首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 656 毫秒
1.
A mutation at a new locus denotedtsr1 which lies very close to theery1 locus and 21S rRNA gene in mitochondrial DNA ofSaccharomyces cerevisiae, confers conditional respiratory deficiency on cells grown at low temperature, namely 18°. Studies on mitochondria isolated from a strain carrying the mutatedtsr1 locus demonstrate that the rate of mitochondrial protein synthesis is cold-sensitive at 18°. The large subunit of the mitochondrial ribosomes isolated from the mutant strain is unstable during extraction and the isolated ribosomes are shown to be defective in catalyzing the poly U-directed synthesis of polyphenylalanine. It is concluded that thetsr1 locus is involved in the determination of the properties of the large subunit of the mitochondrial ribosome.  相似文献   

2.
A mutation shown to cause resistance to chloramphenicol inSaccharomyces cerevisiae was mapped to the central loop in domain V of the yeast mitochondrial 21S rRNA. The mutant 21S rRNA has a base pair exchange from U2677 (corresponding to U2504 inEscherichia coli) to C2677, which significantly reduces rightward frameshifting at a UU UUU UCC A site in a + 1 U mutant. There is evidence to suggest that this reduction also applies to leftward frameshifting at the same site in a – 1 U mutant. The mutation did not increase the rate of misreading of a number of mitochondrial missense, nonsense or frameshift (of both signs) mutations, and did not adversely affect the synthesis of wild-type mitochondrial gene products. It is suggested here that ribosomes bearing either the C2677 mutation or its wild-type allele may behave identically during normal decoding and only differ at sites where a ribosomal stall, by permitting non-standard decoding, differentially affects the normal interaction of tRNAs with the chloramphenicol resistant domain V. Chloramphenicol-resistant mutations mapping at two other sites in domain V are described. These mutations had no effect on frameshifting.  相似文献   

3.
Summary As shown by gel electrophoresis analysis, E. coli mutant 219 is mutated on the gene coding for S4. This mutant and the parental strain have been studied at the permissive (30°) and the non-permissive temperature (42°) for ribosome assembly and r-protein biosynthesis.The extracts of cells grown at the non-permissive temperature were analyzed by sucrose gradients: Particles sedimenting more slowly (28S) than normal 30S accumulate while 50S precursors undergo maturation and attach to the preformed 30S subunits yielding 70S ribosomes. In addition a small but detectable amount of 30S is also synthesized at 42°. The 28S particles contain all 30S r-proteins except S1, S2 and S12; S5, S7 and S21 are present in reduced amount.The relative rate of biosynthesis of individual r-proteins was determined by pulse-labelling the cells with radioactive leucine. Individual r-proteins were purified from cell extract by the three-dimensional gel electrophoresis technique. The relative rate of biosynthesis of 50S proteins is unchanged in mutant cells grown at 42°. Only the rate of synthesis of five 30S proteins is modified by the temperature shift: S10, S13, S20 and S21 have an increased rate, while S18 is synthesized at a reduced rate. Thus in cells deficient in the assembly of 30S subunits, although the biosynthesis of a few 30S r-proteins is specifically altered, the synthesis of most r-proteins appears to be controlled in the same way as are total cell proteins.  相似文献   

4.
Summary We have isolated a mutant of the yeast Schizosaccharomyces pombe which exhibits sensitivity to UV light when grown at either 30° or 37°C, as compared to the parental wild-type strain. This increased sensitivity is more pronounced when cells are grown at 37°C. The mutant is also sensitive to 18 MeV electrons at the high temperature. Tetrad analysis of spores generated by crossing the mutant and a Rad+ strain revealed that sensitivity to both types of radiation cosegregate 2:2, relative to wild-type resistance, indicating that a single altered chromosomal locus is responsible for the radiation sensitivities observed. In addition, analysis of spores resulting from crosses between the mutant and all other known S. pombe rad mutants indicates that the temperature-dependent sensitivity described in this report is mediated by a mutation in a previously unidentified rad locus.  相似文献   

