首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Turner BT  Sabo TM  Wilding D  Maurer MC 《Biochemistry》2004,43(30):9755-9765
The transglutaminase Factor XIII (FXIII) catalyzes the formation of covalent cross-links between adjacent noncovalently associated fibrin chains in blood coagulation. The resulting covalently cross-linked hard clot is much more mechanically stable and resistant to proteolytic degradation. FXIII is activated by the serine protease thrombin in the presence of calcium ions. Protein modification experiments involving the labeling of cysteine and lysine side chains of the enzyme were performed before and after activation of the enzyme in an effort to gain further insight into structural changes occurring during the activation of FXIII. The experiments revealed differences in the labeling patterns of nonactivated and activated FXIII. These differences result from the exposure or sequestration of specific cysteine or lysine residues when the enzyme is activated, either physiologically with thrombin or nonproteolytically by exposure to calcium. Of note is the acetylation of Lys 73 and Lys 221 upon activation. Both of these residues lie within possible substrate recognition regions of FXIII. The active site Cys 314 is consistently alkylated in the activated enzyme, as is Cys 409, located near the dimer interface. Within the beta-barrel 2 domain of FXIII, Cys 695 becomes alkylated in activated FXIII. Within the same domain, an acetylated Lys (677 or 678), which is observed in the zymogen, cannot be found in the activated enzyme. The results provide a more extensive view of FXIII activation than has been previously available.  相似文献   

2.
In the blood coagulation cascade, thrombin cleaves fibrinopeptides A and B from fibrinogen revealing sites for fibrin polymerization that lead to insoluble clot formation. Factor XIII stabilizes this clot by catalyzing the formation of intermolecular cross-links in the fibrin network. Thrombin activates the Factor XIII a(2) dimer by cleaving the Factor XIII activation peptide segment at the Arg(37)-Gly(38) peptide bond. Using a high performance liquid chromatography assay, the kinetic constants K(m), k(cat), and k(cat)/K(m) were determined for thrombin hydrolysis of fibrinogen Aalpha-(7-20), Factor XIII activation peptide-(28-41), and Factor XIII activation peptide-(28-41) with a Val(34) to Leu substitution. This Val to Leu mutation has been correlated with protection from myocardial infarction. In the absence of fibrin, the Factor XIII activation peptide-(28-41) exhibits a 10-fold lower k(cat)/K(m) value than fibrinogen Aalpha-(7-20). With the Factor XIII V34L mutation, decreases in K(m) and increases in k(cat) produce a 6-fold increase in k(cat)/K(m) relative to the wild-type Factor XIII sequence. A review of the x-ray crystal structures of known substrates and inhibitors of thrombin leads to a hypothesis that the new Leu generates a peptide with more extensive interactions with the surface of thrombin. As a result, the Factor XIII V34L is proposed to be susceptible to wasteful conversion of zymogen to activated enzyme. Premature depletion may provide cardioprotective effects.  相似文献   

3.
We investigated the effect of divalent metal ions on the proteolytic cleavage and activation of platelet Factor XIII by thrombin and trypsin. In the absence of metal ions (5 mM EDTA), trypsin and thrombin rapidly degraded platelet Factor XIII (80 kDa) to low-molecular-mass peptides (50-19 kDa) with simultaneous loss of transglutaminase activity. Divalent metal ions protected Factor XIII from proteolytic inactivation with an order of efficacy of Ca2+ greater than Zn2+ greater than Mg2+ greater than Mn2+. Calcium (2 mM) increased by 10- to 1000-fold the trypsin and thrombin concentrations required to degrade Factor XIII to a 19-kDa peptide. Factor XIIIa formed by thrombin in the presence of 5 mM EDTA had one-half the specific activity of Factor XIIIa formed in the presence of calcium. Factor XIII was cleaved by trypsin in the presence of 5 mM Ca2+ to a 51 +/- 3-kDa fragment that had 60% of the original Factor XIIIa activity. A similar tryptic peptide formed in the presence of 5 mM EDTA did not have transglutaminase activity. In the presence of 5 mM Mg2+, thrombin cleaved Factor XIII to a major 51 +/- 3-kDa fragment that had 60% of the Factor XIIIa activity. Mn2+ (0.1-5 mM) limited trypsin and thrombin proteolysis. The resulting digest containing a population of Factor XIII fragments (50-14 kDa) expressed 50-60% transglutaminase activity of Factor XIIIa. Factor XIII was fully activated by both trypsin and thrombin in the presence of 5 mM Zn2+, resulting in two fragments of 76 and 72 kDa. We conclude that the binding of divalent metal ions to platelet Factor XIII induces conformational changes in the protein that alter its susceptibility to proteolysis and influence the expression of transglutaminase activity.  相似文献   

