首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 578 毫秒
1.
In two clones ofTradescantia (4430 and 02) differing in the sensitivity to the mutagenic action of alkylating agents, equimolar doses of [14C] methyl methanesulphonate (MMS) elicited a similar degree of protein, RNA and DNA alkylation and a similar amount of DNA-7-methylguanine and DNA-3-methyladenine in cells of inflorescence. Moreover, in the same clones and tissues the same doses of nonlabelled MMS produced a similar amount of DNA single strand breaks and/or alkali labile sites as measured in alkaline sucrose gradients. None of the DNA lesions followed is therefore decisive for explanation of the different mutagenic sensitivity ofTradescantia clones.  相似文献   

2.
The in vivo formation and repair of specific DNA lesions produced by alkylating agents of contrasting carcinogenic potencies were investigated. Male Sprague-Dawley rats were treated with direct-acting alkylating agents methylmethane sulfonate (MMS) or methylnitrosourea (MNU). The amounts of N-3-methyladenine (3-meA), N-7-methylguanine (7-meG), and methylphosphotriesters (mePTE) in the DNA of liver and brain were determined following selective removal of the methylated bases by enzyme 3-meA N-glycosylase from Micrococcus luteus and thermal depurination at neutral pH. Both enzyme- and heat-induced alkali-labile apurinic sites were converted to single-strand breaks on incubation with 0.1 M NaOH. The number of such sites was quantitated following centrifugation of the DNA in alkaline sucrose gradients, fluorescent detection of unlabeled DNA, and estimation of number-average molecular weight. The results show a carcinogen dose-dependent initial linear increase in the number of enzyme- and heat-induced DNA strand breakage in both liver and brain DNA. With a half-life of approximately 3 h, 3-meA was removed from the tissues, whereas 45 to 55% of 7-meG remained unrepaired at 48 h. The study of the alkylation damage induced by MNU treatment of rats showed that the kinetics of repair for 3-meA and 7-meG was similar to the MMS-treated tissues and that mePTE persisted over a 7-day period. The technique developed does not require the use of radiolabeled reagents of DNA and allows for the selective quantitation of DNA alkylation lesions like 3-meA and 7-meG in the presence of nitrosourea-induced phosphotriesters.  相似文献   

3.
Barley seeds were treated with methyl methanesulphonate (MMS) and ethyl methanesulphonate (EMS), stored at 15% water content and washed for 16–24 h. These treatments resulted in an increase of toxic and genetic effects. In teh DNA of embryos of such stored MMS- and EMS-treated seeds, a strong enhancement of the amount of single-strand breaks and/or alkali-labile sites took place. In contrast, the amount of alkylated sites, particularly of 7-methylguanine, was somewhat lower. It can be that the depurination and/or backbone breakage, which proceeds during the storage period, is responsible for the enhancement of toxic and genetic effects, whereas the influence of the alkylation of DNA during the storage period by the unreacted residual mutagen is negligible.  相似文献   

4.
In sterile cultures of free barley embryos, N-methyl-N-nitrosourea (MNU) caused a decrease in the size of both template [14C]-labeled DNA and of daughter [3H]DNA strands as determined in alkaline sucrose gradients, and inhibited the rate of [3H]thymidine incorporation. In addition, duplexes containing [3H]-daughter DNA analyzed in BND cellulose contained more single-stranded regions in MNU-treated embryos than in the corresponding control. Incubation of MNU-treated embryos in nutrient medium for up to 18 h after the [3H]-labeling permitted the recovery of small-sized daughter DNA to full-sized strands and led to the enhancement of double-strandedness of DNA duplexes containing [3H]-labeled strands. If [3H]-labeling had been carried out 8–10 h after the MNU treatment, the size of daughter DNA, the proportion of double-strandedness and the rate of thymidine uptake into DNA partially increased in comparison with rates observed when labeling had been done just after or 3 h after the MNU treatment, but these variables did not reach the values of the corresponding controls.  相似文献   

