, while other species are eliminated by heavy snow pressure. On the less snowy PO-side, deciduous broad-leaved forests with various species are a primary feature, althoughF. crenata dominates because of its large size and long lifespan.  相似文献   

14.
The survivorship of a monocarpic bamboo grass,Sasa kurilensis, during the early regeneration process was documented by a 10 year observation of the seedling population after mass flowering in the Hakkoda Mountains, northern Japan. Three phases were recognized: the establishment, density-stable and thinning phases. The mortality of the densely germinated seedlings (932.9m−2 in aBetula ermanii forest and 1222.3 m−2 in aSasa grassland) was high, up to 0.5 year−1, in the establishment phase (0–1 year after germination) and low in the density-stable phase (1–3 years after germination). After reaching full density state, the seedling population showed a nearly constant mortality of 0.18 year−1 due to self-thinning (the thinning phase). The high C/F ratio presumably caused suppressed seedlings to die. Recovery of theS. kurilensis population was estimated to requireca 20 years in the study plots, judging from the height growth and the decrease in culm density of the seedling population. The illuminance on the ground was higher in the flowered population than in the unflowered one for 5 years after mass death. The duration of high ground illuminance is an important factor affecting the dynamics of forests withSasa undergrowth, because tree seedlings need to establish under high ground illuminance for the successful regeneration of the forests.  相似文献   

15.
House mice Mus musculus and other introduced rodents represent a novel source of predation on tree seeds in New Zealand forests. In the northern temperate forests where these rodents are native, spatial and temporal variation in tree seed production can result in dramatic fluctuations in the distribution and abundance of seed predators, with subsequent feedbacks on the distribution and abundance of seedlings. We use neighbourhood models to examine variation in rodent predation on seeds of 4 tree species of the temperate rainforests of New Zealand as a function of 1) spatial variation in local canopy composition and 2) spatial and temporal variation in mouse activity. We placed seeds throughout mapped stands of mixed forests in alluvial valley bottoms and on elevated marine terraces in the Waitutu Forest, South Island. The risk of predation on seeds of 2 dominant canopy trees – rimu Dacrydium cupressinum and mountain beech Nothofagus solandri var . cliffortioides – peaked in neighbourhoods dominated by those species and by silver beech N. menziesii , particularly in a year of plentiful seed rain from these species. The risk of predation on rimu and beech seed was also related to measures of local mouse activity. These relationships suggest that the highest local abundance of mice was concentrated in rimu and beech neighbourhoods because of the food provided by seed rain from those trees. Predation on seed of miro Prumnopitys ferruginea , which is eaten by rats but not mice, was low in rimu neighbourhoods and where mouse activity was high. These patterns may reflect spatial segregation in the activity of rats versus mice within stands. Our results suggest that the spatial distribution of canopy trees translates into predictable patterns of variation in mouse activity and seed predation. Heterogeneity in rodent activity and seed predation within stands may have important implications for tree population dynamics.  相似文献   

16.
Regeneration of natural forests was studied in the Nakagawa Experiment Forest of Hokkaido University using age distribution surveys made by the clear felling method. In Plot 1 (30 m × 65 m),Abies sachalinensis dominated the canopy layer but there were also a fewBetula ermanii trees.Sasa senanensis densely covered the forest floor. Most of the canopy trees were from 122 to 195 years old. Seedlings younger than 50 years old ofA. sachalinensis were found on fallen logs and root bases. There were, however, few trees from 50 to 120 years old. The present canopy trees seemed to have regenerated after competitive pressure from old canopy andSasa disappeared 180 years ago. Plot 2 (50 m × 100 m) on serpentinite soil was dominated byPicea glehnii. Sasa kulirensis covered the floor but not as densely asS. senanensis in Plot 1. The ages ofP. glehnii ranged from 1 to 586 years old, and the age distribution ofA. sachalinensis was L-shaped. A small gap in the canopy formed about 290 years ago, and it gradually extended. Conifers regenerated continuously in the extending gap butB. ermanii did not. One hundred thirty years ago, part of Plot 2 was again destroyed andA. sachalinensis andB. ermanii regenerated. Thus, two types of regeneration were found. One regenerated both conifers andBetula after a sudden disturbance of canopy layer or death ofSasa, and the other, under an extending gap, regenerated only conifers.  相似文献   