4.
A blood coagulation factor, Factor XIII, was highly purified from bovine fresh plasma by a method similar to those used for human plasma Factor XIII. The isolated Factor XIII consisted of two subunit polypeptides, a and b chains, with molecular weights of 79,000 +/- 2,000 and 75,000 +/- 2,000, respectively. In the conversion of Factor XIII to the active enzyme, Factor XIIIa, by bovine thrombin [EC 3.4.21.5], a peptide was liberated. This peptide, designated tentatively as "activation peptide," was isolated by gel-filtration on a Sephadex G-75 column. It contained a total of 37 amino acid residues with a masked N-terminal residue and C-terminal arginine. The whole amino acid sequence of "Activation peptide" was established by the dansyl-Edman method and standard enzymatic techniques, and the masked N-terminal residue was identified as N-acetylserine by using a rat liver acylamino acid-releasing enzyme. This enzyme specifically cleaved the N-acetylserylglutamyl peptide bond serine and the remaining peptide, which was now reactive to 1-dimethylamino-naphthalene-5-sulfonyl chloride. A comparison of the sequences of human and bovine "Activation peptide" revealed five amino acids replacements, Ser-3 to Thr; Gly-5 to Arg; Ile-14 to Val; Thr-18 to Asn, and Pro-26 to Leu. Another difference was the deletion of Leu-34 in the human peptide. Adsorption chromatography on a hydroxylapatite column in the presence of 0.1% sodium dodecyl sulfate was developed as a preparative procedure for the resolution of the two subunit polypeptides, a or a' chain and b chain, constituting the protein molecule of Factor XIII or Factor XIIIa. End group analyses on the isolated pure chains revealed that the structural change of Factor XIII during activation with thrombin occurs only in the N-terminal portion of the a chain, not in the N-terminal end of the b chain or in the C-terminal ends of the a and b chains. From these results, it was concluded that the activation of bovine plasma Factor XIII by thrombin must be accompanied by a limited proteolysis of the arginyl-glycyl bond located in the N-terminal region of the a chain, liberating the "Activation peptide." The possibility of activating Factor XII with other porteinases was examined using Factor Xa [EC 3.4.21.6], Factor XIIa, kallikreins [EC 3.4.21.8], urokinase [EC 3.4.99.26], trypsin [EC 3.4.21.4], ficin [EC 3.4.22.3], papain [EC 3.4.22.2], and bromelain [EC 3.4.22.4]. Among these enzymes, only bromelain and trypsin showed clear activating effects.  相似文献   

5.
1. Large quantities of human Factor XIII were prepared from ethanol precipitates of outdated human plasma. 2. Material homogeneous after chromatography on DEAE-cellulose was further resolved into two proteins, A and B, after filtration on Sepharose 6B. 3. Protein A has a molecular weight of 350000 and a subunit structure a(2)b(2) and is activated by thrombin and calcium. Protein B is inactive and probably has a subunit structure b(2). 4. Calcium causes protein A, after thrombin cleavage, to fragment to give protein B and a protein, containing only a' subunits, which is catalytically active. The latter protein slowly forms a misty precipitate which is still active and not cross-linked covalently. This confirms the suggestion of Schwartz et al. (1971) that catalytic activity is only associated with a' subunits. 5. Iodoacetate, which inhibits the enzyme, does not inhibit dissociation and aggregation of protein A. 6. The existence of two proteins and the fragmentation are possible explanations for the wide range of molecular weights given for Factor XIII in the literature.  相似文献   