5.
DNA damage and repair provoked by ethidium azide (EA) photoaffinity labeling in mouse leukemia cells was studied by measuring sedimentation properties of nucleoids in neutral sucrose gradients, and it was found that the strand opening step was faster than that which followed damage of cells by ultraviolet (UV) light. The two insults were compared at levels of damage which gave the same overall rates of repair synthesis in intact cells and which required the same length of time to complete repair, as judged by the restoration of supercoiling of the isolated nucleoids. In the case of UV, single-strand breaks in DNA were detectable at 30 min, maximum at 2 h, and the superhelical properties restored at 21 h. With photoaffinity labeling, single-strand breaks were prominent immediately, even when photolabeling of cells was done on ice, but restoration of DNA supercoiling still required 21 h. Photolabeling of isolated nucleoids or isolated viral DNA with EA failed to introduce DNA strand breaks. However, it was discovered that photoaffinity labeling of DNA with EA resulted in alkali labile sites shown by single strand breaks produced on alkaline sucrose sedimentation or by alkali exposure followed by sedimentation on neutral formamide gradients. These results suggest that the drug attachment sites should be identifiable by the location of such single strand breaks.  相似文献   

6.
After treatment with methyl methanesulfonate (MMS) or N-methyl-N-nitrosourea (MNU), the mutagenicity and survival of Chinese hamster V79 cells were investigated, as well as the inhibition of daughter DNA synthesis and, using the DNA unwinding technique and hydroxylapatite chromatography, the character of the newly synthesized DNA was studied. It was found that different cytotoxicity and mutagenicity of MMS and MNU was accompanied by different types of DNA synthesis inhibition. The treatment with the former compound resulted in a longer inhibition of DNA synthesis, while the treatment with the latter showed that as early as 2 h after exposure the percentage of nascent DNA increased. Shortly after the exposure to both alkylating agents, the newly synthesized DNA contained a higher number of gaps than control DNA, in dependence on the concentration used. During culturing after treatment, the character of nascent DNA in MMS-treated cells gradually returned to that of control DNA, while MNU-treated cells, for the whole time of our study, synthesized DNA with a larger number of gaps than control DNA. We suggest that the character of nascent daughter DNA reflects the occurrence of lesions in parental DNA. These are repaired within a shorter time in MMS- than in MNU-treated cells. The long-term persistence of lesions in the DNA of MNU-treated cells might be one of the factors responsible not only for the higher cytotoxic but also for the many times higher mutagenic effect of this alkylating agent.  相似文献   

7.
Caffeine alone causes DNA damage in Chinese hamster ovary cells   总被引:1,自引:0,他引:1  
Caffeine has been shown to enhance the lethal effect of DNA-damaging agents in mammalian cells, and the potentiation by caffeine of this effect is generally interpreted as the result of inhibition by caffeine of the repair of damaged DNA. However, the mechanism by which caffeine enhances the lethal effect of DNA-damaging agents has not yet been elucidated. During studies on the effect of caffeine on DNA repair, we found by alkaline elution analysis that caffeine alone produced DNA strand breaks or alkali labile sites in Chinese hamster ovary cells. The amount of DNA breakage or alkali labile sites depended on the concentration of caffeine. We propose that DNA breakage induced by caffeine may be involved in the enhancement of the lethal effect of DNA-damaging agents.  相似文献   

8.
Deficient mismatch repair (MMR) is identified as a mutation of one of four major MMR genes and(or) microsatellite instability. These genomic changes are used as markers of MMR status of the heredity nonpolyposis colorectal cancer (HNPCC) spectrum tumors--familial and sporadic tumors of colon and extracolonic cancers fulfilling Amsterdam clinical criteria II. MMR-deficiency results in mutator phenotype and resistance to geno- and cytotoxicity of alkylating agents. The main cytotoxic damage to DNA in response to chemical methylation is O6-methylguanine (O6-mG). The secondary DNA strand breaks, which are formed during the MMR functioning, are proposed to be required for methylation induced cytotoxicity. We have assumed that the secondary double stand breaks (DSB) upon DNA methylation are able to represent functional efficiency of MMR in cells. The purpose of the paper was to test this assumption on human tumor cells differing in MMR-status and pulse-treated with methylnitrosourea (MNU). We used 3 cell lines: HeLa (MMR-competent endometrial tumor cells), HCT116 (MMR-deficient colorectal carcinoma cells), and Colo320 (sigmoid intestine tumor cells with uncharacterized MMR status). DSBs were evaluated with neutral comet assay. Cytotoxicity/viability was evaluated with MTT-asay and apoptotic index (frequency of morphologically determined apoptotic cells). We show that 1) cytotoxic effect of MNU (250 microM) on HeLa cells was exhibited 3 days after pulse-treatment of cells with MNU; 2) DSBs occurred 48 h after the drug treatment but prior to the onset of apoptosis of HeLa cells; 3) MMR-deficient HCT116 cells were resistant to the drug: no decreased viability, DSBs and apoptosis were observed during 3 days after cell treatment. Both cell lines exhibited high sensitivity to etoposide, classical inductor of unrepairable DSBs and p53. Etoposide has been found to induce DSBs in 6-12 h, which was followed by apoptosis (in 24 h). Colo320 cells exhibited intermediate position between HeLa and HCT116 cell lines in regard to sensitivity to MNU according to MTT-assay and the number of secondary DSBs formed in MNU-treated cells. Nevertheless, in contrast to HeLa cells, these breaks did not induce apoptosis in Colo320 cells. Our data confirm the assumption about case/effect relationship between secondary DNA double strand breaks, induced by monofunctional methylating agent MNU, and functioning of MMR in human tumor cells.  相似文献   

