首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Nitrogen (N) addition typically increases overall plant growth, but the nature of this response depends upon patterns of plant nitrogen allocation that vary throughout the growing season and depend upon canopy position. In this study seasonal variations in leaf traits were investigated across a canopy profile in Miscanthus (Miscanthus × giganteus) under two N treatments (0 and 224 kg ha?1) to determine whether the growth response of Miscanthus to N fertilization was related to the response of photosynthetic capacity and nitrogen allocation. Miscanthus yielded 24.1 Mg ha?1 in fertilized plots, a 40% increase compared to control plots. Photosynthetic properties, such as net photosynthesis (A), maximum rate of rubisco carboxylation (Vcmax), stomatal conductance (gs) and PSII efficiency (Fv'/Fm'), all decreased significantly from the top of the canopy to the bottom, but were not affected by N fertilization. N fertilization increased specific leaf area (SLA) and leaf area index (LAI). Leaf N concentration in different canopy layers was increased by N fertilization and the distribution of N concentration within canopy followed irradiance gradients. These results show that the positive effect of N fertilization on the yield of Miscanthus was unrelated to changes in photosynthetic rates but was achieved mainly by increased canopy leaf area. Vertical measurements through the canopy demonstrated that Miscanthus adapted to the light environment by adjusting leaf morphological and biochemical properties independent of nitrogen treatments. GPP estimated using big leaf and multilayer models varied considerably, suggesting a multilayer model in which Vcmax changes both through time and canopy layer could be adopted into agricultural models to more accurately predict biomass production in biomass crop ecosystems.  相似文献   

2.
The effect of N availability on photosynthetic capacity, growth parameters and yield was studied in field-grown durum-wheat plants at both the leaf and canopy levels. Two contrasting nitrogen levels (120 and 0 kg ha?1) were assayed in a randomised block design with nine replicates each. Total biomass was measured at anthesis and yield and its agronomical components at maturity. Photosynthetic measurements were performed 2 weeks after anthesis in two plots of each N treatment. Flag leaves were measured, using a LI-COR 6400 combined with the chlorophyll fluorescence meter, and the whole canopy by measuring CO2 and H2O fluxes in an innovative canopy-chamber system. We showed a clear increase in photosynthetic gas exchange and chlorophyll contents with N fertilisation at both canopy and leaf levels. As a consequence the increase in yield as response to N fertilisation seems the result of a larger green leaf area combined with a higher photosynthetic capacity of the leaves attributable to an increase in the maximum carboxylation velocity of Rubisco. Moreover gas-exchange measurements of the flag leaf during grain filling seem to provide a realistic characterisation, not just of the photosynthetic performance of the crop, but also about the impact of N availability on yield. Thus, measurements performed on the flag leaf matched those at the canopy level, with proportional increases in terms of gas exchange and chlorophyll content, providing a fast, cheap and reliable estimation of canopy photosynthesis and the grain yield attained by the crop.  相似文献   

