首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Myogenic cells were isolated from adult rat skeletal muscles and cultured in vitro. Cell proliferation was analyzed between days 1 and 14. The cell cycle phases were determined by examining Feulgen-stained cultures with a cell image processor. The nuclei were automatically analyzed by calculating 18 parameters relating to the texture and densitometry of chromatin and the shape of each nucleus. Cell cycle phases were characterized (Moustafa and Brugal, 1984). The recognition methods made it possible to analyse the nuclei of the myogenic cell populations which were either involved in each phase of the mitotic cycle, or left out of the cycle after fusion into myotubes.After 3 hr of culture 10% of the cell population was involved in the cell cycle. In the presence of foetal calf serum, this percentage increased until day 3 after plating. At that time, the DNA content of 28.2% of the cell population was higher than 3C, whereas it is 2C in G1 or G0 nuclei; image analysis showed that 42% of these cells were in S or G2 phase. From day 4, the proliferation rate gradually slowed down until day 8. After day 8, when numerous myotubes differentiated, the percentage of S and G2 phase cells had diminished to between 3 and 8%. The percentage of nuclei in G0 increased when the first myotubes differentiated around day 5. Myotube nuclei were largely in G0. When horse serum was added to the culture medium on day 4 to enhance myotube differentiation, significant cell proliferation was observed before cell fusion.These methods of analysis give the first daily pattern of myogenic cell proliferation and fusion in a cell population isolated from adult muscles.  相似文献   

2.
The effects of cell cycle on recombinant protein production and infection yield in the baculovirus-insect cell expression system (BES) were investigated. When, at any cell cycle phase, the host cell was infected by baculovirus, the cell cycle was finally arrested at the S or G(2)/M phase with 4n DNA. In the case of G(1) or S phase-infection, cell cycle of virus-infected cells began to be arrested at S phase from 8 h post-infection or at G(2)/M phase from 4 h post-infection, respectively; while, in the case of M phase-infection, cell cycle was arrested at S phase after 12 h post-infection. When the host cell was infected at the G(1) phase, average intracellular GFPuv fluorescence intensity was 1.3-fold higher than that at G(2)/M phase at 24 h post-infection. The GFPuv expression corresponded to the profile of the G(1) cell cycle in the BES. Infection yield was measured by detection of intracellular DNA binding protein using immunohistochemical method within 7 h post-infection. The infection yield at G(1) or S phase-infection was 1.5-1.8-fold higher than that at G(2)/M phase-infection.  相似文献   

3.
Analysis of the fifth cell cycle of mouse development   总被引:2,自引:0,他引:2  
The 5th cell cycle of mouse development was analyzed to determine the lengths of each cell cycle phase. The DNA content of Feulgen-stained blastomere nuclei was measured at various times throughout the cell cycle by microdensitometry. To achieve precise timing of the start of the 5th cell cycle, experiments utilized isolated 16-cell blastomeres and cell pairs obtained by in-vitro division of isolated 8-cell blastomeres. The following estimates were made for a mixed population of polar and apolar 16-cell blastomeres: G1, less than or equal to 2 h; S, 8-9 h; G2 + M, 2 h. No significant difference was found in the timing of DNA synthesis between polar and apolar cells or between cell pairs and whole embryos.  相似文献   

4.
Female Swiss mice were sacrificed at 2 h intervals between 16–30 and 40–56 h after insemination. One-, 2- and 4-cell embryos were stained by the Feulgen method and cytophotometric measurement of their nuclear DNA content was carried out. The cells with 2C and 4C DNA content were assumed to be in G1 and G2 phase and those with intermediate DNA content in S phase of the cell cycle. The fractions of cells which had passed a given phase of the cell cycle were calculated for various times after insemination and utilized for measurements of the second and third cell cycle timing. Results of measurements for the second cell cycle: G1 phase 1.3 h, S phase 6.1 h, G2 phase 15.4 h, whereas for the third cell cycle: G1 phase 1.6 h, S phase 7.4 h, G2 phase 0.5 h. The first cleavage division was calculated as 1.6 h, the second as 1.3 h and the third as 1.2 h. Complete intra-embryonic synchronization of the DNA-synthesizing nuclei was preserved during the entire synthesis phase of 2-cell embryos, while in 4-cell embryos they were slightly asynchronized. Among mitotic cells of the first cleavage division and G1 cells of 2-cell embryos a slight interembryonic asynchronization was found which deepened during subsequent cell cycle phases.  相似文献   