9.
The DNA damaging properties of dichlorvos (2,2 dichlorovinyl dimethyl phosphate), methyl methanesulphonate (MMS) and iodoacetamide (IAA) have been studied, using alkaline sucrose sedimentation. In a strain of E. coli deficient in DNA polymerase I (polA) both dichlorvos and MMS caused random strand breakage, MMS being about twice as efficient as dichlorvos on a molar basis. In pol+ bacteria, DNA strand breaks or alkali labile bonds were detected following treatment with roughly five-fold higher concentrations of MMS but at similar high concentrations of dichlorvos there was an all or none breakdown of DNA molecules to fragments of very low molecular weight which correlated well with lethality.DNA synthesized after treatment of pol+ and polA bacteria with MMS was of low molecular weight, indicating the presence of discontinuities. With dichlorvos, the effect was much smaller.Apparent all-or-none DNA breakdown was also found when the polA strain of E. coli was treated with low concentrations of iodoacetamide, an agent that does not detectably alkylate DNA. At higher concentrations the breakdown was suppressed and random strand breakage occurred instea. These effects did not occurr with pol+ bacteria and correlated well with the greater sensitivity to iodoacetamide of the polA strain in survival experiments. We suggest that the major DNA damage resulting from treatment with iodoacetamide and dichlorvos arises indirectly through alkylation of other cellular constituents and consequent uncontrolled nuclease attack on the DNA. Discontinuities in newly synthesized DNA and mutagenesis following dichlorvos treatment, however, presumably result from direct alkylation of DNA.Strand breakage caused by dichlorvos and MMS in Chinese hamster cells tended to correlate with the extent to which these agents alkylate DNA, but survivval tended to correlate with the alkylation of protein.  相似文献   

10.
The co-genotoxic effects of cadmium are well recognized and it is assumed that most of these effects are due to the inhibition of DNA repair. We used the comet assay to analyze the effect of low, non-toxic concentrations of CdCl2 on DNA damage and repair-induced in Chinese hamster ovary (CHO) cells by UV-radiation, by methyl methanesulfonate (MMS) and by N-methyl-N-nitrosourea (MNU). The UV-induced DNA lesions revealed by the comet assay are single-strand breaks which are the intermediates formed during nucleotide excision repair (NER). In cells exposed to UV-irradiation alone the formation of DNA strand breaks was rapid, followed by a fast rejoining phase during the first 60 min after irradiation. In UV-irradiated cells pre-exposed to CdCl2, the formation of DNA strand breaks was significantly slower, indicating that cadmium inhibited DNA damage recognition and/or excision. Methyl methanesulfonate and N-methyl-N-nitrosourea directly alkylate nitrogen and oxygen atoms of DNA bases. The lesions revealed by the comet assay are mainly breaks at apurinic/apyrimidinic (AP) sites and breaks formed as intermediates during base excision repair (BER). In MMS treated cells the initial level of DNA strand breaks did not change during the first hour of recovery; thereafter repair was detected. In cells pre-exposed to CdCl2 the MMS-induced DNA strand breaks accumulated during the first 2h of recovery, indicating that AP sites and/or DNA strand breaks were formed but that further steps of BER were blocked. In MNU treated cells the maximal level of DNA strand breaks was detected immediately after the treatment and the breaks were repaired rapidly. In CdCl2 pre-treated cells the formation of MNU-induced DNA single-strand breaks was not affected, while the repair was slower, indicating inhibition of polymerization and/or the ligation step of BER. Cadmium thus affects the repair of UV-, MMS- and MNU-induced DNA damage, providing further evidence, that inhibition of DNA repair is an important mechanism of cadmium induced mutagenicity and carcinogenicity.  相似文献   

