首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Blood samples from 182 patients presenting at the out-patient clinic in Richard-Toll. Senegal were analysed by Thick smear microscopy, the QBC, PCR and the new dipstick PATH Malaria assay which detects the histidine rich protein II antigen of Plasmodium falciparum. Thick smear microscopy was used as the reference method. Sensitivity, specificity, predictive positive and negative values were 100%, 83.6%, 93.4% and 100% QBC respectively; 100%, 72.7%, 89.4% and 100% for PCR; 96%, 92.7%, 96.8% and 91% for the PATH assay. PATH assay failed to detect one positive sample with Plasmodium malariae. Assays were also compared with regard to the expense of equipment and reagents and speed and ease of use. The rapid PATH assay can be performed with minimal training and may be specially useful in areas where P. falciparum is the predominant malaria species, in epidemic malaria regions, and where skilled microscopy is not readily available.  相似文献   

2.
A nested polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) method, the PATH antigen detection method, and light microscopy were compared for their capacity to detect and identify Plasmodium species. One hundred and thirty-six blood specimens obtained from patients suspected of having malaria were examined by each of the three methods. Forty-four specimens were positive for malaria using microscopy as the "gold standard". The sensitivity for nested PCR was 100%, and the specificity was 98%. For the detection of Plasmodium falciparum, the antigen detection method had a sensitivity of 100% and a specificity of 97%. Species identification obtained using PCR-RFLP was identical or superior to light microscopy in 42 cases (96%). Although the nested PCR-RFLP method was more sensitive and specific, the rapid turnaround time and high sensitivity of the antigen detection method makes it a useful adjunct to standard microscopy.  相似文献   

3.
The renewed interest in the use of fluorescent microscopy for malaria diagnosis prompted the comparison of Quantitative Buffy Coat technique (QBC) with the old standard Giemsa-stained Thick blood Film (GTF) in Ikeja General Hospital, now Lagos State University Teaching Hospital, in Lagos. Blood samples were collected from 353 patients, each examined with the QBC and GTF techniques. Of these, 68 were positive with GTF, 70 with QBC giving a positive rate of 19.3% and 19.8% respectively. The malaria positive rate was calculated as 19.3% using GTF as the standard. In general, females recorded higher percentages (58.6% and 54.4%) than males (41.4% and 45.6%) among those positive with QBC and GTF respectively. The overall sensitivity rate for QBC was 55.9% and the specificity was 88.8%. The positive and negative predictive values of QBC compared to GTF were 54.3%, 89.4% respectively while the concordance of the two techniques was 82.4%. These values were lower than those reported for QBC in previous studies. The sensitivity of QBC reduced further (33.3%) with samples having low parasite density (< 1000 parasites/ul). QBC test was not able to accurately differentiate between different Plasmodium species but with the GTF, 86.7% of the infected individuals had Plasmodium falciparum, 7.5% had P. malariae and only 5.9% had mixed infections. In spite of the speed and simplicity of QBC technique, it cannot be considered an acceptable alternative to GTF under routine clinical laboratory situation. However, its speed and ease of use make it an important new tool for the diagnosis of malaria.  相似文献   

4.
ABSTRACT: BACKGROUND: Molecular tools are very sensitive and specific and could be an alternative for the diagnosis of malaria. The complexity and need for expensive equipment may hamper implementation and, therefore, simplifications to current protocols are warranted. METHODS: A PCR detecting the different Plasmodium species and differentiating between Plasmodium falciparum and Plasmodium vivax was developed and combined with a nucleic acid lateral flow immuno-assay (PCR-NALFIA) for amplicon detection. The assay was thoroughly evaluated for the analytical sensitivity and specificity in the laboratory, the robustness and reproducibility in a ring trial and accuracy and predictive value in a field trial. RESULTS: The analytical sensitivity and specificity were 0.978 (95% CI: 0.932-0.994) and 0.980 (95% CI: 0.924-0.997), respectively, and were slightly less sensitive for the detection of P. vivax than for P. falciparum. The reproducibility tested in three laboratories was very good (k = 0.83). This evaluation showed that the PCR machine used could influence the results. Accuracy was evaluated in Thailand and compared to expert microscopy and rapid diagnostic tests (RDTs). The overall and P. falciparum-specific sensitivity and specificity was good ranging from 0.86-1 and 0.95-0.98 respectively, compared to microscopy. Plasmodium vivax detection was better than the sensitivity of RDT, but slightly less than microscopy performed in this study. CONCLUSION: PCR-NALFIA is a sensitive, specific and robust assay able to identify Plasmodium species with good accuracy. Extensive testing including a ring trial can identify possible bottlenecks before implementation and is therefore essential to perform in additon to other evaluations.  相似文献   