5.
Arterial remodeling in response to pathological insult is a complex process that depends in part on the balance between vascular cell apoptosis and proliferation. Studies in experimental models suggest that HO-1 mediates neointimal formation while limiting lumen stenosing, indicating a differential effect on vascular endothelial (EC) and smooth muscle cells (SMC). We investigated the effect of HO-1 expression on cell cycle progression in EC and SMC. The addition of SnMP (10 microM), an inhibitor of HO activity, to EC or SMC for 24h, resulted in significant abnormalities in DNA distribution and cell cycle progression compared to cells treated with the HO-1 inducers, heme (10 microM) or SnCl(2) (10 microM). SnMP increased G(1) phase and decreased S and G(2)/M phases in EC while heme or SnCl(2) decreased G(1) phase, but increased S and G(2)/M phases (p<0.05). Opposite effects were obtained in SMC. SnMP decreased G(1) phase and increased S and G(2)/M phases while heme or SnCl(2) increased G(1) phase but decreased S and G(2)/M phases (p<0.05). Our data demonstrate that HO-1 regulates the cell cycle in a cell-specific manner; it increases EC but decreases SMC cycle progression. The mechanisms underlying the HO-1 cell-specific effect on cell cycle progression within the vascular wall are yet to be explored. Nevertheless, these findings suggest that cell-specific targeting of HO-1 expression may provide a novel therapeutic strategy for the treatment of cardiovascular diseases.  相似文献   

6.
Cultured mouse lymphoma cells incorporated [3H]leucine and [32P]phosphate into nuclear stress proteins within 3 h after exposure to either elevated temperature (45 degrees C) or sodium arsenite. Radiolabeled proteins were detected by autoradiography after two-dimensional polyacrylamide gel electrophoresis. To determine the cell cycle stage specificity of labeling, nuclei were isolated and sorted into two cell cycle phases using a fluorescent activated cell sorter. After either heat shock or sodium arsenite treatment, the majority of [3H]leucine incorporation into stress proteins occurred during the G0 + G1 phase with minimal labeling in the G2 phase. On the other hand, 32P labeling of stress proteins occurred in both the G0 + G1 and G2 phases after exposure to sodium arsenite, while incorporation of 32P was limited after heat stress. Following sodium arsenite treatment, a distinct set of four stress proteins (80-84 kDa) was detected with [3H]leucine only in G0 + G1 phase, but with [32P]phosphate these stress proteins were labeled in both G0 + G1 and G2. There was differential [32P]phosphate labeling between proteins of the 80-84 kDa set during cell cycling. Individual proteins of this set were isolated from gel plugs after sodium arsenite or heat-shock treatment. Coelectrophoresis of proteins from the two treatment groups showed that they had similar electrophoretic mobilities. All four proteins of the 80-84 kDa set (sodium arsenite induced) possessed similar polypeptide maps after digestion with V8 protease. Cytofluorometric analysis demonstrated a reduction in the number of nuclei in both S and G2 phases of the cell cycle two h after heat shock, but not following sodium arsenite treatment. However, there was a significant depression in the number of nuclei in S and G2 4 h after exposure to sodium arsenite and very modest labeling with 32P of stress proteins was observed at this time.  相似文献   

