首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Auditory and vestibular information is applied to the hair cell hair bundle as mechanical energy, and is transduced into electrical energy by gating ion channels. The m-e.t. channel has a unitary conductance of 50 pS and a broad selectivity to monovalent cations and to divalent cations. Ca ions are the most permeable through the channel. The angular displacement of the hair bundle is the primary gating factor. Circumstantial evidence indicates the possibility of the direct gating of channels by the membrane deformation itself. The transduction potential activates voltage gated Ca channel and leads to the release of neurotransmitters which activate afferent neurones. Cholinergic muscarinic receptors likely mediate the inhibitory efferent innervation to the hair cell.  相似文献   

2.
We have developed a virtual hair cell that simulates hair cell mechanoelectrical transduction in the turtle utricle. This study combines a full three-dimensional hair bundle mechanical model with a gating spring theory. Previous mathematical models represent the hair bundle with a single degree of freedom system which, we have argued, cannot fully explain hair bundle mechanics. In our computer model, the tip link tension and fast adaptation modulator kinetics determine the opening and closing of each channel independently. We observed the response of individual transduction channels with our presented model. The simulated results showed three features of hair cells in vitro. First, a transient rebound of the bundle tip appeared when fast adaptation dominated the dynamics. Second, the dynamic stiffness of the bundle was minimized when the response-displacement (I-X) curve was steepest. Third, the hair cell showed "polarity", i.e., activation decreased from a peak to zero as the forcing direction rotated from the excitatory to the inhibitory direction.  相似文献   

3.
4.
Sound stimuli excite cochlear hair cells by vibration of each hair bundle, which opens mechanotransducer (MT) channels. We have measured hair-bundle mechanics in isolated rat cochleas by stimulation with flexible glass fibers and simultaneous recording of the MT current. Both inner and outer hair-cell bundles exhibited force-displacement relationships with a nonlinearity that reflects a time-dependent reduction in stiffness. The nonlinearity was abolished, and hair-bundle stiffness increased, by maneuvers that diminished calcium influx through the MT channels: lowering extracellular calcium, blocking the MT current with dihydrostreptomycin, or depolarizing to positive potentials. To simulate the effects of Ca2+, we constructed a finite-element model of the outer hair cell bundle that incorporates the gating-spring hypothesis for MT channel activation. Four calcium ions were assumed to bind to the MT channel, making it harder to open, and, in addition, Ca2+ was posited to cause either a channel release or a decrease in the gating-spring stiffness. Both mechanisms produced Ca2+ effects on adaptation and bundle mechanics comparable to those measured experimentally. We suggest that fast adaptation and force generation by the hair bundle may stem from the action of Ca2+ on the channel complex and do not necessarily require the direct involvement of a myosin motor. The significance of these results for cochlear transduction and amplification are discussed.  相似文献   

5.
Nonlinear mechanical responses of mouse cochlear hair bundles.   总被引:8,自引:0,他引:8  
The stiffness of sensory hair bundles of both inner (IHC) and outer (OHC) hair cells was measured with calibrated silica fibres in mouse cochlear cultures to test the hypothesis that the mechanical properties of the hair bundle reflect processes underlying mechanotransduction. For OHCs, the displacement of the hair bundle relaxed with time constants of 6 ms for displacements which open transducer channels and 4 ms for displacements which close the channels. The corresponding values of the time constants for IHCs were 10 ms and 8 ms, respectively. A displacement-dependent change in the stiffness of the hair bundle was not observed when the bundle was displaced orthogonally to the direction of excitation. The stiffness of the hair bundle as a function of nanometre displacements from the resting position was remarkably nonlinear. The stiffness declined to a minimum from the resting stiffness by about 12% for OHCs and 20% for IHCs when the hair bundle was displaced by about 20 nm in the excitatory direction, and it increased by a similar amount when the bundle was displaced by 20 nm in the inhibitory direction. The displacement at which the stiffness reached a minimum was within the most sensitive region of the hair-cell transducer function (receptor potential as a function of hair-bundle displacement), and the displacement at which the stiffness reached a maximum was at the point of saturation of the transducer function in the inhibitory direction. The nonlinear displacement-dependent compliance change is reversibly abolished, and the time constant of relaxation of the bundle for excitatory displacements is reversibly reduced, when mechanotransduction is blocked by the addition of either neomycin sulphate or cobalt chloride to the solution bathing the hair cells. The displacement-dependent compliance change was not apparently reduced when the receptor potential was attenuated through the substitution of sodium in the bathing solution with a less permeant cation, tetraethylammonium. These findings suggest that the nonlinear mechanical properties of the hair bundle are associated with aspects of the hair-cell mechanotransducer process. The mechanical properties of the hair bundle are discussed in relation to the 'gating-spring' hypothesis of hair-cell transduction.  相似文献   