6.
Ca(II) ions are crucial during proteolytic conversion of Factor XIII zymogen into the active enzyme Factor XIIIa. Factor XIII proteolyzed by thrombin or trypsin in the presence of 5 mM-EDTA resulted in rapid inactivation of transglutaminase activity. Factor XIIIa formed by thrombin or trypsin in the presence of 40 microM-Tb(III) ions, however, was indistinguishable from Factor XIIIa formed in the presence of 2-5 mM-Ca(II) ions with respect to molecular mass and transglutaminase activity. Thrombin treatment of Factor XIII in the presence of 1-5 microM-Tb(III) ions resulted in three fragments (76 kDa, 51 kDa and 19 kDa) with simultaneous loss of transglutaminase activity. Tb(III) ions at concentrations greater than 40 microM made platelet Factor XIII resistant to proteolysis by either thrombin or trypsin. Other lanthanide(III) ions [Ln(III) ions] tested [Ce(III), La(III) and Gd(III) ions] functioned similarly to Tb(III) ions during proteolytic activation of Factor XIII. Ln(III) ions (10-100 microM) were unable to replace the Ca(II) ions required for transglutaminase activity of Factor XIIIa. Tb(III) ions also inhibited in a non-competitive manner the transglutaminase activity of Factor XIIIa (Ki 71 microM) even when measured in the presence of 200-fold molar excess of Ca(II) ions. Factor XIII selectively bound to a Tb(III)-chelate affinity column, and could not be eluted by 100 mM-CaCl2. Binding of Tb(III) ions to Factor XIII was demonstrated by fluorescence emission due to Forster energy transfer. A 10(4)-fold molar excess of CaCl2, but not NaCl, partially quenched Tb(III) fluorescence. Low concentrations (5-20 microM) of Tb(III) ions also inhibited the binding of Factor XIII to des-A-fibrinogen by about 43%, whereas higher concentrations (40-100 microM) promoted binding. Conformational changes in Factor XIII consequent to the binding of Tb(III) ions could be responsible for the observed effects on protein structure and function.  相似文献   

7.
Trumbo TA  Maurer MC 《Biochemistry》2002,41(8):2859-2868
In blood coagulation, thrombin helps to activate factor XIII by cleaving the activation peptide at the R37-G38 peptide bond. The more easily activated factor XIII V34L has been correlated with protection from myocardial infarction. V34L and V29F factor XIII mutant peptides were designed to further characterize substrate binding to thrombin. HPLC kinetic studies have been carried out on thrombin hydrolysis of FXIII activation peptide (28-41), FXIII (28-41) V34L, FXIII (28-41) V29F, and FXIII (28-41) V29F V34L. The V34L mutations lead to improvements in both K(m) and k(cat) whereas the V29F mutation primarily affects K(m). Interactions of the peptides with thrombin have been monitored by 1D proton line broadening NMR and 2D transferred NOESY studies. The results were compared with previously published X-ray crystal structures of thrombin-bound fibrinogen Aalpha (7-16), thrombin receptor PAR1 (38-60), and factor XIII (28-37). In solution, the (34)VVPR(37) and (34)LVPR(37) segments of the factor XIII activation peptide serve as the major anchor points onto thrombin. The N-terminal segments are proposed to interact transiently with the enzyme surface. Long-range NOEs from FXIII V29 or F29 toward (34)V/LVPR(37) have not been observed by NMR studies. Overall, the kinetic and NMR results suggest that the factor XIII activation peptide binds to thrombin in a manner more similar to the thrombin receptor PAR1 than to fibrinogen Aalpha. The V29 and V34 positions affect, in different ways, the ability of thrombin to effectively hydrolyze the activation peptide. Mutations at these sites may prove useful in controlling factor XIII activation.  相似文献   

8.
Factor XIII is activated by thrombin, and this reaction is enhanced by the presence of fibrin(ogen). Using a substrate-based screening assay for factor XIII activity complemented by kinetic analysis of activation peptide cleavage, we show by using thrombin mutants of surface-exposed residues that Arg-178, Arg-180, Asp-183, Glu-229, Arg-233, and Trp-50 of thrombin are necessary for direct activation of factor XIII. These residues define a low specificity site known to be important also for both protein C activation and for inhibition of thrombin by antithrombin. The enhancing effect of fibrinogen occurs as a consequence of its conversion to fibrin and subsequent polymerization. Surface residues of thrombin further involved in high specificity fibrin-enhanced factor XIII activation were identified as His-66, Tyr-71, and Asn-74. These residues represent a distinct interaction site on thrombin (within exosite I) also employed by thrombomodulin in its cofactor-enhanced activation of protein C. In competition experiments, thrombomodulin inhibited fibrin-enhanced factor XIII activation. Based upon these and prior published results, we propose that the polymerization process forms a fibrin cofactor that acts to approximate thrombin and factor XIII bound to separate and complementary domains of fibrinogen. This enables enhanced factor XIII activation to be localized around the fibrin clot. We also conclude that proximity to and competition for cofactor interaction sites primarily directs the fate of thrombin.  相似文献   