7.
8.
Progressive in vitro culturing of interleukin-3 (IL-3) dependent normal murine mastocytes (PB-3) resulted in a variant cell line (PB-1) able to grow without exogenous IL-3 and which was tumorogenic in syngenic mice. Bivariate flow cytometry was used to evaluate the c-myc protein and DNA content of PB-3 and PB-1 cells. The c-myc protein was detected by specific monoclonal antibodies. Kinetic characteristics of PB-3 and PB-1 cell lines, namely, the duration of the G1, S and G2 + M cell cycle phases were also evaluated using the bromodeoxyuridine (BrdU) pulse-chase method and BrdU/DNA flow cytometry. Levels of c-myc protein in PB-1 cells were about two-fold higher than those of PB-3 cells in all cell cycle phases. Mean duration of the cell cycle (Tc) was 15.3 h for PB-3 cells and 12.4 h for PB-1 cells. Shortening in Tc for the transformed cells was due to a decrease of nearly 30% in mean duration of the G1 phase (from 8 h to 5.7 h). No significant differences were found in the duration of the S and G2 + M phases. These results indicate that acquired IL-3 independency in vitro and tumorogenicity of PB-1 cells were accompanied by a doubling of c-myc protein level and by a parallel shortening, or bypass, of the regulatory events within the G1 phase of the cell cycle.  相似文献   

9.
The synchronization effects of the plant amino acid mimosine on proliferating higher eukaryotic cells are still controversial. Here, I show that 0.5 mM mimosine can induce a cell cycle arrest of human somatic cells in late G1 phase, before establishment of active DNA replication forks. The DNA content of nuclei isolated from mimosine-treated cells was determined by flow cytometry. The presence or absence of DNA replication forks in these isolated nuclei was then detected by DNA replication run-on assays in vitro. Treatment of asynchronously proliferating HeLa or EJ30 cells for 24 h with 0.5 mM mimosine resulted in a population synchronized in late G1 phase. S phase entry was inhibited by 0.5 mM mimosine in cells released from a block in mitosis or from quiescence. When added to early S phase cells, 0.5 mM mimosine did not prevent S phase transit, but delayed progression through late stages of S phase after a lag of 4 h, eventually resulting in a G1 phase population by preventing entry into the subsequent S phase. In contrast, lower concentrations of mimosine (0.1-0.2 mM) failed to prevent S phase entry, resulting in cells containing active DNA replication foci. The G1 phase arrest by 0.5 mM mimosine was reversible upon mimosine withdrawal. This synchronization protocol using 0.5 mM mimosine can be exploited for studying the initiation of human DNA replication in vitro.  相似文献   

10.
The determination of tritiated thymidine labeling index and the percentage of cells with S phase DNA content was performed on cell suspensions obtained from 69 patients with non-Hodgkin's lymphoma. The distributions of cells in the cell cycle by computer analysis of flow cytometric data were obtained by two mathematical procedures: the widely adopted Fried model and a new one proposed by Bruni et al. A significant agreement was observed by checking the Spearman index (rs) between the percentages of cells in the different cell cycle phases (G0/1, rs = 0.76; S, rs = 0.60; and G2 + M, rs = 0.43; p less than 0.001) determined by the two procedures. Similarly, a good correlation was observed between the labeling index (LI) and the S phase values obtained by the Fried (rs = 0.45, p less than 0.001) and Bruni (rs = 0.69, p less than 0.001) models, but with a higher agreement for the latter one. The S phase by the Bruni model was also superior in predicting LI: in fact, by employing the S cutoff value of 12%, a better agreement between low LI and low S phase or high LI and high S phase was observed with the Bruni procedure (90%) than with the Fried model (72%). Finally, the analysis of the prognostic significance of the different kinetic variables confirmed the prognostic relevance of LI at any time; the S phase percentage as determined by Bruni et al. was discriminant of survival only at shorter times, and no prognostic significance could be ascribed to S phase according to the Fried procedure.  相似文献   