3.
Nitrogen (N) deficiency is a major constraint to the productivity of the African smallholder farming systems. Grain, green manure and forage legumes have the potential to improve the soil N fertility of smallholder farming systems through biological N2-fixation. The N2-fixation of bean (Phaseolus vulgaris), soyabean (Glycine max), groundnut (Arachis hypogaea), Lima bean (Phaseolus lunatus), lablab (Lablab purpureus), velvet bean (Mucuna pruriens), crotalaria (Crotalaria ochroleuca), jackbean (Canavalia ensiformis), desmodium (Desmodium uncinatum), stylo (Stylosanthes guianensis) and siratro (Macroptilium atropurpureum) was assessed using the 15N natural abundance method. The experiments were conducted at three sites in western Kenya, selected on an agro-ecological zone (AEZ) gradient defined by rainfall. On a relative scale, Museno represents high potential AEZ 1, Majengo medium potential AEZ 2 and Ndori low potential AEZ 3. Rainfall in the year of experimentation was highest in AEZ 2, followed by AEZ 1 and AEZ 3. Experimental fields were classified into high, medium and low fertility classes, to assess the influence of soil fertility on N2-fixation performance. The legumes were planted with triple super phosphate (TSP) at 30 kg P ha?1, with an extra soyabean plot planted without TSP (soyabean-P), to assess response to P, and no artificial inoculation was done. Legume grain yield, shoot N accumulation, %N derived from N2-fixation, N2-fixation and net N inputs differed significantly (P<0.01) with rainfall and soil fertility. Mean grain yield ranged from 0.86 Mg ha?1, in AEZ 2, to 0.30 Mg ha?1, in AEZ 3, and from 0.78 Mg ha?1, in the high fertility field, to 0.48 Mg ha?1, in the low fertility field. Shoot N accumulation ranged from a maximum of 486 kg N ha?1 in AEZ 2, to a minimum of 10 kg N ha?1 in AEZ 3. Based on shoot biomass estimates, the species fixed 25–90% of their N requirements in AEZ 2, 23–90% in AEZ 1, and 7–77% in AEZ 3. Mean N2-fixation by green manure legumes ranged from 319 kg ha?1 (velvet bean) in AEZ 2 to 29 kg ha?1 (jackbean) in AEZ 3. For the forage legumes, mean N2-fixation ranged from 97 kg N ha?1 for desmodium in AEZ 2 to 39 kg N ha?1 for siratro in AEZ 3, while for the grain legumes, the range was from 172 kg N ha?1 for lablab in AEZ 1 to 3 kg N ha?1 for soyabean-P in AEZ 3. Lablab and groundnut showed consistently greater N2-fixation and net N inputs across agro-ecological and soil fertility gradients. The use of maize as reference crop resulted in lower N2-fixation values than when broad-leaved weed plants were used. The results demonstrate differential contributions of the green manure, forage and grain legume species to soil fertility improvement in different biophysical niches in smallholder farming systems and suggest that appropriate selection is needed to match species with the niches and farmers’ needs.  相似文献   

4.
In order to better understand the relative importance of different ecosystems and nitrogen cycling processes within the Amazon basin to the nitrogen economy of this region, we constructed a generalized nitrogen budget for the region based on data for hydrologic losses of nitrogen and nitrogen fixation in Amazon forests. Data included information available for nitrogen in water entering and leaving both the entire basin and watersheds on oxisol and ultisol soils near Manaus, Brazil, in addition to biological nitrogen fixation in forests on ultisol, oxisol and entisol (‘varzea’) soils in Central Amazonia. Available data indicate that 4–6 kg N ha?1 yr?1 are lost via the River Amazonas, and that a similar amount enters in rainfall. Root-associated biological nitrogen fixation contributesca. 2 kg N ha?1 yr?1 to forests on oxisols, 20 kg N ha?1 yr?1 to forests on utisols, and 200 kg N ha?1 yr?1 to forests on fertile varzea soils. There is 5–10 fold more NH4 +?N than NO3?N in rain and stream water entering and leaving the waterbasin near Manaus. Calculations based on these data plus certain assumption yield the following regional nitrogen balance estimate: inputs through bulk deposition of 36×108 kg N yr?1 and through biological nitrogen fixation of 120×108 kg N yr?1, and outputsvia the River Amazonas of 36×108 kg N yr?1 andvia denitrification and volatization (by difference) of 120×108 kg N yr?1.  相似文献   