9.
The interaction of Factor XIII with cultured fibroblasts was examined using 125I-labeled protein and immunofluorescence. Platelet or plasma Factor XIII bound to confluent cell layers. Binding reached an apparent steady state after 8 h. Activation with thrombin increased the binding of both the platelet and plasma forms of the enzyme. After a 1-2 h lag, a chloroquine-inhibitable increase in trichloroacetic acid-soluble radioactivity was detected in the medium. Gel electrophoresis in sodium dodecyl sulfate indicated that approximately 16-fold more a subunit (catalytic) of 125I-plasma Factor XIII bound to the cell layer than b subunit (carrier) and that some large complexes containing Factor XIII were formed with the cell layer. Factor XIII binding increased linearly with concentrations of Factor XIII up to 230 micrograms/ml, whereas a component of the degradation of Factor XIII was saturable at about 20 micrograms/ml. Factor XIII associated with cell layers was catalytically active since it could cross-link fibronectin. By immunofluorescence the a subunit of Factor XIII was localized to fibronectin-containing extracellular fibrils and, in the presence of chloroquine, to intracellular granules. These results indicate that the a subunit of Factor XIII binds to the fibroblast extracellular matrix and matrix assembly sites, where it remains active, and to a putative cell-surface receptor which mediates its internalization and degradation.  相似文献   

10.
Activated Factor XIII a2 catalyzes the formation of intermolecular gamma-glutamyl- epsilon -lysyl cross-links in the fibrin network. Solution NMR studies were carried out to characterize, the structural features associated with the binding of glutamine-containing peptides to Factor XIII. A coupled uv/vis kinetic assay demonstrated that K9 peptide (1-10), alpha2-antiplasmin (1-15), and alpha2-antiplasmin (1-15 Q4N) all function as glutamine-containing substrates for activated Factor XIII a2. 2D TOCSY spectra of the peptides exhibit upfield chemical shifts for the glutamine protons in the presence of Factor XIII. These results indicate that the reactive peptide glutamines are encountering a distinctive environment within the Factor XIII active site. 1D proton line-broadening and 2D transferred-NOESY studies reveal that the glutamines and residues located C-terminally come in direct contact with the enzyme and adopt an extended conformation. Substrates with sequences similar to alpha2-antiplasmin (1-15) are proposed to bind both at the catalytic site and at a neighboring apolar region.  相似文献   

11.
The prothrombinase complex, which catalyzes the conversion of prothrombin to thrombin, consists of activated Factor X, Factor Va, a membrane surface and Ca2+. To examine the structures that support Factor Va binding to Factor X, we used in vitro mutagenesis to construct a chimeric molecule that includes regions of Factor IX and Factor X. This chimera (IXGla,E1XE2,SP) was prepared from cDNA encoding the second epidermal growth factor (EGF) and serine protease domains of Factor X linked downstream from the cDNA encoding the signal peptide, propeptide, Gla domain, and first EGF domain of Factor IX. The cDNAs encoding the Factor IX/X chimera and wild-type Factor X were each expressed in Chinese hamster ovary cells and the secreted proteins purified by affinity chromatography using polyclonal anti-Factor X antibodies. The chimera migrated as a single major band corresponding to a molecular weight of 68,000. By Western blotting, the chimeric protein stained with both polyclonal anti-Factor X and anti-Factor IX antibodies. gamma-Carboxyglutamic acid analysis demonstrated near complete carboxylation of both the wild-type Factor X and the Factor IX/X chimera. Compared with Factor X, the rate of zymogen activation of the Factor IX/X chimera was about 50% that of Factor X when activated by Factor IXa, Factor VIIIa, phospholipid, and Ca2+. The enzyme form of the Factor IX/X chimera, activated Factor IX/X, generated using the coagulant protein of Russell's viper venom, expressed full amidolytic activity compared with Factor Xa. The activated Factor IX/X chimera had about 14% of the activity of Factor Xa when employed in a prothrombinase assay; this activity reached 100% with increasing concentrations of Factor Va. A binding assay was employed to test the ability of the active site-inactivated Factor IX/Xa chimera to inhibit the binding of Factor Xa to the Factor Va-phospholipid complex, thus inhibiting the activation of prothrombin to thrombin. In this assay the active site-inactivated form of the chimera competed with Factor Xa completely but with decreased affinity for the Factor Va-phospholipid complex. These data indicate that the second EGF domain and the serine protease domain of Factor Xa are sufficient to interact with Factor Va. The Factor IX/X chimera is a good substrate for the tenase complex; the defective enzymatic activity of the activated Factor IX/X chimera can be accounted for by its decreased affinity for Factor Va relative to Factor Xa.  相似文献   