5.
Microscopy is considered as the gold standard for malaria diagnosis although its wide application is limited by the requirement of highly experienced microscopists. PCR and serological tests provide efficient diagnostic performance and have been applied for malaria diagnosis and research. The aim of this study was to investigate the diagnostic performance of nested PCR and a recently developed an ELISA-based new rapid diagnosis test (RDT), NovaLisa test kit, for diagnosis of malaria infection, using microscopic method as the gold standard. The performance of nested-PCR as a malaria diagnostic tool is excellent with respect to its high accuracy, sensitivity, specificity, and ability to discriminate Plasmodium species. The sensitivity and specificity of nested-PCR compared with the microscopic method for detection of Plasmodium falciparum, Plasmodium vivax, and P. falciparum/P. vivax mixed infection were 71.4 vs 100%, 100 vs 98.7%, and 100 vs 95.0%, respectively. The sensitivity and specificity of the ELISA-based NovaLisa test kit compared with the microscopic method for detection of Plasmodium genus were 89.0 vs 91.6%, respectively. NovaLisa test kit provided comparable diagnostic performance. Its relatively low cost, simplicity, and rapidity enables large scale field application.  相似文献   

6.
Two duplex real-time PCR assays were developed to diagnose three human parasites: Plasmodium falciparum, Plasmodium vivax and Plasmodium malariae. TaqMan duplex real-time PCR was evaluated in 263 blood samples of suspected malaria patients by comparing results against those obtained with microscopy and nested PCR. Compared with nested PCR, duplex real-time PCR assays showed 100% sensitivity and specificity. Duplex real-time PCR detected all mixtures of P. falciparum and P. vivax DNA, except at threshold detection limits for both parasites in which P. vivax was not amplified. Threshold detection limits of real-time PCR were 3.1, 0.3 and 0.8 parasites per microlitre of blood for P. falciparum, P. vivax and P. malariae, respectively. Duplex real-time PCR allows the detection of malarial cases, including mixed species infection, it simplifies analysis and reduces cost. Thus, this protocol may prove invaluable for use in the diagnosis of human infection, trial treatments and epidemiologic studies in which high-throughput analyses are often required.  相似文献   

7.

Background

Most commonly used malaria diagnostic tests, including microscopy and antigen-detecting rapid tests, cannot reliably detect low-density infections which are frequent in low transmission settings. Molecular methods such as polymerase chain reaction (PCR) are highly sensitive but remain too laborious for field deployment. In this study, the applicability of a malaria diagnosis kit based on loop-mediated isothermal amplification (mLAMP) was assessed in malaria endemic areas of Colombia with Plasmodium vivax predominance.

Methodology/Principal Findings

First, a passive case detection (PCD) study on 278 febrile patients recruited in Tierralta (department of Cordoba) was conducted to assess the diagnostic performance of the mLAMP method. Second, an active case detection (ACD) study on 980 volunteers was conducted in 10 sentinel sites with different epidemiological profiles. Whole blood samples were processed for microscopic and mLAMP diagnosis. Additionally RT-PCR and nested RT-PCR were used as reference tests. In the PCD study, P. falciparum accounted for 23.9% and P. vivax for 76.1% of the infections and no cases of mixed-infections were identified. Microscopy sensitivity for P. falciparum and P. vivax were 100% and 86.1%, respectively. mLAMP sensitivity for P. falciparum and P. vivax was 100% and 91.4%, respectively. In the ACD study, mLAMP detected 65 times more cases than microscopy. A high proportion (98.0%) of the infections detected by mLAMP was from volunteers without symptoms.