5.
Maize (Zea mays L.) grain is an important feedstock for the ethanol-producing industry. However, little is known about the optimum grain quality for optimizing ethanol yielding efficiencies. We specifically investigated the response of ethanol yields (L Mg?1) to kernel hardness, and its physiological determinant endosperm zein protein profiles, as affected by genotype selection, field nitrogen (N) fertilization, and crop growth environment. We measured ethanol yield and related this to different kernel hardness indicators, kernel composition, and zein profiles. We also described changes in field ethanol yield (L ha?1), by taking into account the crop yield (Mg ha?1). Hard endosperm genotypes always yielded less ethanol than softer endosperm ones per grain mass (L Mg?1). Higher N fertilization rates increased kernel hardness and decreased ethanol yield (L Mg?1) on soft endosperm dented genotypes but had no effect on hard endosperm ones. Ethanol yield was negatively correlated with kernel density, kernel protein concentration, and Z1 and Z2 zein fractions. Within Z2, 15 kDa β-zein explained the largest ethanol yield variation generated by genotypes, N fertilizations, and growth environments. However, and although these differences were as large as 10%, ethanol field yield (L ha?1) was mainly driven by crop yields (r 2 0.98) due to the large crop yield (Mg ha?1) differences observed across treatments. Together, our results helped describe the magnitude that changes in maize kernel hardness can have over ethanol yield, both through genotype selection or crop management. A particular Z2 zein protein rises as relevant for future genetic manipulations of maize ethanol yield determination.  相似文献   

6.
Phosphorus deficiency is a very common problem in the acid soil of central China. Previous research has shown that starter N and N topdressing at the flowering stage (Rl) increased soybean (Glycine max) yield and N2 fixation (Gan et al, 1997, 2000). However, there is little information available concerning soybean response to P‐fertiliser in soybean production in central China (Gan, 1999). A field experiment was conducted to investigate the response to P (0 kg P ha?1, 22 kg P ha?1, 44 kg P ha?1 before sowing) and N fertiliser application (N1: 0 kg N ha?1, N2: 25 kg N ha?1 before sowing, N3: N2 + 50 kg N ha?1 at the V2 stage and N4: N2 + 50 kg N ha?1 at the R1 stage) on growth, yield and N2 fixation of soybean. Both N and P fertiliser increased growth and seed yield of soybean (P < 0.01). Application of basal P fertiliser at 22 kg P ha?1 or 44 kg P ha?1 increased total N accumulation by 11% and 10% (P < 0.01) and seed yield by 12% and 13% (P < 0.01), respectively, compared to the zero P treatment. Although application of starter N at 25 kg N ha?1 had no positive effect on seed yield at any P level (P > 0.05), an application of a topdressing of 50 kg N ha?1 at the V2 or R1 stage increased total N accumulation by 11% and 14% (P < 0.01) and seed yield by 16% and 21% (P < 0.01), respectively, compared to the zero N treatment. Soybean plants were grown on sterilised Perlite in the greenhouse experiment to study the physiological response to different concentrations of phosphate (P1: 0 mM; P2: 0.05 mM; P3: 0.5 mM; P4:1.0 mN) and nitrate (N1: 0 mM with inoculation, N2: 20 mM with inoculation). The result confirmed that N and P nutrients both had positive effects on growth, nodulation and yield (P < 0.01). The relative importance of growth parameters that contributed to the larger biomass with N and P fertilisation was in decreasing order: (i) total leaf area, (ii) individual leaf area, (iii) shoot/root ratio, (iv) leaf area ratio and (v) specific leaf area. The yield increase at N and P supply was mainly associated with more seeds and a larger pod number per plant, which confirmed the result from the field experiment.  相似文献   

7.
The relationship between nitrous oxide (N2O) flux and N availability in agricultural ecosystems is usually assumed to be linear, with the same proportion of nitrogen lost as N2O regardless of input level. We conducted a 3‐year, high‐resolution N fertilizer response study in southwest Michigan USA to test the hypothesis that N2O fluxes increase mainly in response to N additions that exceed crop N needs. We added urea ammonium nitrate or granular urea at nine levels (0–292 kg N ha?1) to four replicate plots of continuous maize. We measured N2O fluxes and available soil N biweekly following fertilization and grain yields at the end of the growing season. From 2001 to 2003 N2O fluxes were moderately low (ca. 20 g N2O‐N ha?1 day?1) at levels of N addition to 101 kg N ha?1, where grain yields were maximized, after which fluxes more than doubled (to >50 g N2O‐N ha?1 day?1). This threshold N2O response to N fertilization suggests that agricultural N2O fluxes could be reduced with no or little yield penalty by reducing N fertilizer inputs to levels that just satisfy crop needs.  相似文献   