6.
The virtual hair cell we have proposed utilizes a set of parameters related to its mechanoelectric transduction. In this work, we observed the effect of such channel gating parameters as the gating threshold, critical tension, resting tension, and Ca(2+) concentration. The gating threshold is the difference between the resting and channel opening tension exerted by the tip link assembly on the channel. The critical tension is the tension in the tip link assembly over which the channel cannot close despite Ca(2+) binding. Our results show that 1), the gating threshold dominated the initial sensitivity of the hair cell; 2), the critical tension minimally affects the peak response, (I), but considerably affects the time course of response, I(t), and the force-displacement, F-X, relationship; and 3), higher intracellular [Ca(2+)] resulted in a smaller fast adaptation time constant. Based on the simulation results we suggest a role of the resting tension: to help overcome the viscous drag of the hair bundle during the oscillatory movement of the bundle. Also we observed the three-dimensional bundle effect on the hair cell response by varying the number of cilia forced. These varying forcing conditions affected the hair cell response.  相似文献   

7.
The first step towards the generation of the receptor potential in hair cells is the gating of the transducer channels and subsequent flow of transducer current, induced by deflection of the stereocilia. We describe properties of the transducer current in outer hair cells of neonatal mice. Less extensive observations on inner hair cells suggest that their transducer currents have similar characteristics. The hair bundles were stimulated by force from a fluid jet. The transducer currents in outer hair cells are the largest found so far in any hair cell, with a chord conductance of up to 9.2 nS at -84 mV. The transfer function suggests that the channel has at least two closed states and one open state. The permeabilities for sodium, potassium and caesium are similar, consistent with the channel being a fairly non-selective cation channel. At negative potentials the currents adapt in most cells, although never as completely as in hair cells of lower vertebrates. If the unit conductance of the transducer channel is similar to that of the turtle's auditory hair cells (100 pS), then there are about 90 channels per hair bundle, or one channel between every pair of adjacent stereocilia in neighbouring rows.  相似文献   

8.
Although knowledge of the fine structure of vestibular hair bundles is increasing, the mechanical properties and functional significance of those structures remain unclear. In 2004, Bashtanov and colleagues reported the contribution of different extracellular links to bundle stiffness. We simulated Bashtanov's experimental protocol using a three-dimensional finite element bundle model with geometry measured from a typical striolar hair cell. Unlike any previous models, we separately consider two types of horizontal links: shaft links and upper lateral links. Our most important results are as follows. First, we identified the material properties required to match Bashtanov's experiment: stereocilia Young's modulus of 0.74 GPa, tip link assembly (gating spring) stiffness of 5,300 pN/microm, and the combined stiffness of shaft links binding two adjacent stereocilia of 750 approximately 2,250 pN/microm. Second, we conclude that upper lateral links are likely to have nonlinear mechanical properties: they have minimal stiffness during small bundle deformations but stiffen as the bundle deflects further. Third, we estimated the stiffness of the gating spring based on our realistic three-dimensional bundle model rather than a conventional model relying on the parallel arrangement assumption. Our predicted stiffness of the gating spring was greater than the previous estimation.  相似文献   