5.
The in vivo assembly of ribosomal subunits requires assistance by auxiliary proteins that are not part of mature ribosomes. More such assembly proteins have been identified for the assembly of the 50S than for the 30S ribosomal subunit. Here, we show that the RimP protein (formerly YhbC or P15a) is important for the maturation of the 30S subunit. A rimP deletion (ΔrimP135) mutant in Escherichia coli showed a temperature-sensitive growth phenotype as demonstrated by a 1.2-, 1.5-, and 2.5-fold lower growth rate at 30, 37, and 44 °C, respectively, compared to a wild-type strain. The mutant had a reduced amount of 70S ribosomes engaged in translation and showed a corresponding increase in the amount of free ribosomal subunits. In addition, the mutant showed a lower ratio of free 30S to 50S subunits as well as an accumulation of immature 16S rRNA compared to a wild-type strain, indicating a deficiency in the maturation of the 30S subunit. All of these effects were more pronounced at higher temperatures. RimP was found to be associated with free 30S subunits but not with free 50S subunits or with 70S ribosomes. The slow growth of the rimP deletion mutant was not suppressed by increased expression of any other known 30S maturation factor.  相似文献   

6.
In the leaves of rye seedlings (Secale cereale L.) grown at an elevated temperature of 32°C the formation of plastidic 70S ribosomes is specifically prevented. The resulting plastid ribosome-deficient leaves, which are chlorotic in light, represent a system for the identification of translation products of the 80S ribosomes among the chloroplastic proteins. Searching for the primary heat-sensitive event causing the 70S ribosome-deficiency, the thermostability of the chloroplastic capacity for RNA synthesis was investigated. The RNA polymerase activity of isolated normal chloroplasts from 22°-grown rye leaves was not inactivated in vitro at temperatures between 30° and 40°C. The ribosome-deficient plastids purified from bleached 32°-grown leaf parts contained significant RNA polymerase activity which was, however, lower than in functional chloroplasts. After application of [3H]uridine to intact leaf tissues [3H]uridine incorporation was found in ribosome-deficient plastids of 32°C-grown leaves. The amount of incorporation was similar to that in the control chloroplasts from 22°C-grown leaves. According to these results, it is unlikely that the non-permissive temperature (32°C) causes a general inactivation of the chloroplastic RNA synthesis in rye leaves.  相似文献   

7.
Summary Ribosomes and ribosomal proteins from wild-type and a yellow mutant of Chlamydomonas reinhardii were analysed and compared by two-dimensional gel electrophoresis.Mixothrophycally grown yellow-27 mutant differs from wild-type cells in lowered chlorophyll content and grana fromation of the chloroplast.Analytical ultracentrifuge analyses of cell extracts show a reduced amount of free 70S ribosomes and increased level of 50S subunits in the mutant cells. Similar results were obtained by electronmicroscopical method.Two-dimensional gel electrophoresis shows alterations in protein composition of 70S ribosomes of the mutant. Two proteins of 70S ribosomes have been altered. One of them with high molecular weight is practically absent while there is an additional, intensively stained spot in the mutant.Since the mutation is inherited in a non-Mendelian manner it is possible that the protein alterations in 70S ribosome are localized in the chloroplast DNA.  相似文献   

8.
Slowly cooled cells of an extreme thermophilic eubacterium Calderobacterium hydrogenophilum possess ribosomes with weakly associated subunits. These ribosomal subunits are capable of association to 70S ribosomes either at higher Mg2+ concentrations (30–40 mM) or at 4–10 mM Mg2+ and in the presence of polyamines. The contribution of 30S and 50S subunits to the hydrodynamic stability of ribosomes was examined by forming hybrid 30S–50S couples from C. hydrogenophilum and Escherichia coli. At lower Mg2+ (4–10 mM) heterogeneous subunits containing 30S E. coli and 50S C. hydrogenophilum and homogeneous subunits of the thermophilic bacterium associated only in the presence of polyamines. Ribosomal subunits associated at 30 mM Mg2+ lose thermal stability and activity concerning poly(AUG)-dependent binding of f[3H]Met-tRNA to the P-site on 70S ribosomes or translation of poly(UG). Poly(AUG), deacylated-tRNA or initiator-tRNA have no valuable effect on association of 30S and 50S subunits. Protein synthesis initiation factor IF3 of C. hydrogenophilum prevents association of ribosomal subunits to 70S ribosomes at physiological temperature (70°C). The factor also stimulates dissociation of 70S ribosomes of E. coli at 37°C. The codon-specific binding of f[3H]Met-tRNA to homogeneous 70S ribosomes of C. hydrogenophilum at 70°C is dependent on the presence of initiation factors and concentrations of tri-pentaamines. However, excess of polyamines inhibited the reaction. Our results indicate that tri-pentaamines enhance conformational stability of 70S initiation complex at elevated temperatures.  相似文献   