8.
Sustainable bioenergy cropping systems require not only high yields but also efficient use of inputs. Management practices optimizing production of sweet sorghum [Sorghum bicolor (L.) Moench] for bioenergy use are needed. The effects of N rate (45, 90, 135, and 180?kg N?ha?1) and top removal (at boot stage, anthesis, and none) on biomass, brix, estimated sugar yield, and N and P recovery of sweet sorghum cv. M-81E were investigated in Florida at two sites differing in soil type. Across all data, dry biomass yields averaged 17.7 Mg?ha?1 and were not affected by N fertilization rate at either site (P?>?0.10). Mean brix values ranged from 131 to 151?mg?g?1 and were negatively related to N rate. Top removal, either at boot stage or anthesis, resulted in greater brix values and 13% greater sugar yields at both locations. Whole plant N recovery was positively and linearly related to N rate and ranged from 78 to 166?kg N?ha?1, approximately two thirds of which was in leaf and grain tissues. Based on yield and nutrient recovery responses, optimal nutrient requirements were 90 to 110?kg N?ha?1 and 15 to 20?kg P?ha?1. Higher N fertilization led to greater N recovery, but little to modest gain in sugar yield. Thus, proper nutrient and harvest management will be needed to optimize sugar yields of sweet sorghum for production of biofuels and bio-based products. Further research is needed to refine management practices of sweet sorghum for bioenergy production, especially with regard to the use of leaf and grain tissues.  相似文献   

9.
Avoidable or inappropriate nitrogen (N) fertilizer rates harmfully affect the yield production and ecological value. Therefore, the aims of this study were to optimize the rate and timings of N fertilizer to maximize yield components and photosynthetic parameter of soybean. This field experiment consists of five fertilizer N rates: 0, 75, 150, 225 and 300 kg N ha−1 arranged in main plots and four N fertilization timings: V5 (trifoliate leaf), R2 (full flowering stage) and R4 (full poding stage), and R6 (full seeding stage) growth stages organized as subplots. Results revealed that 225 kg N ha−1 significantly enhanced grain yield components, total chlorophyll (Chl), photosynthetic rate (PN), and total dry biomass and N accumulation by 20%, 16%, 28%, 7% and 12% at R4 stage of soybean. However, stomatal conductance (gs), leaf area index (LAI), intercellular CO2 concentration (Ci) and transpiration rate (E) were increased by 12%, 88%, 10%, 18% at R6 stage under 225 kg N ha−1. Grain yield was significantly associated with photosynthetic characteristics of soybean. In conclusion, the amount of nitrogen 225 kg ha−1 at R4 and R6 stages effectively promoted the yield components and photosynthetic characteristics of soybean.  相似文献   

10.
Row‐crop agriculture is a major source of nitrous oxide (N2O) globally, and results from recent field experiments suggest that significant decreases in N2O emissions may be possible by decreasing nitrogen (N) fertilizer inputs without affecting economic return from grain yield. We tested this hypothesis on five commercially farmed fields in Michigan, USA planted with corn in 2007 and 2008. Six rates of N fertilizer (0–225 kg N ha?1) were broadcast and incorporated before planting, as per local practice. Across all sites and years, increases in N2O flux were best described by a nonlinear, exponentially increasing response to increasing N rate. N2O emission factors per unit of N applied ranged from 0.6% to 1.5% and increased with increasing N application across all sites and years, especially at N rates above those required for maximum crop yield. At the two N fertilizer rates above those recommended for maximum economic return (135 kg N ha?1), average N2O fluxes were 43% (18 g N2O–N ha?1 day?1) and 115% (26 g N2O–N ha?1 day?1) higher than were fluxes at the recommended rate, respectively. The maximum return to nitrogen rate of 154 kg N ha?1 yielded an average 8.3 Mg grain ha?1. Our study shows the potential to lower agricultural N2O fluxes within a range of N fertilization that does not affect economic return from grain yield.  相似文献   