11.
Exposure of promyelocytic leukemic HL-60 cells to 3-60 nM of the DNA topoisomerase I inhibitor camptothecin (CAM) or to 30-450 nM and 0.12-1.5 microM of DNA topoisomerase II inhibitors teniposide (TN) and 4-(9-acridynylamino)-3-methanesulfon-m-anisidide (m-AMSA), respectively, resulted in two distinct kinetic effects: (1) the cells entered S phase but the rate of DNA replication was reduced in proportion to the inhibitor concentration; (2) the transition from G2 to M was impaired, approximately 1 h after addition of the inhibitor. As a consequence, the cells accumulated in the S (preferentially in early S) and in G2 phases of the cell cycle. Whereas CAM was more efficient in suppressing cell progression through S phase, TN and m-AMSA were more potent G2 blockers. At these low inhibitor concentrations no signs of immediate cytotoxicity or DNA degradation were apparent. However, above 145 nM of CAM, 900 nM of TN, or 2 microM of m-AMSA extensive DNA degradation in nuclei of S phase cells was evident within 6 h of addition of the inhibitor, resulting in the loss of S and G2 + M cells from these cultures. The data indicate that depending on concentration, mechanisms mediating the cytostatic/cytotoxic activity of both DNA topoisomerase I and II inhibitors may be quite different. Suppression of the DNA replication and the G2 to M transition, seen at low inhibitor concentrations, is compatible with the assumption that the inhibitor-induced stabilization of the topoisomerase-DNA cleavable complexes interferes with DNA replication and chromosome condensation/segregation, respectively. Above the threshold concentration for each inhibitor, an endonucleolytic activity is triggered, resulting in rapid DNA degradation in nuclei of S and G2 phase cells. The endonucleolytic effect is not only cell cycle phase-specific but is also modulated by tissue-specific factors because it cannot be observed, e.g., in the lymphocytic leukemic cell lines.  相似文献   

12.
Infection of primary murine embryonic cell cultures by adenovirus SA7 (C8) results in an increase in chromatin condensation Average optical density of Feulgen stained nuclei 24 h following virus absorption increased for G0/1, S, and G2 cells by 16.1, 11.3 and 13.1%, respectively. This phenomenon is associated with the stimulation of proliferation, with an increase of the S cell amount by 50% of the control values and a decrease of average cell nuclei areas in all phases of cell cycle.  相似文献   

13.
14.
The human promyelocytic leukaemia cell line HL-60 can be induced to differentiate towards mature granulocytes by treatment with dibutyryl cyclic adenosine-3',5'-monophosphate (dbcAMP). Differentiation begins within 16-24 h of treatment and is associated with a time- and dose-dependent accumulation of cells in the G0/G1 phase of the cell cycle with a concomitant decrease in the number of cells in the S and G2 + M phases. Using acridine orange staining, we found that the RNA content of the cells also decreased following differentiation. Stathmokinetic analysis of HL-60 cell populations following dbcAMP treatment showed no effect on the total number of cells in the G0/G1 or S phases, or the rate of progression of cells through these cell cycle compartments. In contrast, dbcAMP was found to induce a transient arrest of the cells in the G2 phase. We also found that differentiation induced by dbcAMP did not require progression of the cells through the cell cycle. Cells arrested in either G1/S by hydroxyurea or G2 + M by colcemid eventually expressed markers of mature granulocytes. These results demonstrate that dbcAMP modulates cell cycle progression. However, these cell cycle changes alone are insufficient to induce granulocytic differentiation of HL-60 cells.  相似文献   

15.
The dynamics of nuclear DNA synthesis were analysed in isolated microspores and pollen of Brassica napus that were induced to form embryos. DNA synthesis was visualized by the immunocytochemical labelling of incorporated Bromodeoxyuridine (BrdU), applied continuously or as a pulse during the first 24 h of culture under embryogenic (32 °C) and non-embryogenic (18 °C) conditions. Total DNA content of the nuclei was determined by microspectrophotometry. At the moment of isolation, microspore nuclei and nuclei of generative cells were at the G1, S or G2 phase. Vegetative nuclei of pollen were always in G1 at the onset of culture. When microspores were cultured at 18 °C, they followed the normal gametophytic development; when cultured at 32 °C, they divided symmetrically and became embryogenic or continued gametophytic development. Because the two nuclei of the symmetrically divided microspores were either both labelled with BrdU or not labelled at all, we concluded that microspores are inducible to form embryos from the G1 until the G2 phase. When bicellular pollen were cultured at 18 °C, they exhibited labelling exclusively in generative nuclei. This is comparable to the gametophytic development that occurs in vivo. Early bicellular pollen cultured at 32 °C, however, also exhibited replication in vegetative nuclei. The majority of vegetative nuclei re-entered the cell cycle after 12 h of culture. Replication in the vegetative cells preceded division of the vegetative cell, a prerequisite for pollen-derived embryogenesis.  相似文献   