9.
Summary Due to the absence of repetition of the rRNA genes in S. cerevisiae mitochondria, isolation of ribosomal mutants at the level of the rRNA genes is relatively easy in this system. We describe here a novel thermosensitive mutation, ts1297, localized by rho- deletion mapping in (or very close to) the sequence corresponding to the small ribosomal RNA (15S) gene. Defective mutations of the small rRNA have not been reported so far.In the mutant, the amount of 15S rRNA and of the small ribosomal subunit, 37S, is reduced. The quantity of the large ribosomal RNA (21S), directly extracted from mitochondria, appears normal. However, the large ribosomal subunit, 50S, seems to be fragile and could be recovered only in the presence of Ca2+ in place of Mg2+. The 50S particles seem to be completely degraded under normal conditions of extraction with Mg2+.The thermosensitive phenotype of the ts1297 mutant is suppressed by a nuclear mutation SU101. The SU101 mutation had been originally isolated as a suppressor of another mitochondrial mutation, ts902, which is located within the 21S rRNA gene.These results suggest that the mitochondrial mutations ts1297 and ts902 are both involved in the interaction of the large and small ribosomal subunits.  相似文献   

10.
Summary [C93] is a novel, extranuclear mutant of Neurospora crassa which has a normal mitochondrial phenotype when grown at 25°, but which is deficient in cytochromes b and aa 3 when grown at 37° (Pittenger and West 1979). In the present work, the phenotype of [C93] was characterized in greater detail. When [C93] is grown at 37°, the rate of mitochondrial protein synthesis is decreased to approximately 25% that of wild type; the ratio of mitochondrial small to large ribosomal subunits is decreased to 1:4 and mitochondrial small subunits are deficient in the mitochondrially-synthesized protein, S-5. The mitochondrial ribosome assembly defects in 37°-grown [C93] resemble those in chloramphenicol-treated wild-type cells and could merely be a consequence of the decreased rates of mitochondrial protein synthesis. Analysis of mitochondrial translation products by SDS gel electrophoresis suggests that 37°-grown [C93] is grossly deficient in the 19,000 Mr subunit of the oligomycin-sensitive ATPase relative to other mitochondrially-synthesized proteins. The ATPase defect was not found in other extranuclear or nuclear mutants deficient in mitochondrial protein synthesis. These data and additional evidence suggest that the primary defect in [C93] may be in the assembly of the ATPase complex. The possible connection between the ATPase defect and the deficiency of mitochondrial protein synthesis is discussed.  相似文献   

11.
Summary All of several hundred erythromycin resistant (eryR) single site mutants ofBacillus subtilis W168 are temperature sensitive for sporulation (spots). The mutants and wild type cells grow vegetatively at essentially the same rates at both permissive (30° C) and nonpermissive (47° C) temperatures. In addition, cellular protein synthesis, cell mass increases and cell viabilities are similar in mutant and wild type strains for several hours after the end of vegetative growth (47° C). In the mutants examined, the temperature sensitive periods begin when the sporulation process is approximately 40% completed, and end when the process is 90% complete. At nonpermissive temperatures, the mutants produce serine and metal proteases at 50% of the wild type rate, accumulate serine esterase at 16% of the wild type rate, and do not demonstrate a sporulation related increase in alkaline phosphatase activity.The eryR and spots phenotypes cotransform 100%, and cotransduce 100% using phage PBS1. Revertants selected for ability to sporulate normally at 47° C (spo+), simultaneously regain parental sensitivity to erythromycin. No second site revertants are found.Ribosomes from eryR spots strains bind erythromycin at less than 1% of the wild type rate. A single 50S protein (L17) from mutant ribosomes shows an altered electrophoretic mobility. Ribosomes from spo+ revertants bind erythromycin like parental ribosomes and their proteins are electrophoretically identical to wild type. These data indicate that the L17 protein of the 50S ribosomal subunit fromBacillus subtilis may participate specifically in the sporulation process.  相似文献   