11.
Soil degradation is one of the most serious threats to sustainable crop production in many tropical agroecosystems where extensification rather than intensification of agriculture has occurred. In the highlands of western Kenya, we investigated soil nitrogen (N) and phosphorus (P) constraints to maize productivity across a cultivation chronosequence in which land‐use history ranged from recent conversion from primary forest to 100 years in continuous cropping. Nutrient treatments included a range of N and P fertilizer rates applied separately and in combination. Maize productivity without fertilizer was used as a proxy measure for indigenous soil fertility (ISF). Soil pools of mineral nitrogen, strongly bound P and plant‐available P decreased by 82%, 31% and 36%, and P adsorption capacity increased by 51% after 100 years of continuous cultivation. For the long rainy season (LR), grain yield without fertilizer declined rapidly as cultivation age increased from 0 to 25 years and then gradually declined to a yield of 1.6 Mg ha?1, which was maintained as time under cultivation increased from 60 to 100 years. LR grain yield in the old conversions was only 24% of the average young conversion grain yield (6.4 Mg ha?1). Application of either N or P alone significantly increased grain yield in both the LR and short rainy (SR) seasons, but only application of 120 kg N ha?1 on the old conversion increased yield by >1 Mg ha?1. In both SR and LR, there was a greater average yield increment response to N and P when applied together (ranging from 1 to 3.8 Mg ha?1 for the LR), with the greatest responses on the old conversions. The benefit–cost ratio (BCR) for applying 120 kg N ha?1 alone was <1 except on the old conversions, while BCRs were>1 for applying 25 kg P ha?1 alone at all levels of conversion for both seasons. Application of both N (120 kg N ha?1) and P (25 kg P ha?1) on the old conversions resulted in the greatest BCRs. This study clearly indicates that maize productivity responses to N and P fertilizer are significantly affected by the age of cultivation and its influence on ISF, but that loss of productivity can be restored rapidly when these limiting nutrients are applied. Management strategies should consider ISF and economic factors to determine optimal N and P input requirements for achieving and sustaining profitable crop production on degraded soils.  相似文献   

12.
Maize grain yield varies highly with water availability as well as with fertilization and relevant agricultural management practices. With a 311-A optimized saturation design, field experiments were conducted between 2006 and 2009 to examine the yield response of spring maize (Zhengdan 958, Zea mays L) to irrigation (I), nitrogen fertilization (total nitrogen, urea-46% nitrogen,) and phosphorus fertilization (P2O5, calcium superphosphate-13% P2O5) in a semi-arid area environment of Northeast China. According to our estimated yield function, the results showed that N is the dominant factor in determining maize grain yield followed by I, while P plays a relatively minor role. The strength of interaction effects among I, N and P on maize grain yield follows the sequence N+I >P+I>N+P. Individually, the interaction effects of N+I and N+P on maize grain yield are positive, whereas that of P+I is negative. To achieve maximum grain yield (10506.0 kg·ha−1) for spring maize in the study area, the optimum application rates of I, N and P are 930.4 m3·ha−1, 304.9 kg·ha−1 and 133.2 kg·ha−1 respectively that leads to a possible economic profit (EP) of 10548.4 CNY·ha−1 (CNY, Chinese Yuan). Alternately, to obtain the best EP (10827.3 CNY·ha−1), the optimum application rates of I, N and P are 682.4 m3·ha−1, 241.0 kg·ha−1 and 111.7 kg·ha−1 respectively that produces a potential grain yield of 10289.5 kg·ha−1.  相似文献   

13.
Effah  Zechariah  Li  Lingling  Xie  Junhong  Liu  Chang  Xu  Aixia  Karikari  Benjamin  Anwar  Sumera  Zeng  Min 《Journal of Plant Growth Regulation》2023,42(2):1120-1133