9.
Mechanotransduction in vertebrate hair cells involves a biophysically defined elastic element (the "gating spring") that pulls on the transduction channels. The tip link, a fine filament made of cadherin 23 linking adjacent stereocilia in hair-cell bundles, has been suggested to be the gating spring. However, TRP channels that mediate mechanotransduction in Drosophila, zebrafish, and mice often have cytoplasmic domains containing a large number of ankyrin repeats that are also candidates for the gating spring. We have explored the elastic properties of cadherin and ankyrin repeats through molecular dynamics simulations using crystallographic structures of proteins with one cadherin repeat or 4 and 12 ankyrin repeats, and using models of 17 and 24 ankyrin repeats. The extension and stiffness of large ankyrin-repeat structures were found to match those predicted by the gating-spring model. Our results suggest that ankyrin repeats of TRPA1 and TRPN1 channels serve as the gating spring for mechanotransduction.  相似文献   

10.
Adaptation in auditory hair cells   总被引:7,自引:0,他引:7  
The narrow stimulus limits of hair cell transduction, equivalent to a total excursion of about 100nm at the tip of the hair bundle, demand tight regulation of the mechanical input to ensure that the mechanoelectrical transducer (MET) channels operate in their linear range. This control is provided by multiple components of Ca(2+)-dependent adaptation. A slow mechanism limits the mechanical stimulus through the action of one or more unconventional myosins. There is also a fast, sub-millisecond, Ca(2+) regulation of the MET channel, which can generate resonance and confer tuning on transduction. Changing the conductance or kinetics of the MET channels can vary their resonant frequency. The tuning information conveyed in transduction may combine with the somatic motility of outer hair cells to produce an active process that supplies amplification and augments frequency selectivity in the mammalian cochlea.  相似文献   

11.
F Jaramillo  A J Hudspeth 《Neuron》1991,7(3):409-420
In order to understand how the hair cell's mechanoelectrical transduction channels are gated during mechanical stimulation, it is essential to determine their location with respect to the hair bundle's constituent stereocilia. We localized the transduction channels by focally blocking receptor currents with iontophoretically ejected gentamicin, an aminoglycoside antibiotic that acts as a reversible channel blocker. The drug was most effective when directed at the top of a hair bundle, whereas application at the bundle's bottom or at the cuticular plate had little or no effect. Computer simulations of blocking agreed with experimental data only when the transduction channels were hypothesized to occur near the bundle's top. These results confirm that the hair cell's transduction channels are located near the stereociliary tips.  相似文献   

12.
Vestibular hair cells (VHCs) and cochlear outer hair cells (OHCs) of neonatal mice were stimulated by a fluid jet directed at their stereociliary bundles. Relations between the force exerted by the jet, bundle displacement, and the resulting transducer current were studied. The mean maximum transducer conductance in VHCs (2.6 nS) was about half that of the OHCs (5.5 nS), with the largest recorded values being 4.1 nS and 9.2 nS, respectively. In some OHCs activity of a single, 112 pS transducer channel was observed, allowing an estimate of the maximum number of channels: up to 36 in VHCs and 82 in OHCs, corresponding to about one transducer channel per tip link. The VHC bundles required about 330 nm of tip displacement to activate 90% of the maximum transducer conductance, compared to 150 nm for the OHC bundles. This corresponded to 2 deg of rotation about their pivots for both, due to the greater length of the VHC bundles. The VHC bundles'' translational stiffness was one-seventh of that of the OHCs. Conversion to rotational stiffness almost abolished this difference. Rotation of the hair bundle rather than translation determines the gating of the transducer channels, independent of bundle height or origin of the cells.  相似文献   