12.
13.
Nalidixic acid-resistant mutants ofEscherichia coli CGSC #6353 capable of growth at 48°C were obtained by mutagenesis withN-methyl-N-nitro-N-nitrosoguanidine. Cotransductional analyses employing phage P1 indicated that the mutation resulting in the phenotype of growth at 48°C is an allele of thegyrA structural gene. Similar thermal inactivation kinetics were observed for ribosomes isolated from a thermotolerant (T/r) mutant grown at both 37°C and 48°C and from the parental strain grown at 37°C. Cell-free extracts prepared from the T/r mutant grown at 48°C exhibited a sharp increase in protein synthesis at 55°C, whereas this effect was not displayed by extracts from the mutant or parental strains grown at 37°C. In addition, preincubation at 55°C enhanced protein synthesis at 37°C up to 15-fold in an extract prepared from the T/r mutant grown at 48°C, whereas comparable values were 2.6- to 3.0-fold for extracts from the mutant and parental strains grown at 37°C.  相似文献   

14.
Summary Among the mitochondrial conditional mutations localized in the gene coding for the 21S ribosomal RNA, one — ts 902 — produces severely reduced amounts of 21S RNA and 50S subunit. We investigated its physiological properties and found that this thermosensitive mutation was associated with highly pleiotropic effects. The mutant phenotype is associated with cell death in certain conditions, and with a massive accumulation of rho- mutants at non-permissive temperature. Furthermore, interactions with the sites of action of erythromycin and chloramphenicol, both localized within the 21S rRNA, were detected. The mutant is hypersensitive to erythromycin and has a cis-incompatibility with the chloramphenicol-resistant mutation C 321 R .Ts 902 thus appears to have a dual effect, not only at the ribosomal level but also at a cellular level.  相似文献   

15.
Summary 1. In developing rye (Secale cereale L.) leaves the formation of plastidic ribosomes was selectively prevented in light as well as in darkness, when the seedlings were grown at an elevated temperature of 32° instead of 22° where normal development ocurred. Plastid ribosome deficient parts of lightgrown leaves were chlorotic at 32°. — 2. At both temperatures the leaves contained under all conditions (light or dark, on H2O or nutrient solution) equal or very similar amounts of total amino nitrogen. In light, the contents of total protein and dry weight were lower at 32° than at 22°, especially when the plants were grown on nutrient solution. — 3. Mitochondrial marker enzymes had normal or even higher activities in 32°-grown leaves. Respiration rates were similar for segments of leaves grown on water in light either at 32° or at 22° but by 20–30% lower for 32°-grown plants when they had been raised in darkness or on nutrient solution. In contrast to 22°-grown tissue, respiration of 32°-grown leaf segments was rather insensitive to KCN. Comparative inhibitor studies indicated the presence of both the cyanide-sensitive and the cyanide-insensitive pathway of respiration in 32°-grown leaves. — 4. Leaf microbody marker enzymes were present in leaves grown at 32°. From chlorotic parts of 32°-light-grown leaves a typical microbody fraction was isolated on sucrose densitygradients. — 5. Leaves of seedlings grown at 32° contained only very low levels of ribulosediphosphate carboxylase activity and of fraction I protein. Photosynthetic 14CO2-fixation of such leaves was only a few per cent of that observed in normal leaves, and no photosynthetic oxygen evolution was observed in chlorotic leaf segments. However, ten other soluble enzymes which are exclusively or partially localized in chloroplasts reached high activities under all conditions at 32° (Table 4). — 6. From chlorotic parts of 32°-light-grown leaves as well as from etiolated 32°-grown leaves a fraction of intact plastids was isolated and purified by sucrose gradient centrifugation which contained several soluble chloroplast enzymes. From the results we conclude that cytoplasmic protein synthesis must contribute a functional chloroplast envelope including the mechanism for the recognition and uptake of chloroplast proteins which are synthesized on cytoplasmic ribosomes.  相似文献   

16.
Ursula Seitz  Ulrich Seitz 《Planta》1972,106(2):141-148
Summary A rapidly labelled rRNA precursor can be detected in callus cells of Petroselinum sativum grown on a liquid synthetic medium. Its molecular weight has been calculated to be 2.3×106. This value agrees with that of the rRNA precursor from other plant material. In order to follow the synthesis and processing of rRNA in time and to correlate single steps in this process with cell organelles it was necessary to obtain pure fractions of nuclei and ribosomes. The isolation method for nuclei is given in detail. The nucleic acids are separated on polyacrylamide gels of low acrylamide concentration. Pulse-chase experiments show that the rRNA precursor is split into two fragments within the nucleus: an 18S and a 25S component. The 18S RNA leaves the nucleus rapidly. It is already found quantitatively in the ribosomal fraction after 30–60 min chase. At that time the 25S RNA is still within the nucleus; it appears much later in the ribosomes. Since the increase in ribosomal label occurs simultaneously with the decrease in nuclear label, it is concluded that there is no degradation of 18S RNA within the nucleus. Apparently there are two distinct transport mechanisms with different kinetics for the two RNA components.  相似文献   