Conclusions/Significance

mLAMP sensitivity and specificity were comparable to RT-PCR. LAMP was significantly superior to microscopy and in P. vivax low-endemicity settings and under minimum infrastructure conditions, it displayed sensitivity and specificity similar to that of single-well RT-PCR for detection of both P. falciparum and P. vivax infections. Here, the dramatically increased detection of asymptomatic malaria infections by mLAMP demonstrates the usefulness of this new tool for diagnosis, surveillance, and screening in elimination strategies.  相似文献   

8.
In recent years, rapid diagnostic tests (RDTs) have been widely used for malaria detection, primarily because of their simple operation, fast results, and straightforward interpretation. The Asan EasyTest™ Malaria Pf/Pan Ag is one of the most commonly used malaria RDTs in several countries, including Korea and India. In this study, we tested the diagnostic performance of this RDT in Uganda to evaluate its usefulness for field diagnosis of malaria in this country. Microscopic and PCR analyses, and the Asan EasyTest™ Malaria Pf/Pan Ag rapid diagnostic test, were performed on blood samples from 185 individuals with suspected malaria in several villages in Uganda. Compared to the microscopic analysis, the sensitivity of the RDT to detect malaria infection was 95.8% and 83.3% for Plasmodium falciparum and non-P. falciparum, respectively. Although the diagnostic sensitivity of the RDT decreased when parasitemia was ≤500 parasites/µl, it showed 96.8% sensitivity (98.4% for P. falciparum and 93.8% for non-P. falciparum) in blood samples with parasitemia ≥100 parasites/µl. The specificity of the RDT was 97.3% for P. falciparum and 97.3% for non-P. falciparum. These results collectively suggest that the accuracy of the Asan EasyTest™ Malaria Pf/Pan Ag makes it an effective point-of-care diagnostic tool for malaria in Uganda.  相似文献   

9.
Release of the malaria merozoite from its host erythrocyte (egress) and invasion of a fresh cell are crucial steps in the life cycle of the malaria pathogen. Subtilisin-like protease 1 (SUB1) is a parasite serine protease implicated in both processes. In the most dangerous human malarial species, Plasmodium falciparum, SUB1 has previously been shown to have several parasite-derived substrates, proteolytic cleavage of which is important both for egress and maturation of the merozoite surface to enable invasion. Here we have used molecular modelling, existing knowledge of SUB1 substrates, and recombinant expression and characterisation of additional Plasmodium SUB1 orthologues, to examine the active site architecture and substrate specificity of P. falciparum SUB1 and its orthologues from the two other major human malaria pathogens Plasmodium vivax and Plasmodium knowlesi, as well as from the rodent malaria species, Plasmodium berghei. Our results reveal a number of unusual features of the SUB1 substrate binding cleft, including a requirement to interact with both prime and non-prime side residues of the substrate recognition motif. Cleavage of conserved parasite substrates is mediated by SUB1 in all parasite species examined, and the importance of this is supported by evidence for species-specific co-evolution of protease and substrates. Two peptidyl alpha-ketoamides based on an authentic PfSUB1 substrate inhibit all SUB1 orthologues examined, with inhibitory potency enhanced by the presence of a carboxyl moiety designed to introduce prime side interactions with the protease. Our findings demonstrate that it should be possible to develop 'pan-reactive' drug-like compounds that inhibit SUB1 in all three major human malaria pathogens, enabling production of broad-spectrum antimalarial drugs targeting SUB1.  相似文献   

10.
The species-specific nested-PCR previously described by Snounou and others for detecting the four parasite species that cause human malaria is evaluated in the current study testing 230 blood samples. The results are compared with those obtained by microscopy and, for 101 samples out of 230, with those previously obtained by a genus-specific PCR based method (pg-PCR) followed by species-specific Southern-blot hybridization. All blood specimens were obtained from patients (127 foreigners and 103 Italians) with a suspect clinical diagnosis of imported malaria in Italy: 76 were positive by microscopy and 83 were positive by nested-PCR. The last method also revealed 10 double infections (8 foreigners and 2 Italians) which were not identified by microscopy or by pg-PCR with species-specific Southern-blot hybridization. Fifty-four out of 83 positive samples tested by nested-PCR were submitted to genomic sequence analysis, which confirmed the presence of DNA region portion encoding the 18S rRNA corresponding to the Plasmodium species identified by nested-PCR. These results demonstrate that the nested-PCR assay surpasses microscopy and pg-PCR with species-specific Southern-blot hybridization, both in sensitivity and in diagnostic accuracy. Moreover, it is quicker because it requires no further blotting or hybridization of PCR amplification products. This method also offers a clear advantage in the detection of mixed infections, which is important not only for successful medical treatment but also for the study of malaria epidemiology. Finally, our study also highlights the value of genomic sequence analysis for validating PCR results.  相似文献   