11.
This study tried to clarify the question if nuclear genotoxicity played a role in 3'-azido-3'-deoxythymidine (AZT) toxicity. We investigated cytotoxic and DNA-damaging effects of AZT on human hepatoma HepG2 and human colonic CaCo-2 cells as well as on human diploid lung fibroblasts HEL. The amount of induced DNA damage was measured by standard alkaline single cell gel electrophoresis (SCGE). The nature of induced DNA lesions was evaluated (1) by modified SCGE, which includes treatment of lysed cells with DNA repair enzymes Endo III and Fpg and enables to recognize oxidized bases of DNA, and (2) by SCGE processed in parallel at pH 13.0 (standard technique) and pH 12.1, which enables to recognize alkali labile DNA lesions and direct DNA strand breaks. Cytotoxicity of AZT was evaluated by the trypan blue exclusion technique. Our findings showed that 3-h treatment of cells with AZT decreased the viability of all cell lines studied. SCGE performed in the presence of DNA repair enzymes proved that AZT induced oxidative lesions to DNA in all cell types. In hepatoma HepG2 cells and embryonic lung fibroblasts HEL the majority of AZT-induced DNA strand breaks were pH-independent, i.e. they were identified at both pH values (12.1 and 13.0). These DNA lesions represented direct DNA breaks. In colonic Caco-2 cells DNA lesions were converted to DNA strand breaks particularly under strong alkaline conditions (pH>13.0), which is characteristic for alkali-labile sites of DNA. DNA strand break rejoining was investigated by the standard comet assay technique during 48 h of post-AZT-treatment in HepG2 and Caco-2 cells. The kinetics of DNA rejoining, considered an indicator of DNA repair, revealed that AZT-induced DNA breaks were repaired in both cell types slowly, though HepG2 cells seemed to be more repair proficient with respect to AZT-induced DNA lesions.  相似文献   

12.
The frequency of single-strand breaks in parental DNA and gaps in nascent DNA in various cells exposed to methyl methanesulfonate (MMS) or methylnitrosourea (MNU) was investigated by alkaline unwinding assay using two types of alkaline lysis conditions, 22°C lysis versus 0°C lysis. The DNA damage induced by MMS and MNU is considered to be characteristic of lesions produced in DNA by alkylating agents. The aim of our research project was to adjust this method to be able to detect the greatest number of DNA lesions induced by alkylating agents in parental DNA of different mammalian cells. In our experiments we used human cell lines EUE, GM637 and XP12, Chinese hamster V79 cells, and Syrian hamster embryo cells. The higher level of strand interruptions was detected under conditions of lysis of cells at 22°C. Probably the level of strand interruptions found after the lysis of cells at 22°C correlates with the increased number of disrupted alkali-labile sites of DNA. It is remarkable that the different lysis conditions did not influence the number of gaps detected in nascent DNA of alkylated cells. Comparing induction of breaks and gaps in radiolabelled strands of parental and daughter DNA under different lysis conditions, we succeeded in defining the optimum conditions for detection of alkali-labile sites of parental DNA.  相似文献   