16.
Effect of microgravity on the cell cycle in the lentil root   总被引:1,自引:0,他引:1  
Characteristics of the cell cycle in cortical regions (0–0.6 mm from the root-cap junction) of the primary root of lentil (Lens culinaris L.) during germination in the vertical position on earth were determined by iododeoxyuridine labelling and image analysis. All cells were in the G1 phase at the beginning of germination and the duration of the first cell cycle was about 25 h. At 29 h, around 14% of the cortical nuclei were still in the G2 or M phases of the first cell cycle, whereas 53 and 33% of the nuclei were respectively in the G1 or S phase of the second cell cycle. In parallel, the cell cycle was analysed in root tips of lentil seedlings grown in space during the IML 2 mission (1994), (1) on the 1-g centrifuge for 29 h, (2) on the 1-g centrifuge for 25 h and placed in microgravity for 4 h, (3) in microgravity for 29 h, (4) in microgravity for 25 h and placed on the 1-g centrifuge for 4 h. The densitometric analysis of nuclear DNA content showed that in microgravity there were less cells in DNA synthesis and more cells in G1 than in the controls on the 1-g centrifuge (flight and ground). The comparison of the sample grown continuously on the 1-g centrifuge in space and of the sample grown first in 1-g and then in microgravity indicated that 4 h of microgravity modified cell cycle, increasing the percentage of cells in the G1 phase. On the contrary, the transfer from microgravity to the 1-g centrifuge (for 4 h) did not provoke any significant change in the distribution of the nuclear DNA content. Thus the effect of microgravity could not be reversed by a 4 h centrifugation. As the duration of the first cell cycle in the lentil root meristem is about 25 h, the results obtained are in agreement with the hypothesis that the first cell cycle and/or the second G1 phase was lengthened in absence of gravity. The difference observed in the distribution of the nuclear DNA content in the two controls could be due to the fact that the 1g control on board was subjected to a period of 15 min of microgravity for photography 25 h after the hydration of the seeds, which indicated an effect of short exposure to weightlessness. The mitotic index of cortical cells was greater on the 1-g centrifuge in space than in any other sample (flight and ground) which could show an effect of the centrifugation on the mitosis.  相似文献   

17.
We investigated deoxyribonucleoside triphosphate metabolism in S49 mouse T-lymphoma cells synchronized in different phases of the cell cycle. S49 wild-type cultures enriched for G1 phase cells by exposure to dibutyryl cyclic AMP (Bt2cAMP) for 24 h had lower dCTP and dTTP pools but equivalent or increased pools of dATP and dGTP when compared with exponentially growing wild-type cells. Release from Bt2cAMP arrest resulted in a maximum enrichment of S phase occurring 24 h after removal of the Bt2cAMP, and was accompanied by an increase in dCTP and dTTP levels that persisted in colcemid-treated (G2/M phase enriched) cultures. Ribonucleotide reductase activity in permeabilized cells was low in G1 arrested cells, increased in S phase enriched cultures and further increased in G2/M enriched cultures. In cell lines heterozygous for mutations in the allosteric binding sites on the M1 subunit of ribonucleotide reductase, the deoxyribonucleotide pools in S phase enriched cultures were larger than in wild-type S49 cells, suggesting that feedback inhibition of ribonucleotide reductase is an important mechanism limiting the size of deoxyribonucleoside triphosphate pools. The M1 and M2 subunits of ribonucleotide reductase from wild-type S49 cells were identified on two-dimensional polyacrylamide gels, but showed no significant change in intensity during the cell cycle. These data are consistent with allosteric inhibition of ribonucleotide reductase during the G1 phase of the cycle and release of this inhibition during S phase. They suggest that the increase in ribonucleotide reductase activity observed in permeabilized S phase-enriched cultures may not be the result of increased synthesis of either the M1 or M2 subunit of the enzyme.  相似文献   