12.
Sabo TM  Brasher PB  Maurer MC 《Biochemistry》2007,46(35):10089-10101
Factor XIII can be activated proteolytically by thrombin cleavage of the activation peptide or non-proteolytically by exposure to 50 mM Ca2+. The resultant transglutaminase cross-links Q and K residues within the noncovalently associated fibrin clot. Hydrogen deuterium exchange coupled with MALDI-TOF MS demonstrated that FXIII activation protects regions within the beta sandwich (98-104) and the beta barrel 1 (526-546) from deuterium, while exposing the potential Q substrate recognition site (220-230) to deuteration (Turner, B. T., Jr., and Maurer, M. C. (2002) Biochemistry 41, 7947-7954). Chemical modification indicated the availability of several residues upon activation including K73, K221, C314, and C409 (Turner, B. T., Jr., Sabo, T. M., Wilding, D., and Maurer, M. C. (2004) Biochemistry 43, 9755-9765). In the current work, activations of FXIII by IIa and by Ca2+ as well as FXIIIa inhibition by the K9 DON peptide (with the Q isostere 6-diazo-5-oxo-norleucine) and iodoacetamide were further examined. New findings unique for FXIIIaIIa included alkylation of C238 and C327, acetylation of K68, and increased proteolysis of 207-214. By contrast, FXIIIaCa led to increased proteolysis of 73-85 and 104-125 and to a loss of K129 acetylation. The FXIIIa inhibitors K9 DON and iodoacetamide both promoted even greater protection from deuteration for the beta sandwich (98-104) and beta barrel 1 (526-546). Interestingly, only K9 DON was able to block modification of catalytic core C409 near the dimer interface. The solution based approaches reveal that activation and inhibition lead to local and long range effects to FXIII(a) and that many are influenced by Ca2+ binding. Important glimpses are being provided on FXIIIa allostery and the presence of putative FXIIIa exosites.  相似文献   

13.
We studied the binding of 125I-platelet and plasma Factor XIII (125I-Factor XIII) to human platelets. When 125I-Factor XIII was incubated with gel-filtered platelets, calcium chloride (5 mM) and thrombin (1 unit/ml) at 37 degrees C, saturable binding was observed. Half-maximal binding occurred at 1 min. Binding was inhibited 93% by a 100-fold molar excess of unlabeled ligand but not by other purified proteins. Greater than 87% of platelet-bound radioactivity migrated as thrombin-cleaved a-chains (a'-chains) in sodium dodecyl sulfate-polyacrylamide gels indicating that Factor XIIIa but not Factor XIII binds to platelets. 125I-Factor XIIIa does not bind to unstimulated platelets. When platelet secretion was blocked, binding was markedly inhibited. 125I-Factor XIIIa bound minimally to platelets stimulated with agonists other than thrombin. Thus, binding is dependent on platelet activation, as well as modification of platelets by thrombin. 125I-Factor XIIIa bound to gamma-thrombin-stimulated platelets, at concentrations which did not clot fibrinogen. Therefore, Factor XIIIa is not bound to fibrin associated with platelets. Binding was only partially reversible. Approximately 12,000 molecules of Factor XIIIa were bound per platelet. 125I-Factor XIIIa bound normally to platelets from patients with severe Glanzmann's thrombasthenia indicating that 125I-Factor XIIIa does not bind to platelet glycoproteins IIb or IIIa, or platelet-bound fibrinogen. Chymotrypsin treatment of platelets inhibited 125I-Factor XIIIa binding by 78% without inhibiting secretion. Methylamine and putrescine, Factor XIIIa substrates, and N-ethylmaleimide, an active site inhibitor, did not inhibit binding. Factor XIIIa bound to platelets was enzymatically active and catalyzed [3H]putrescine incorporation into platelet proteins. The specific binding of Factor XIIIa to platelets suggests it may play a role in physiologic reactions involving platelets.  相似文献   