13.
The present experiments using Amoeba proteus as a single cell model show that DNA synthesis continues during and after exposure of S phase cell to N-methyl-N'-nitrosourethane (MNU). At sublethal dose levels which caused long division delays, division and growth abnormalities and mutations, the amount of [3h] thymidine ([3h]Tdr) incorporated was decreased by 20-30%; at dose levels which killed all S phase cells it was inhibited by up to 90%. There was a direct correlation between the dose of MNU used and the degree of inhibition of [3H]Tdr incorporated. The effect was rapid, mainly taking place within 20 min of treatment. Amoeba heterokaryons (HKs) were used to examine the rate of DNA synthesis of treated and untreated nuclei in the same cytoplasm, i.e. where the nuclei would have the same [h]tdr intake, the same thymidine kinase (TK) activity and the same endogenous precursor pools. Direct comparison of the nuclear DNA synthetic activity in this way revealed less difference between treated and untreated nuclei than comparisons made using the nuclear grain counts from treated and untreated amoebae. This suggested that much of the decrease in [3H]Tdr incorporation by MNU-treated S phase cells was due to a change in the cytoplasm and/or the cell membrane, rather than to nuclear damage. Thus MNU-treated nuclei were able to synthesize DNA at a near normal rate when they could draw on the resources of untreated cytoplasm, while the rate of DNA synthesis of control nuclei decreased when they occupied cytoplasm which had been exposed to high doses of MNU. These studies suggest that nuclear sites of damage were only involved when lethal doses of MNU had been used.  相似文献   

14.
When HeLa S3 cells were subjected to 45 degrees C hyperthermia, DNA lesions were detected by the use of the alkaline unwinding/hydroxylapatite method. The number of lesions formed was not affected when the cells were made thermotolerant by either an acute (15 min 44 degrees C + 5 h 37 degrees C) or a chronic (5 h 42 degrees C) pretreatment before 45 degrees C hyperthermia. The presence of 10 mM procaine (heat sensitizer) or 0.5 M erythritol (heat protector) during hyperthermia also had no effect on the rate of formation of heat-induced alkali labile DNA lesions. These observations do not support a concept where DNA lesions are considered to be the ultimate cause of hyperthermic cell killing. Both drugs, however, influenced the rate of repair of radiation-induced strand breaks when present during preirradiation heat treatment. We conclude that the initial number of heat-induced alkali labile DNA lesions is not directly related to cell survival. It cannot be excluded, however, that differences in posthyperthermic repair of these lesions may lead to a positive correlation between residual DNA damage and survival after the different experimental conditions.  相似文献   

15.
Retinopathy of animals is induced by many agents damaging DNA. This fact shows that DNA lesions may initiate retinal degeneration. The aim of our work was to study the effects of gamma and proton irradiation, and methylnitrosourea (MNU) on mice retina. We evaluated morphological changes, DNA damage and repair in retina, and expression of 5 proteins participating in apoptosis: p53, ATM, FasR, PARP and caspase 3 active. Dose of 14 Gy is equitoxic in terms of induction of DNA single strand breaks by both gamma and proton irradiation. But protons were 2 fold more effective than gamma-rays in induction of DNA double strand breaks. All breaks were repaired within < or =10 h. Irradiation resulted in increased expression of p53 and ATM. But no sings of cell death and retinal degeneration were observed during 7 days after irradiation. Proton irradiation in dose of 25 Gy resulted in increasing over time destructive changes localized mainly in photoreceptor layer of retina. These changes were followed by increased expression of proapoptotic proteins. A single systemic administration of MNU (70 mg/kg) increased intracellular levels of p53, PARP, FasR, caspase 3 active, which was followed by destructive changes in retina with sings of apoptosis of photoreceptors. As in the case of irradiation, the 2-fold dose reduction of MNU abrogated cytotoxic effect of MNU on retina. High level of spontaneous DNA damage such as apurine and apyrimidine sites were observed in mouse retina. The results of our study demonstrate the occurrence of genotoxic threshold in the initiation of retinal cell death in vivo. Topoisomerase 2 of retina is suggested to translate primary DNA damage to cytotoxic effect.  相似文献   

16.
Vanadium compounds are extensively used in modern industry and occupational exposure to high doses of Vanadium is quite common. In this study, the genotoxicity of vanadium pentoxide (V2O5) was evaluated directly in whole blood leukocytes and in human lymphocyte cultures using the single-cell gel electrophoresis assay (Comet Assay) to detect DNA damage expressed as DNA strand breaks and alkali labile sites. This chemical produces a clear dose-response in DNA migration in whole blood leukocytes and a significative positive effect only with the highest tested concentration in human lymphocyte cultures. After different recovery times the level of DNA damage returned to the control values. These results indicate that V2O5 is capable to induce DNA single-strand breaks and/or alkali-labile damage.  相似文献   