11.
12.
BACKGROUND: Molecular diagnostic methods can complement existing tools to improve the diagnosis of malaria. However, they require good laboratory infrastructure thereby restricting their use to reference laboratories and research studies. Therefore, adopting molecular tools for routine use in malaria endemic countries will require simpler molecular platforms. The recently developed loop-mediated isothermal amplification (LAMP) method is relatively simple and can be improved for better use in endemic countries. In this study, we attempted to improve this method for malaria diagnosis by using a simple and portable device capable of performing both the amplification and detection (by fluorescence) of LAMP in one platform. We refer to this as the RealAmp method. METHODOLOGY AND SIGNIFICANT FINDINGS: Published genus-specific primers were used to test the utility of this method. DNA derived from different species of malaria parasites was used for the initial characterization. Clinical samples of P. falciparum were used to determine the sensitivity and specificity of this system compared to microscopy and a nested PCR method. Additionally, directly boiled parasite preparations were compared with a conventional DNA isolation method. The RealAmp method was found to be simple and allowed real-time detection of DNA amplification. The time to amplification varied but was generally less than 60 minutes. All human-infecting Plasmodium species were detected. The sensitivity and specificity of RealAmp in detecting P. falciparum was 96.7% and 91.7% respectively, compared to microscopy and 98.9% and 100% respectively, compared to a standard nested PCR method. In addition, this method consistently detected P. falciparum from directly boiled blood samples. CONCLUSION: This RealAmp method has great potential as a field usable molecular tool for diagnosis of malaria. This tool can provide an alternative to conventional PCR based diagnostic methods for field use in clinical and operational programs.  相似文献   

13.

Background

Although rapid diagnostic tests (RDTs) have practical advantages over light microscopy (LM) and good sensitivity in severe falciparum malaria in Africa, their utility where severe non-falciparum malaria occurs is unknown. LM, RDTs and polymerase chain reaction (PCR)-based methods have limitations, and thus conventional comparative malaria diagnostic studies employ imperfect gold standards. We assessed whether, using Bayesian latent class models (LCMs) which do not require a reference method, RDTs could safely direct initial anti-infective therapy in severe ill children from an area of hyperendemic transmission of both Plasmodium falciparum and P. vivax.

Methods and Findings

We studied 797 Papua New Guinean children hospitalized with well-characterized severe illness for whom LM, RDT and nested PCR (nPCR) results were available. For any severe malaria, the estimated prevalence was 47.5% with RDTs exhibiting similar sensitivity and negative predictive value (NPV) to nPCR (≥96.0%). LM was the least sensitive test (87.4%) and had the lowest NPV (89.7%), but had the highest specificity (99.1%) and positive predictive value (98.9%). For severe falciparum malaria (prevalence 42.9%), the findings were similar. For non-falciparum severe malaria (prevalence 6.9%), no test had the WHO-recommended sensitivity and specificity of >95% and >90%, respectively. RDTs were the least sensitive (69.6%) and had the lowest NPV (96.7%).

Conclusions

RDTs appear a valuable point-of-care test that is at least equivalent to LM in diagnosing severe falciparum malaria in this epidemiologic situation. None of the tests had the required sensitivity/specificity for severe non-falciparum malaria but the number of false-negative RDTs in this group was small.  相似文献   

14.
The majority of studies concerning malaria host genetics have focused on individual genes that confer protection against rather than susceptibility to malaria. Establishing the relative impact of genetic versus non-genetic factors on malaria infection and disease is essential to focus effort on key determinant factors. This relative contribution has rarely been evaluated for Plasmodium falciparum and almost never for Plasmodium vivax. We conducted a longitudinal cohort study in a Karen population of 3,484 individuals in a region of mesoendemic malaria, Thailand from 1998 to 2005. The number of P. falciparum and P. vivax clinical cases and the parasite density per person were determined. Statistical analyses were performed to account for the influence of environmental factors and the genetic heritability of the phenotypes was calculated using the pedigree-based variance components model. The genetic contribution to the number of clinical episodes resulting from P. falciparum and P. vivax were 10% and 19% respectively. There was also moderate genetic contribution to the maximum and overall parasite trophozoite density phenotypes for both P. falciparum (16%&16%) and P. vivax (15%&13%). These values, for P. falciparum, were similar to those previously observed in a region of much higher transmission intensity in Senegal, West Africa. Although environmental factors play an important role in acquiring an infection, genetics plays a determinant role in the outcome of an infection with either malaria parasite species prior to the development of immunity.  相似文献   