17.
Natural regeneration of European beech (Fagus sylvatica L.) establishes under shade, but sudden exposure to high irradiance may occur due to openings in the canopy. To elucidate ecophysiological mechanisms associated with survival of European beech seedlings, the gas exchange, chlorophyll concentrations, and chlorophyll a fluorescence parameters of two different beech populations were studied under changing light conditions. Plants were grown both in a growth chamber and at a natural site (one population) where the seedlings were raised in containers placed in understory and in simulated canopy gaps. Upon exposure to high light in the growth chamber, photosynthetic rates of shade-acclimated leaves of seedlings from both populations increased severalfold and then decreased over several days to the rates of the low-light control seedlings. High-light seedlings always had the highest photosynthetic rates. Initial fluorescence displayed a trend opposite that of photosynthesis; it increased over time, and relative fluorescence and half-time rise declined continuously until the end of experiment to very low values. Exposure to high light of shade-acclimated seedlings resulted in a shift in chlorophyll concentrations to levels intermediate between high-light and low-light seedlings. The light treatment effects were statistically greater than population effects; however, seedlings from the Abetone population were found to be more susceptible to changing light conditions than seedlings from Sicily. Reciprocal light treatments on plants growing at the natural site confirmed the results obtained in the growth chamber experiment. Overall, beech seedlings grown in the field appeared to have a fairly large acclimation potential achieved by plasticity in the photosynthetic apparatus. The lack of pronounced acclimation to high light in seedlings grown in the growth chamber was ascribed to a threshold-type relationship between the acclimation capacity and the level of damage. These observations on the limited potential for acclimation to high light in leaves of European beech seedlings which show a clear capability to exploit sunflecks, are discussed in relation to regeneration following canopy gap formation and reinforce the view of the central role of gap formation in forest dynamics. We conclude that small forest gaps (in which sunflecks play a major role) may present a favorable environment for survival and growth of beech because of their limited ability to acclimate to a sudden increase in irradiance and because of the moderate levels of light stress found in small gaps.  相似文献   

18.
The response of Japanese beech (Fagus japonica Maxim.) sprouts to canopy gaps in natural beech forest in central Japan was studied using two contrasted gaps in which tree-ring chronologies of regenerating stems were analyzed. The gaps were created by uprooting of a single Quercus mongolica var. grosseserrata stem (diameter: 50 cm; gap size: 40 m2; 23 years old) and by concurrent uprootings of four F. japonica stools (gap size: 180 m2; 30 years old). Japanese beech sprouts emerged before and after the gap formation and dominated stem populations in both gaps. In gaps, growth of F. japonica sprouts was equal or lower than growth of stems of seed origin, but most sprouts (F. japonica, Acer mono var. marmoratum) appeared a few years before emergence of seedlings. The small gap created by single stem fall was dominated by some beech sprouts from stools adjacent to the gap. The multiple gap was not closed by beech sprouts from stools surrounding the gap, but some dominant beech stems were resprouts from the uprooted beech stools. The existence of a sprout bank under the canopy may play an important role in the closing process of gaps in natural Japanese beech forest.  相似文献   

19.
Abstract. The structure and composition of a cool-temperate old-growth beech (Fagus crenata) - dwarf bamboo (Sasa spp.) forest, partially affected by landslide disturbance, in the Daisen Forest Reserve of southwestern Japan, were investigated in relation to forest floor and canopy conditions. All stems ≥ 4 cm DBH were mapped on a 4-ha plot and analyses were made of population structure, spatial distribution and spatial association of major tree species. The dominant species, F. crenata, which had the maximum DBH among the species present, had the highest stem density. However, for other species, larger-sized species had lower stem density with few smaller stems or saplings, while smaller-sized species had higher stem density with many smaller stems or saplings. Canopy trees of F. crenata were distributed randomly in the plot, while its stems in the other layers and all other species were distributed patchily. Small patches represent gap-phase regeneration. Larger patches correlate with landslide disturbance, difference in soil age, or the presence/absence of Sasa. Cluster analysis for spatial associations among species and stems in the different layers revealed that the forest community consists of several groups. One main group was formed on sites not covered with Sasa. This group contained a successional subgroup (from Betula grossa to Acer mono and/or F. crenata) initiated by landslide disturbance and a subgroup of tree species that avoid Sasa. Another group was formed on sites with mature soils covered largely with Sasa. This contained associations of canopy trees of F. crenata and smaller-sized tree species such as Acanthopanax sciadophylloides and Acer japonicum. It is found that the community of this old-growth beech forest is largely organized by natural disturbance and heterogeneous conditions of the forest floor (difference in soil age and presence/absence of Sasa). The existence of these different factors and the different responses of species to them largely contribute to the maintenance of tree species diversity in this forest.; Keywords: Cluster analysis; Fagus crenata; Forest dynamics; Gap; Landslide; Spatial pattern.  相似文献   

20.
The effects of understory dwarf bamboo (Sasa kurilensis) on soil water and the growth of overstory trees were studied in a dense secondary forest of Betula ermanii in northern Japan. Four plots were established in a Betula ermanii forest with Sasa kurilensis in the understory. The Sasa was removed in two of the plots. The annual increment of the trunk diameter for each tree was measured in the first two years from the commencement of the experiment. Soil water potential was similar in the plots following significant rainfall, but was found to be greater in the plot without Sasa between rainfall events. This suggests that the removal of Sasa slows the reduction of soil water after rainfall. The relative growth rate of the trunk diameter of Betula ermanii increased with tree size in all of the plots because taller trees strongly suppressed smaller ones in the dense forest. The growth rates of Betula ermanii were higher in the plots without Sasa. However, the difference in growth rates between all of the plots tended to be smaller in smaller size classes, possibly because smaller trees were strongly suppressed by larger ones, irrespective of the presence/absence of Sasa. Therefore, the removal of Sasa increased soil water and encouraged the growth of larger Betula ermanii in dense forest during the first two years after the Sasa was removed. The present study suggests that Sasa can reduce the growth of larger Betula ermanii in dense forest by limiting available soil water to these trees.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号