17.
Yeast Rrp5p, one of the few trans-acting proteins required for the biogenesis of both ribosomal subunits, has a remarkable two-domain structure. Its C-terminal region consists of seven tetratricopeptide motifs, several of which are crucial for cleavages at sites A(0) to A(2) and thus for the formation of 18S rRNA. The N-terminal region, on the other hand, contains 12 S1 RNA-binding motifs, most of which are required for processing at site A(3) and thus for the production of the short form of 5.8S rRNA. Yeast cells expressing a mutant Rrp5p protein that lacks S1 motifs 10 to 12 (mutant rrp5Delta6) have a normal growth rate and wild-type steady-state levels of the mature rRNA species, suggesting that these motifs are irrelevant for ribosome biogenesis. Here we show that, nevertheless, in the rrp5Delta6 mutant, pre-rRNA processing follows an alternative pathway that does not include the cleavage of 32S pre-rRNA at site A(2). Instead, the 32S precursor is processed directly at site A(3), producing exclusively 21S rather than 20S pre-rRNA. This is the first evidence that the 21S precursor, which was observed previously only in cells showing a substantial growth defect or as a minor species in addition to the normal 20S precursor, is an efficient substrate for 18S rRNA synthesis. Maturation of the 21S precursor occurs via the same endonucleolytic cleavage at site D as that used for 20S pre-rRNA maturation. The resulting D-A(3) fragment, however, is degraded by both 5'-->3' and 3'-->5' exonuclease digestions, the latter involving the exosome, in contrast to the exclusively 5'-->3' exonucleolytic digestion of the D-A(2) fragment. We also show that rrp5Delta6 cells are hypersensitive to both hygromycin B and cycloheximide, suggesting that, despite their wild-type growth rate, their preribosomes or ribosomes may be structurally abnormal.  相似文献   

18.
19.
Escherichia coli dnaK-ts mutants are defective in the late stages of ribosome biogenesis at high temperature. Here, we show that the 21S, 32S and 45S ribosomal particles that accumulate in the dnaK756-ts mutant at 44 degrees C contain unprocessed forms of their 16S and 23S rRNAs (partially processed in the case of 45S particles). Their 5S rRNA stoichiometry and ribosomal protein composition are typical of the genuine ribosomal precursors found in a wild-type (dnaK+) strain. Despite the lack of a functional DnaK, a very slow maturation of these 21S, 32S and 45S particles to structurally and functionally normal 30S and 50S ribosomal subunits still occurs at high temperature. This conversion is accompanied by the processing of p16S and p23S rRNAs to their mature forms. We conclude that: (i) 21S, 32S and 45S particles are not dead-end particles, but true precursors to active ribosomes (21S particles are converted to 30S subunits, and 32S and 45S to 50S subunits); (ii) DnaK is not absolutely necessary for ribosome biogenesis, but accelerates the late steps of this process considerably at high temperature; and (iii) 23S rRNA processing depends on the stage reached in the stepwise assembly of the 50S subunit, not directly on DnaK.  相似文献   

20.
M F Brink  M P Verbeet    H A de Boer 《The EMBO journal》1993,12(10):3987-3996
The postulated central pseudoknot formed by regions 9-13/21-25 and 17-19/916-918 of 16S rRNA of Escherichia coli is phylogenetically conserved in prokaryotic as well eukaryotic species. This pseudoknot is located at the center of the secondary structure of the 16S rRNA and connects the three major domains of this molecule. We have introduced mutations into this pseudoknot by changing the base-paired residues C18 and G917, and the effect of such mutations on the ribosomal activity was studied in vivo, using a 'specialized' ribosome system. As compared with ribosomes having the wild-type pseudoknot, the translational activity of ribosomes containing an A, G or U residue at position 18 was dramatically reduced, while the activity of mutant ribosomes having complementary bases at positions 18 and 917 was at the wild-type level. The reduced translational activity of those mutants that are incapable of forming a pseudoknot was caused by their inability to form 70S ribosomal complexes. These results demonstrate that the potential formation of a central pseudoknot in 16S rRNA with any base-paired residues at positions 18 and 917 is essential to complete the initiation process.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号