It is critical for spring wheat (Triticum aestivum L.) production in the semi-arid Loess Plateau to understand the impact of nitrogen (N) fertilizer on changes in N metabolism, photosynthetic parameters, and their relationship with grain yield and quality. The photosynthetic capacity of flag leaves, dry matter accumulation, and N metabolite enzyme activities from anthesis to maturity were studied on a long-term fertilization trial under different N rates [0 kg ha?1(N1), 52.5 kg ha?1 (N2), 105 kg ha?1 (N3), 157.5 kg ha?1 (N4), and 210 kg ha?1 (N5)]. It was observed that N3 produced optimum total dry matter (5407 kg ha?1), 1000 grain weight (39.7 g), grain yield (2.64 t ha?1), and protein content (13.97%). Our results showed that N fertilization significantly increased photosynthetic parameters and N metabolite enzymes at all growth stages. Nitrogen harvest index, partial productivity factor, agronomic recovery efficiency, and nitrogen agronomic efficiency were decreased with increased N. Higher N rates (N3–N5) maintained higher photosynthetic capacity and dry matter accumulation and lower intercellular CO2 content. The N supply influenced NUE by improving photosynthetic properties. The N3 produced highest chlorophyll content, photosynthetic rate, stomatal conductance and transpiration rate, grain yield, grain protein, dry matter, grains weight, and N metabolite enzyme activities compared to the other rates (N1, N2, N4, and N5). Therefore, increasing N rates beyond the optimum quantity only promotes vegetative development and results in lower yields.

  相似文献   

14.
Moawad  H.  Badr El-Din  S. M. S.  Khalafallah  M. A. 《Plant and Soil》1988,112(1):137-141
The nitrogen contribution from the shoot and root system of symbiotically grown leucaena was evaluated in a field experiment on an Alfisol at IITA in Southern Nigeria. Maize in plots that received prunings from inoculated leucaena contained more N and grain yield was increased by 1.9 t.ha.–1. Large quantities of nitrogen were harvested with leucaena prunings (300 kg N ha–1 in six months) but the efficiency of utilization of this nitrogen by maize was low compared to inorganic N fertilizer (ammonium sulphate) at 80 kg N ha–1. Maize yield data indicated that nitrogen in leucaena prunigs was 34 and 45% as efficient as 80 kg N ha–1 of (NH4)2SO4 for uninoculated and inoculated plants with Rhizobium IRc 1045, respectively. In plots where the prunings were removed, the leaf litter and decaying roots and nodules contributed N equivalent of 32 kg ha–1. Twenty-five kg ha–1 was the inorganic N equivalent from nitrogen fixed symbiotically by leucaena when inoculated with Rhizobium strain IRc 1045. Application of prunings from inoculated leucaena resulted in higher soil ogranic C, total N, pH and available NO3.  相似文献   

15.

Aims

A field experiment was conducted to investigate the effect of biochar on maize yield and greenhouse gases (GHGs) in a calcareous loamy soil poor in organic carbon from Henan, central great plain, China.

Methods

Biochar was applied at rates of 0, 20 and 40?t?ha?1 with or without N fertilization. With N fertilization, urea was applied at 300?kg?N ha?1, of which 60% was applied as basal fertilizer and 40% as supplementary fertilizer during crop growth. Soil emissions of CO2, CH4 and N2O were monitored using closed chambers at 7?days intervals throughout the whole maize growing season (WMGS).

Results

Biochar amendments significantly increased maize production but decreased GHGs. Maize yield was increased by 15.8% and 7.3% without N fertilization, and by 8.8% and 12.1% with N fertilization under biochar amendment at 20?t?ha?1 and 40?t?ha?1, respectively. Total N2O emission was decreased by 10.7% and by 41.8% under biochar amendment at 20?t?ha?1 and 40?t?ha?1 compared to no biochar amendment with N fertilization. The high rate of biochar (40?t?ha?1) increased the total CO2 emission by 12% without N fertilization. Overall, biochar amendments of 20?t?ha?1 and 40?t?ha?1 decreased the total global warming potential (GWP) of CH4 and N2O by 9.8% and by 41.5% without N fertilization, and by 23.8% and 47.6% with N fertilization, respectively. Biochar amendments also decreased soil bulk density and increased soil total N contents but had no effect on soil mineral N.