15.
Primaquine and other 8-amnoquinoline based anti-malarials can cause haemolysis in subjects with glucose-6-phosphate dehydrogenase (G6PD) deficiency. Correct diagnosis of G6PD status in patients is crucial for safe treatment of both relapsing stages of Plasmodium vivax and transmitting forms of Plasmodium falciparum. Lack of suitable point-of-care tests has hampered a much needed wide use of primaquine for malaria elimination. In this study we have assessed the performances of two qualitative tests, the fluorescent spot test (FST) and the G6PD CareStart test (CST), against the gold standard quantitative spectrophotometric assay in a population of 1000 random adult healthy volunteers living in Yangon, Myanmar. The prevalence of G6PD deficiency in the Bamar, Karen and in the whole sample set was 6.6% (10.1% in males), 9.2% (21.0% in males) and 6.8% (11.1% in males) respectively. The FST and CST showed comparable performances with sensitivity over 95% and specificity over 90%, however for cases with severe G6PD activity the FTS had improved performance. If used with a conservative interpretation of the signal, the CareStart test has the potential to be used in the field and, by allowing a wider use of primaquine, to help malaria elimination.  相似文献   

16.
To determine which species and populations of Anopheles transmit malaria in any given situation, immunological assays for malaria sporozoite antigen can replace traditional microscopical examination of freshly dissected Anopheles. We developed a wicking assay for use with mosquitoes that identifies the presence or absence of specific peptide epitopes of circumsporozoite (CS) protein of Plasmodium falciparum and two strains of Plasmodium vivax (variants 210 and 247). The resulting assay (VecTest Malaria) is a rapid, one-step procedure using a 'dipstick' test strip capable of detecting and distinguishing between P. falciparum and P. vivax infections in mosquitoes. The objective of the present study was to test the efficacy, sensitivity, stability and field-user acceptability of this wicking dipstick assay. In collaboration with 16 test centres world-wide, we evaluated more than 40 000 units of this assay, comparing it to the standard CS ELISA. The 'VecTest Malaria' was found to show 92% sensitivity and 98.1% specificity, with 97.8% accuracy overall. In accelerated storage tests, the dipsticks remained stable for > 15 weeks in dry conditions up to 45 degrees C and in humid conditions up to 37 degrees C. Evidently, this quick and easy dipstick test performs at an acceptable level of reliability and offers practical advantages for field workers needing to make rapid surveys of malaria vectors.  相似文献   

17.
BACKGROUND: Microscopic analysis of blood smears is currently the most frequently used method to measure parasitemias in experiments of drug efficacy in murine models of malaria. However, it is subjective and labour intensive, which preclude its utilization in large-scale evaluation programs. Flow cytometry is an alternative method, but due to the limited specificity achieved with the currently available techniques, it has not been widely used in murine models of malaria during preclinical evaluation. We describe a new flow cytometric method based on the differences of autofluorescence and DNA content measured after staining with YOYO-1 that are observed in infected erythrocytes compared with noninfected erythrocytes. METHODS: Samples of blood from Plasmodium yoelii-infected animals were fixed with glutaraldehyde, incubated with RNAase, and stained with YOYO-1 in 96-well plate format. After acquisition, erythrocytes gated in logarithmic side/scatter plots were analyzed in bidimensional FL-2/YOYO-1 plots in comparison with unidimensional YOYO-1 analysis. RESULTS: The infected erythrocytes showed a characteristic pattern of staining different from that of noninfected erythrocytes. In routine evaluation, the limit of sensitivity was 0.01% and the measurements of parasitemia were linear at parasitemias above 0.1%. Interestingly, using this approach, infected reticulocytes could be differentiated from infected normocytes. CONCLUSIONS: The method described is robust, increases the specificity and sensitivity of detection in routine testing, and is especially well suited for detection of low parasitemias in murine models of malaria.  相似文献   

18.
Transfusion-transmitted malaria is rare, but it may produce severe problem in the safety of blood transfusion due to the lack of reliable procedure to evaluate donors potentially exposed to malaria. Here, we evaluated a new enzyme-linked immunosorbent assay malaria antibody test (ELISA malaria antibody test, DiaMed, Switzerland) to detect antibodies to Plasmodium vivax (the indigenous malaria) in the blood samples in the Republic of Korea (ROK). Blood samples of four groups were obtained and analyzed; 100 samples from P.vivax infected patients, 35 from recovery patients, 366 from normal healthy individuals, and 325 from domestic travelers of non-endemic areas residents to risky areas of ROK. P.vivax antibody levels by ELISA were then compared to the results from microscopic examination and polymerase chain reaction (PCR) test. As a result, the ELISA malaria antibody test had a clinical sensitivity of 53.0% and a clinical specificity of 94.0% for P.vivax. Twenty out of 325 domestic travelers (6.2%) were reactive and 28 cases (8.6%) were doubtful. Of the reactive and doubtful cases, only two were confirmed as acute malaria by both microscopy and PCR test. Thus we found that the ELISA malaria antibody test was insufficiently sensitive for blood screening of P.vivax in ROK.  相似文献   