13.
Lateral mechanical coupling of stereocilia in cochlear hair bundles   总被引:4,自引:0,他引:4       下载免费PDF全文
For understanding the gating process of transduction channels in the inner ear it is essential to characterize and examine the functional properties of the ultrastructure of stereociliary bundles. There is strong evidence that transduction channels in hair cells are gated by directly pulling at the so-called tip links. In addition to these tip links a second class of filamentous structures was identified in the scanning and transmission electron microscope: the side-to-side links. These links laterally connect stereocilia of the same row of a hair bundle. This study concentrates on mechanical coupling of stereocilia of the tallest row connected by side-to-side links. Atomic Force microscopy (AFM) was used to investigate hair bundles of outer hair cells (OHCs) from postnatal rats (day 4). Although hair bundles of postnatal rats are still immature at day 4 and interconnecting cross-links do not show preferential direction yet, hair bundles of investigated OHCs already showed the characteristic V-shape of mature hair cells. In a first experiment, the stiffness of stereocilia was investigated scanning individual stereocilia with an AFM tip. The spring constant for the excitatory direction was 2.5 +/- 0.6 x 10(-3) N/m whereas a higher spring constant (3.1 +/- 1.5 x 10(-3) N/m) was observed in the inhibitory direction. In a second set of experiments, the force transmission between stereocilia of the tallest row was measured using AFM in combination with a thin glass fiber. This fiber locally displaced a stereocilium while the force laterally transmitted to the neighboring untouched taller stereocilia was measured by AFM. The results show a weak force interaction between tallest stereocilia of postnatal rats. The force exerted to an individual stereocilium declines to 36% at the nearest adjacent stereocilium of the same row not touched with the fiber. It is suggested that the amount of force transmitted from a taller stereocilium to an adjacent one of the same row depends on the orientation of links. Maximum force transmission is expected to appear along the axis of interconnecting side links. In our studies it is suggested that transmitted forces are small because connecting side links are oriented very close to an angle of 90 degrees with respect of the scan direction (excitatory-inhibitory direction).  相似文献   

14.
The elusive transduction channel is the key player in mechanical transduction by the sensory hair cells of the inner ear. Multiple factors have thwarted molecular identification of this channel, including the lack of a definitive pharmacological signature, the paucity of hair cells, and the uniqueness of their transduction mechanism. At present, we are forced to speculate as to the transduction channel's identity; functional characteristics suggest, however, that it may well belong to transient receptor potential superfamily of ion channels.  相似文献   

15.
Hair cells of the inner ear can power spontaneous oscillations of their mechanosensory hair bundle, resulting in amplification of weak inputs near the characteristic frequency of oscillation. Recently, dynamic force measurements have revealed that delayed gating of the mechanosensitive ion channels responsible for mechanoelectrical transduction produces a friction force on the hair bundle. The significance of this intrinsic source of dissipation for the dynamical process underlying active hair-bundle motility has remained elusive. The aim of this work is to determine the role of friction in spontaneous hair-bundle oscillations. To this end, we characterized key oscillation properties over a large ensemble of individual hair cells and measured how viscosity of the endolymph that bathes the hair bundles affects these properties. We found that hair-bundle movements were too slow to be impeded by viscous drag only. Moreover, the oscillation frequency was only marginally affected by increasing endolymph viscosity by up to 30-fold. Stochastic simulations could capture the observed behaviors by adding a contribution to friction that was 3?8-fold larger than viscous drag. The extra friction could be attributed to delayed changes in tip-link tension as the result of the finite activation kinetics of the transduction channels. We exploited our analysis of hair-bundle dynamics to infer the channel activation time, which was ~1 ms. This timescale was two orders-of-magnitude shorter than the oscillation period. However, because the channel activation time was significantly longer than the timescale of mechanical relaxation of the hair bundle, channel kinetics affected hair-bundle dynamics. Our results suggest that friction from channel gating affects the waveform of oscillation and that the channel activation time can tune the characteristic frequency of the hair cell. We conclude that the kinetics of transduction channels’ gating plays a fundamental role in the dynamic process that shapes spontaneous hair-bundle oscillations.  相似文献   

16.
Although gating of mechanoelectrical transducer (MET) channels has been successfully described by assuming that one channel is associated with a tip link in the hair bundle, recent reports indicate that a single tip link is associated with more than one channel. To address the consistency of the model with the observations, gating of MET channels is described here by assuming that each tip link is associated with two identical MET channels, which are connected either in series or in parallel. We found that series connection does not lead to a single minimum of stiffness with respect to hair bundle displacement unless the minimum is above a certain positive value. Thus, negative stiffness must appear in pairs in the displacement axis. In contrast, parallel connection of the two channels predicts gating compliance similar to that predicted by the one-channel-per-tip-link model of channel gating, within the physiological range of parameters. Parallel connection of MET channels is, therefore, a reasonable assumption to explain most experimental observations. However, the compatibility with series connection cannot be ruled out for experimental data on turtle hair cells.  相似文献   