17.
Summary Chinese hamster cells (Cl : 1) were labelled with3H-thymidine or125Iododeoxyuridine for 18 h and after 3 h in non-radioactive medium they were stored at 0° C up to 6 h. The number of DNA strand breaks observed after the labelling period (37° C) or after treatment at 0° C was determined using the DNA-unwinding technique.125I-decays in DNA were significantly more efficient than3H-decays in introducing unrepairable DNA strand breaks during the labelling period. 32% of125I-induced and 3% of3H-induced DNA strand breaks were unrepaired after 21 h at 37° C. Comparison between the effects of125I- or 3H-disintegrations in DNA in three different ways shows 7–12 times more pronounced effects for125I-decays. For125I-labelled cells 3–4 DNA strand breaks were found per decay and the corresponding value for3H- labelled cells was 2.  相似文献   

18.
Sites of gamma radiation-induced DNA strand breaks after alkali treatment   总被引:2,自引:0,他引:2  
When DNA is gamma-irradiated in aerated aqueous solution, strand breaks are produced during irradiation or the next few hours. Subsequent piperidine treatment gives rise to further DNA strand ruptures at alkali-labile sites. These different types of DNA chain breaks provoked by gamma-irradiation have been studied with oligonucleotides having defined sequences. The breaks selectively developed inside the DNA chain at alkali-labile sites by piperidine treatment appeared at lower doses preferentially at guanine positions and the order G greater than A greater than T greater than or equal to C was observed. The total contribution of the direct DNA chain ruptures, formed during irradiation and the next few hours, and those obtained by piperidine treatment was studied at doses ranging from 10 to 120 Gy. The chain breaks appeared preferentially at thymine positions and the order T greater than G greater than A greater than or equal to C was shown for the higher doses.  相似文献   

19.
The aim of this study was to analyze background levels of DNA damage in young (19-31 years) non-smoking individuals and to correlate damage to gender and life style. DNA single strand breaks (SSB) and alkali labile sites (ALS) were measured in 99 subjects living in Stockholm, Sweden. Further, oxidative DNA damage was analyzed using the DNA repair glycosylase FPG as well as HPLC-ECD for specific analysis of 8-oxo-7,8-dihydro-2'deoxyguanosine (8-oxodG). We found that males had higher (P < 0.001) levels of SSB + ALS than females, but no difference was seen for oxidative lesions. There was no correlation between FPG sites and 8-oxodG. For females, there was a positive correlation between FPG levels and body mass index and a negative correlation between SSB + ALS and fruit intake. We conclude that the background level of oxidative DNA damage, analyzed with improved methods, is low and that gender, fruit intake and BMI can affect DNA damage.  相似文献   

20.
Ionizing radiation induces prompt single-strand breaks and double-strand breaks in DNA. In addition, labile sites are induced that can be converted to breaks by heat or mild alkali. When such labile lesions are present within multiply damaged sites, additional double-strand breaks can form. Current protocols for measurement of DNA double-strand breaks involve a lysis step at an elevated temperature, and consequently breaks from heat-labile sites will be generated during lysis and will be included in the measurement. However, such sites may not develop into breaks within the cell and therefore may not need DNA double-strand break repair processes for elimination. We present here a new lysis and pulsed-field gel electrophoresis protocol that is carried out entirely at 0-4 degrees C and thus avoids inclusion of heat-labile sites in the measurement. The new recommended lysis procedure involves two steps: The first step includes proteinase K, which has sufficient activity at 0 degrees C to support lysis, and the second step includes a high-salt buffer to further free the DNA from proteins and other cellular structures. Using various tests, we conclude that lysis is sufficient with this procedure to allow accurate determination of double-strand breaks by pulsed-field gel electrophoresis. Using the new protocol, it was found that heat-labile sites account for 30% of the initial number of double-strand breaks measured by conventional protocols after exposure to low-LET radiation. In addition, we show that heat-labile sites that can be converted to double-strand breaks are repaired with fast kinetics and are almost completely eliminated after 1 h at 37 degrees C. A study of cells deficient in nonhomologous end joining reveals that the residual fast repair response typically seen in such cells is solely due to repair at heat-labile sites and is not due to repair of prompt DSBs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号