Conclusions

These results suggest that application of biochar to calcareous and infertile dry croplands poor in soil organic carbon will enhance crop productivity and reduce GHGs emissions.  相似文献   

16.
Nitrogen (N) fertilization potentially affects soil N mineralization and leaching, and can enhance NH3 volatilization, thus impacting crop production. A fertilizer experiment with five levels of N addition (0, 79, 147, 215 and 375 kg N ha-1) was performed in 2009 and 2010 in a maize field in Huanghuaihai region, China, where > 300 kg N ha-1 has been routinely applied to soil during maize growth period of 120 days. Responses of net N mineralization, inorganic N flux (0–10cm), NH3 volatilization, and maize yield to N fertilization were measured. During the growth period, net N mineralization and nitrification varied seasonally, with higher rates occurring in August and coinciding with the R1 stage of maize growth. Soil NO3 -N contributed to more than 60% of inorganic N flux during maize growth. Cumulative NH3 volatilization increased with N additions, with total NH3 volatilization during maize growth accounting for about 4% of added N. Relative to the control, mean maize yield in the fertilizer treatments increased by 17% and 20% in 2009 and 2010, respectively. However, grain yield, aboveground biomass, and plant N accumulation did not increase with added N at levels > 215 kg N ha-1. These results suggest that the current N rate of 300 kg N ha-1 is not only excessive, but also reduces fertilizer efficacy and may contribute to environmental problems such as global warming and eutrophication of ground water and streams.  相似文献   

17.
An experiment was conducted from 1997 to 2000 on an acid soil in Cameroon to assess the effectiveness of cultivating acid tolerant maize (Zea mays L.) cultivar and the use of organic and inorganic fertilizers as options for the management of soil acidity. The factors investigated were: phosphorus (0 and 60 kg ha?1), dolomitic lime (0 and 2 t ha?1), organic manure (no manure, 4 t ha?1 poultry manure, and 4 t ha?1 of leaves of Senna spectabilis), and maize cultivars (ATP-SR-Y – an acid soil-tolerant, and Tuxpeño sequia – an acid susceptible). On acid soil, maize grain yield of ATP-SR-Y was 61% higher than the grain yield of Tuxpeño sequia. Continuous maize cultivation on acid soil further increased soil acidity, which was manifested by a decrease in pH (0.23 unit), exchangeable Ca (31%) and Mg (36%) and by an increase in exchangeable Al (20%). Yearly application of 60 kg ha?1 of P for 3 years increased soil acidity through increases in exchangeable Al (8%) and H (16%) and a decrease in exchangeable Ca (30%), Mg (11%) and pH (0.07 unit). Lime application increased grain yield of the tolerant (82%) and susceptible (208%) cultivars. The grain yield increases were associated with a mean decrease of 43% in exchangeable Al, and 51% in H, a mean increase of 0.27 unit in pH, 5% in CEC, 154% in exchangeable Ca, and 481% in Mg contents of the soil. Poultry manure was more efficient than leaves of Senna producing 38% higher grain yield. This yield was associated with increases in pH, Ca, Mg and P, and a decrease in Al. The highest mean grain yields were obtained with lime added to poultry manure (4.70 t ha?1) or leaves of Senna (4.72 t ha?1). Grain yield increase was more related to the decrease in exchangeable Al (r = ?0.86 to ?0.95, P<0.01) and increase in Ca (r = 0.78–0.94, P<0.01), than to pH (r = ?0.57 (non-significant) to ?0.58 (P<0.05)). Exchangeable Al was the main factor determining pH (r = ?0.88 to ?0.92, P<0.01). The yield advantage of the acid tolerant cultivar was evident even after correcting for soil acidity. Acid soil-tolerant cultivars are capable of bringing unproductive acid soils into cultivation on the short run. The integration of soil amendments together with acid soil-tolerant cultivar offers a sustainable and comprehensive strategy for the management of acid soils in the tropics.  相似文献   