17.
In hair cells, although mechanotransduction channels have been localized to tips of shorter stereocilia of the mechanically sensitive hair bundle, little is known about how force is transmitted to the channel. Here, we use a biophysical model of the membrane-channel complex to analyze the nature of the gating spring compliance and channel arrangement. We use a triangulated surface model and Monte Carlo simulation to compute the deformation of the membrane under the action of tip link force. We show that depending on the gating spring stiffness, the compliant component of the gating spring arises from either the membrane alone or a combination of the membrane and a tether that connects the channel to the actin cytoskeleton. If a bundle is characterized by relatively soft gating springs, such as those of the bullfrog sacculus, the need for membrane reinforcement by channel tethering then depends on membrane parameters. With stiffer gating springs, such as those from rat outer hair cells, the channel must be tethered for all biophysically realistic parameters of the membrane. We compute the membrane forces (resultants), which depend on membrane tension, bending modulus, and curvature, and show that they can determine the fate of the channel.  相似文献   

18.
The mechanically gated transduction channels of vertebrate hair cells tend to close in approximately 1 ms after their activation by hair bundle deflection. This fast adaptation is correlated with a quick negative movement of the bundle (a "twitch"), which can exert force and may mediate an active mechanical amplification of sound stimuli in hearing organs. We used an optical trap to deflect bullfrog hair bundles and to measure bundle movement while controlling Ca(2+) entry with a voltage clamp. The twitch elicited by repolarization of the cell varied with force applied to the bundle, going to zero where channels were all open or closed. The force dependence is quantitatively consistent with a model in which a Ca(2+)-bound channel requires approximately 3 pN more force to open, and rules out other models for the site of Ca(2+) action. In addition, we characterized a faster, voltage-dependent "flick", which requires intact tip links but not current through transduction channels.  相似文献   

19.
Amiloride is a known blocker of the mechano-electrical transduction current in sensory hair cells. Measurements of cupular motion in the lateral line organ of fish now show that amiloride concurrently changes the micromechanical properties of the hair cell bundles. The effects of amiloride on the mechanics and receptor potentials of the hair cells resemble those previously observed for the aminoglycoside drug dihydrostreptomycin (DHSM) and are similarly antagonized by Ca2+. We hypothesize that amiloride and DHSM act on hair cells in two correlated ways which manifest themselves in both the electrical and mechanical properties of the transduction process. One action is the reduction of the transduction current with a concurrent increase of the hair bundle stiffness. The other action is a shift of the hair cell''s operating point on a current–displacement curve, with a concomitant shift along the associated hair bundle stiffness–displacement curve. The latter action has the opposite effect to that of the first and thus may lead, at relatively low blocker concentrations, to both an increase of transduction current and a decrease in hair bundle stiffness.  相似文献   

20.
Mechanoelectrical transduction by a hair cell displays adaptation, which is thought to occur as myosin-based molecular motors within the mechanically sensitive hair bundle adjust the tension transmitted to transduction channels. To assess the enzymatic capabilities of the myosin isozymes in hair bundles, we examined the actin-dependent ATPase activity of bundles isolated from the bullfrog's sacculus. Separation of 32P-labeled inorganic phosphate from unreacted [gamma-32P]ATP by thin-layer chromatography enabled us to measure the liberation of as little as 0.1 fmol phosphate. To distinguish the Mg(2+)-ATPase activity of myosin isozymes from that of other hair-bundle enzymes, we inhibited the interaction of hair-bundle myosin with actin and determined the reduction in ATPase activity. N-ethylmaleimide (NEM) decreased neither physiologically measured adaptation nor the nucleotide-hydrolytic activity of a 120-kDa protein thought to be myosin 1 beta. The NEM-insensitive, actin-activated ATPase activity of myosin increased from 1.0 fmol x s-1 in 1 mM EGTA to 2.3 fmol x s-1 in 10 microM Ca2+. This activity was largely inhibited by calmidazolium, but was unaffected by the addition of exogenous calmodulin. These results, which indicate that hair bundles contain enzymatically active, Ca(2+)-sensitive myosin molecules, are consistent with the role of Ca2+ in adaptation and with the hypothesis that myosin forms the hair cell's adaptation motor.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号