14.
The effect of plasmin-derived fibrin(ogen) degradation products on alpha-thrombin cleavage of plasma Factor XIII was studied to identify the fibrin polymer structure that promotes Factor XIIIa formation. Fibrin polymers derived from fibrinogen and Fragment X enhanced the rate of thrombin cleavage of plasma Factor XIII in plasma or buffered solutions. The concentrations of fibrinogen and Fragment X that promoted half-maximal rates of Factor XIIIa formation were 5 and 40 micrograms/ml, respectively. Fragments Y, D, E, D-dimer, and photooxidized fibrinogen did not enhance thrombin cleavage of Factor XIII. Although purified Fragment D1 inhibited fibrin gelation, the soluble protofibrils promoted thrombin activation of Factor XIII. Noncrosslinked fibrin fibers failed to enhance thrombin cleavage of Factor XIII. In conclusion, soluble fibrin oligomers function to promote thrombin cleavage of plasma Factor XIII during blood clotting.  相似文献   

15.
Improved methods are described to obtain bovine prothrombin, Factor IX, Protein C, and autoprothrombin III (Factor X, Auto-III) in purified form. The prothrombin had a specific activity of 4, 340 Iowa units/mg. Theoretically, a preparation of clean thrombin should have a specific activity of 8, 200 U/mg, because 47.08% of the protein in prothrombin is lost when thrombin forms. Such thrombin preparations have been obtained (Arch. Biochem. Biophys. 121, 372 (1967)). The prothrombin concentration of bovine plasma is near 60 mg/liter. Protein C, first isolated by Stenflo (J. Biol. Chem. 251, 355 (1976)), was found to be the precursor of autoprothrombin II-A (Auto-II-A), discovered earlier (Thromb. Diath. Haemorrh. 5, 218 (1960)). Protein C (Factor XIV) was converted to Auto-II-A (Factor XlVa) by thrombin. Digesting purified Auto-III with purified thrombin removed a small glycopeptide from the COOH-terminal end of the heavy chain to yield Auto-IIItm. Auto-III throtnbin Auto-IIIm + peptide. Auto-IIIm was not converted to the active enzyme with thromboplastin and, furthermore, inhibited the activation of purified native Auto-III with thromboplastin. Auto-11 Im was also not converted to the active enzymewhen the procoagulants consisted of purified Factor VIII, purified Factor IXa, platelet factor 3 and calcium ions. The “activation peptide” released by RVV-X from the NH2-terminal end of the heavy chain and the active enzyme (Auto-Cm) were purified. Auto-III was also activated with purified RVV-X. The same “activation peptide” was isolated, but Auto-C was obtained instead of Auto-Cm. Purified Factor IX developed anticoagulant activity when reacted with an optimum concentration of purified thrombin. A suitable reagent for the assay of Factor IX was prepared by removing prothrombin complex from anticoagulated bovine plasma and restoring the prothrombin and Auto-III concentration with use of the respective purified proenzymes.  相似文献   

16.
Calcium ion causes the development of a higher elastic modulus in fibrinogen solutions clotted by thrombin. By also measuring the development of covalent crosslinks introduced by activated Factor XIII, we find that (a) calcium ion causes an overall increase of the modulus, (b) covalent crosslinking of α-chains causes an increase of the modulus, while (c) covalent crosslinking of γ-chains does not.  相似文献   

17.
Fibronectin and fibrin gel structure   总被引:4,自引:0,他引:4  
Plasma fibronectin is covalently incorporated into alpha-chains of fibrin gels in the presence of Factor XIII activated by thrombin (FXIIIaT) but not by Factor XIII activated by the snake venom enzyme batroxobin (FXIIIaB). FXIIIaB catalyzes introduction of gamma-gamma cross-links in fibrin but cross-linked alpha-chains are not formed. In the presence of FXIIIaT, fibrin gels formed by batroxobin incorporated fibronectin and the alpha-chains are cross-linked indicating that FXIIIaB has a different substrate specificity from FXIIIaT. In the presence of FXIIIaT the incorporation of fibronectin approaches 1 mol/340 kDa unit weight of fibrin. Fibronectin when present in a fibrinogen thrombin mixture containing FXIII does not influence the clotting time of the system nor the release of fibrinopeptides. Incorporation of fibronectin is not appreciable before the gel point. This indicates that the polymerization and gelation of fibrinogen is essentially not perturbed by the presence of fibronectin and that fibrin in the gel matrix rather than the fibrin polymers formed prior to gel point is the preferred structure for fibronectin incorporation. Incorporation of fibronectin into fibrin gels during formation leads to an increase in turbidity and a small decrease in Ks (permeability coefficient). This suggests that the width of the strands in the gel increases as a result of fibronectin incorporation. Fibronectin is also incorporated into preformed gels having completely cross-linked gamma- and alpha-chains perhaps indicating that the sites in fibrin involved in fibronectin incorporation are different from those involved in fibrin cross-linking. FXIIIaT appeared to be adsorbed to fibrin gel matrix in the presence but not in the absence of calcium ions.  相似文献   