18.
The demand for biofuels has created a market for feedstocks to meet future energy requirements. Temperate × tropical maize (Zea mays L.) hybrids, which combine high biomass and fermentable stalk sugars, have yet to be considered as a biomass feedstock. Our objective was to evaluate biological potential, genetic variability and impact of nitrogen (N) on biomass, stalk sugar, and biofuel potential of temperate × tropical maize (TTM) hybrids. Twelve TTM hybrids, two grain and silage hybrids were grown in 2008, followed in 2009 by seven earshoot‐bagged TTM hybrids. In both years, they were grown with and without supplemental N (202 kg ha?1) in Champaign, IL. Plants were sampled for total and partitioned biomass, and analyzed for concentration and content of sugar. The TTM hybrids were 40% taller, exhibited later reproductive maturity, greater flowering asynchrony, and remained green longer. All hybrids responded to supplemental N by producing more biomass and grain, a lower percent of biomass partitioned to stalk and leaf, whereas TTM also had a decreased concentration of sugar. Total average biomass yields were 24 Mg ha?1 for both the TTM and grain hybrids. However, TTM partitioned 50% more biomass to the stalk and produced 50% more sugar, and had less than half the grain of the commercial hybrids, indicating grain production and sugar accumulation are inversely related. When grain formation was prevented by earshoot bagging, TTM hybrids produced, without supplemental N fertilizer, an average of 4024 kg ha?1 of sugar, which was three‐ to four‐fold greater than the non earshoot‐bagged TTM and ear removed hybrid. Calculated estimates for ethanol production, considering the potential from sugar, stover and grain, indicate TTM can yield nearly the amount of ethanol per hectare as modern grain hybrids, but with a decreased requirement for supplemental fertilizer N.  相似文献   

19.
Integrating N2-fixing indigenous legumes in smallholder farming systems has potential to alleviate some of the major soil fertility constraints associated with lack of nitrogen (N) inputs in many parts of Sub-SaharanAfrica. Studies were conducted under low (450–650 mm yr?1) and high (>800 mm yr?1) rainfall areas in Zimbabwe to investigate the establishment and nitrogen fixation patterns of fifteen indigenous legume species. The legume seeds were broadcast in mixtures at 120 seeds m?2 species?1 during 2004/05 and 2005/06 rainfall seasons.Eriosema ellipticum, Crotalaria ochroleuca andC. pallida had emergence rates above 15% compared with <10% forTephrosia radicans andIndigofera astragalina. Seed hardness accounted for >50% germination failure, while low viability explained 10–30%.Crotalaria ochroleuca andC. pallida attained a maximum biomass of 5–9 t ha?1 (dry weight) over six months, while species that reached peak biomass over three months (e.g.C. cylindrostachys andC. glauca) gave lowest yields of ≈0.5 t ha?1. Biennials,Neonotonia wightii, E. ellipticum and Tephrosia radicans, exhibited slow growth rates and only attained their maximum biomass of ≈2 t ha?1 in the second season. The legumes derived 60–99% of their N from the atmosphere, fixing 5–120 kg N ha?1 under low rainfall and 78–267 kg N ha?1 under high rainfall. These findings suggest that the legumes could contribute in restoring productivity of soils continuously cultivated with little or no nutrient inputs in most of Zimbabwe and similar agro-ecologies in SubSaharan Africa.  相似文献   

20.
Effects of water and nitrogen (N) supply on growth and photosynthetic response of B. carinata were examined in this study. Plant growth and related characteristics varied significantly in response to the availability of water and nitrogen. B. carinata maximized the utilization efficiency of the most limiting resources by developing physiological adaptations, such as changes in root and leaf development. The utilization of water and N was tightly linked with the availability of each resource. Instantaneous water-use efficiency (WUE) was always greater in plants with high-N nutrition [50, 100, and 150 kg(N) ha?1] than in the low-N-treated plants [0 kg(N) ha?1] in all watering treatments. Instantaneous N-use efficiency (PNUE) decreased significantly with increasing water stress in all N treatments. Seed yield is significantly related to PNUE (p>0.05) but not WUE (p<0.05). The positive relationship between leaf net photosynthetic rate (P N) and seed yield suggests that P N can be used as an important tool for selection of new strains with high seed yield.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号