18.
Competency for self-renewal of human embryonic stem (ES) cells is linked to pluripotency. However, there is a critical paucity of fundamental parameters of human ES cell division. In this study we show that human ES cells (H1 and H9; NIH-designated WA01 and WA09) rapidly proliferate due to a very short overall cell cycle (15-16 h) compared to somatic cells (e.g., normal diploid IMR90 fibroblasts and NT-2 teratocarcinoma cells). The human ES cell cycle maintains the four canonical cell cycle stages G1, S, G2, and M, but the duration of G1 is dramatically shortened. Bromodeoxyuridine (BrdU) incorporation and FACS analysis demonstrated that 65% of asynchronously growing human ES cells are in S phase. Immunofluorescence microscopy studies detecting BrdU labeled mitotic chromosomes, Ki67 domains, and p220(NPAT) containing Cajal bodies revealed that the durations of the S ( approximately 8 h), G2 ( approximately 4 h), and M phases ( approximately 1 h) are similar in ES and somatic cells. We determined that human ES cells remain viable after synchronization with either nocodazole or the anti-tumor drug Paclitaxel (taxol) and have an abbreviated G1 phase of only 2.5-3 h that is significantly shorter than in somatic cells. Molecular analyses using quantitative RT-PCR demonstrate that human ES cells and somatic cells express similar cell cycle markers. However, among cyclins and cyclin-dependent kinases (CDKs), we observed high mRNA levels for the G1-related CDK4 and cyclin D2 genes. We conclude that human ES cells exhibit unique G1 cell cycle kinetics and use CDK4/cyclin D2 related mechanisms to attain competency for DNA replication.  相似文献   

19.
Using cytophotometric and autoradiographic methods, it was shown that on days 2-3 of embryogenesis primary erythroid cells (PEC) divided actively. The distribution of erythroblasts (EB) according to their DNA content is not, however, typical of a proliferating population: it contains an unusually large number of 4c cells resulting from the cell cycle arrest at the G2 phase. It is established that reticulocytes (RC) do not divide and are arrested at G1 or G2 phases, since they do not incorporate 3H-thymidine after their formation is complete and their DNA contents are strictly confined to either 2c or 4c. All types of PEC include a large number of cells containing H2c DNA which is due either to the cell cycle arrest at the S phase, or to the formation of accessory nuclei. All PECs have much higher contents of hemoglobin and total protein than do adult hen erythrocytes (EC). Hemoglobin and total protein contents of H2c and accessory nuclei containing cells are much higher than those in 2c-cells. We have calculated that adult birds and embryos contain the same amount of hemoglobin per gram of weight, but the quantity of red blood cells in the former is ten times higher. A conclusion is drawn that proliferation and cytodifferentiation regulation mechanisms are directed, in primary erythropoiesis, to intense hemoglobinization of the cells, and, in adult erythropoiesis, to increasing their number. In both the cases homeostatic regulation of erythropoiesis works.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

20.
Specific activity of the intranuclear DNA polymerase in cdc-mutant cells of Saccharomyces cerevisiae was found to be characteristically changed by arrest in their specific stage of cell division cycle without a notable alteration in the total cellular activity. The activities were low in the nuclei of cdc 25, cdc 28 and cdc 4, which were arrested in early to mid G1 phase by temperature shift-up, and in the nuclei of wild-type cells (A364A), which were arrested in early G1 phase by alpha-factor treatment, while high level of the activity was found in the nuclei of cdc 7 and cdc 8, which were arrested at late G1 and S phase, respectively. Activity-gel analysis of DNA polymerase in the nuclear extracts revealed the presence of two active peptides (120K and 72K), and the characteristic decrease in both active peptides was induced by arrest in early to mid G1 phase. Consequently, it is strongly suggested that intranuclear DNA polymerase activity alters in a dependent fashion on progression of cell division cycle. Subunit analysis indicated that the purified DNA polymerase I is constructed from two subunit peptides of 120K and 62K, and the large subunit possesses catalytic activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号