18.
Calcium and the assays of human plasma clotting Factor XIII   总被引:7,自引:6,他引:1  
1. A continuous fluorimetric assay for blood-clotting Factor XIII based on the incorporation of dansylcadaverine into casein was investigated. 2. Hammarsten casein was fractionated to yield the beta-casein, which was dephosphorylated and acetylated to give a substrate which itself did not bind calcium and which was not cross-linked by the activated Factor. 3. The modified beta-casein was used as substrate for a continuous fluorimetric assay and as substrate for the incorporation of radioactive glycine ethylester. 4. A linked fluorimetric assay for the zymogen is described. 5. The K(m) for calcium was redetermined and at 0.2mm was in the physiological range and much lower than the values reported by others using substrates which interact with calcium. 6. The K(m) for casein is about 14mum.  相似文献   

19.
Thrombin cleaves fibrinopeptides A and B from fibrinogen leading to the formation of a fibrin network that is later covalently crosslinked by Factor XIII (FXIII). Thrombin helps activate FXIII by catalyzing hydrolysis of the FXIII activation peptides (AP). In the current work, the role of exosites in the ternary thrombin-FXIII-fibrin(ogen) complex was further explored. Hydrolysis studies indicate that thrombin predominantly utilizes its active site region to bind extended Factor XIII AP (FXIII AP 33-64 and 28-56) leaving the anion-binding exosites for fibrin(ogen) binding. The presence of fibrin-I leads to improvements in the K(m) for hydrolysis of FXIII AP (28-41), whereas peptides based on the cardioprotective FXIII V34L sequence exhibit less reliance on this cofactor. Surface plasmon resonance measurements reveal that d-Phe-Pro-Arg-chloromethylketone-thrombin binds to fibrinogen faster than to FXIII a(2) and dissociates from fibrinogen more slowly than from FXIII a(2). This system of thrombin exosite interactions with differing affinities promotes efficient clot formation.  相似文献   

20.
The complement system is an important recognition and effector mechanism of the innate immune system that upon activation leads to the elimination of foreign bodies. It can be activated through three pathways of which the lectin pathway is one. The lectin pathway relies on the binding of mannan-binding lectin (MBL) or the ficolins and the subsequent activation of the MBL-associated serine proteases (MASPs), namely, MASP1, 2 and 3 which all form complexes with both MBL and the ficolins. Major substrates have only been identified for MASP2 i.e. C4 and C2. For MASP1 only a few protein substrates which are cleaved at a low rate have been identified while none are known for MASP3. Since chromogenic substrate screenings have shown that MASP1 has thrombin-like activity, we wanted to investigate the catalytic potential of MASP1 towards two major proteins involved in the clotting process, fibrinogen and factor XIII, and compare the activity directly with that of thrombin. We found that rMASP1 and thrombin cleave factor XIII A-chain and the fibrinogen beta-chain at identical sites, but differ in cleavage of the fibrinogen alpha-chain. The thrombin turnover rate of factor XIII is approximately 650 times faster than that of rMASP1 at 37 degrees C, pH 7.4. rMASP1 cleavage of fibrinogen leads to the release of the proinflammatory peptide fibrinopeptide B. Thus rMASP1 has similar, but not identical specificity to thrombin and its catalytic activity for factor XIII and fibrinogen cleavage is much lower than that of thrombin. Nevertheless, rMASP1 can drive the formation of cross-linked fibrinogen. Since MASP1 is activated on contact of MBL or the ficolins with microorganisms, fibrinogen and factor XIII may be involved in the elimination of invading pathogens.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号