19.
In Iran, Plasmodium vivax is responsible for more than 80% of the infected cases of malaria per year. Control interventions for vivax malaria in humans rely mainly on developed diagnostic methods. Recombinant P. vivax apical membrane antigen-1 (rPvAMA-1) has been reported to achieve designing rapid, sensitive, and specific molecular diagnosis. This study aimed to perform isolation and expression of a rPvAMA-1, derived from Iranian patients residing in an endemic area. Then, the diagnostic efficiency of the characterized Iranian PvAMA-1 was assessed using an indirect ELISA method. For this purpose, a partial region of AMA-1 gene was amplified, cloned, and expressed in pET32a plasmid. The recombinant His-tagged protein was purified and used to coat the ELISA plate. Antibody detection was assessed by indirect ELISA using rPvAMA-1. The validity of the ELISA method for detection of anti-P. vivax antibodies in the field was compared to light microscopy on 84 confirmed P. vivax patients and compared to 84 non-P. vivax infected individuals. The ELISA cut-off value was calculated as the mean+2SD of OD values of the people living in malaria endemic areas from a south part of Iran. We found a cut-off point of OD=0.311 that showed the best correlation between the sera confirmed with P. vivax infection and healthy control sera. A sensitivity of 81.0% and specificity of 84.5% were found at this cut off titer. A good degree of statistical agreement was found between ELISA using rPvAMA-1 and light microscopy (0.827) by Kappa analysis.  相似文献   

20.
Endemic countries are increasingly adopting molecular tools for efficient typing, identification and surveillance against malaria parasites and vector mosquitoes, as an integral part of their control programs1,2,3,4,5. For sustainable establishment of these accurate approaches in operations research to strengthen malaria control and elimination efforts, simple and affordable methods, with parsimonious reagent and equipment requirements are essential6,7,8. Here we present a simple Chelex-based technique for extracting malaria parasite and vector DNA from field collected mosquito specimens.We morphologically identified 72 Anopheles gambiae sl. from 156 mosquitoes captured by pyrethrum spray catches in sleeping rooms of households within a 2,000 km2 vicinity of the Malaria Institute at Macha. After dissection to separate the head and thorax from the abdomen for all 72 Anopheles gambiae sl. mosquitoes, the two sections were individually placed in 1.5 ml microcentrifuge tubes and submerged in 20 μl of deionized water. Using a sterile pipette tip, each mosquito section was separately homogenized to a uniform suspension in the deionized water. Of the ensuing homogenate from each mosquito section, 10 μl was retained while the other 10 μl was transferred to a separate autoclaved 1.5 ml tube. The separate aliquots were subjected to DNA extraction by either the simplified Chelex or the standard salting out extraction protocol9,10. The salting out protocol is so-called and widely used because it employs high salt concentrations in lieu of hazardous organic solvents (such as phenol and chloroform) for the protein precipitation step during DNA extraction9.Extracts were used as templates for PCR amplification using primers targeting arthropod mitochondrial nicotinamide adenine dinucleotide dehydrogenase (NADH) subunit 4 gene (ND4) to check DNA quality11, a PCR for identification of Anopheles gambiae sibling species10 and a nested PCR for typing of Plasmodium falciparum infection12. Comparison using DNA quality (ND4) PCR showed 93% sensitivity and 82% specificity for the Chelex approach relative to the established salting out protocol. Corresponding values of sensitivity and specificity were 100% and 78%, respectively, using sibling species identification PCR and 92% and 80%, respectively for P. falciparum detection PCR. There were no significant differences in proportion of samples giving amplicon signal with the Chelex or the regular salting out protocol across all three PCR applications. The Chelex approach required three simple reagents and 37 min to complete, while the salting out protocol entailed 10 different reagents and 2 hr and 47 min'' processing time, including an overnight step. Our results show that the Chelex method is comparable to the existing salting out extraction and can be substituted as a simple and sustainable approach in resource-limited settings where a constant reagent supply chain is often difficult to maintain.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号