首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The neurotrophic effects of oestrogen formed in the brain are important in brain sexual differentiation of the central nervous system and behaviour. Aromatase, converting testosterone to oestradiol-17β, is a key enzyme involved in brain development. In primary cell cultures of foetal hypothalamus, we have found that male neurones consistently have higher aromatase activity than in the female. Using a specific antibody to the mouse aromatase, immunoreactivity was localized in the neural soma and neurites in hypothalamic cultures. Additionally more male foetal hypothalamus neurones express aromatase than in the female. Testosterone increases aromatase activity in parallel with a greater number of aromatase-immunoreactive neurones. Testosterone also increases soma size, neurite length, and branching of cultured hypothalamic neurones. The neuronal aromatase activity appears to be sensitive to the inductive effects of androgen only during the later stages of foetal development. Endogenous inhibitors of the aromatase are also likely to have a regulatory role. This work suggests that regulation of a network of aromatase neurones, sensitive to the hormonal environment of the hypothalamus, may determine when oestrogens are available for neurotrophic effects underlying brain differentiation.  相似文献   

2.
Steroid sex hormones have an organizational role in gender-specific brain development. Aromatase, converting testosterone (T) to oestradiol-17β (E2), is a key enzyme in the brain and regulation of this enzyme is likely to determine availability of E2 effective for neural differentiation. In rodents, oestrogens are formed very actively during male perinatal brain development. This paper reviews work on the sexual differentiation of the brain aromatase system in vitro. Embryonic day 15 mouse hypothalamic culture aromatase activity (AA: mean Vmax = 0.9 pmol/h/mg protein) is several times greater than in the adult, whereas apparent Km is similar for both (30–40 nM). Using microdissected brain areas and cultured cells of the mouse, sex differences in hypothalamic AA during both early embryonic and later perinatal development can be demonstrated, with higher E2 formation in the male than in the female. The sex differences are brain region-specific, since no differences between male and female are detectable in cultured cortical cells. AA quantitation and immunoreactive staining with an aromatase polyclonal antibody both identify neuronal rather than astroglial localizations of the enzyme. Kainic acid eliminates the gender difference in hypothalamic oestrogen formation indicating, furthermore, that this sex dimorphism is neuronal. Gender-specific aromatase regulation is regional in the brain. Oestrogen formation is specifically induced in cultured hypothalamic neurones of either sex by T, since androgen has no effect on cortical cells. Androgen is clearly involved in the growth of hypothalamic neurones containing aromatase. It appears that differentiation of the brain involves maturation of a gender-specific network of oestrogen-forming neurones.  相似文献   

3.
Brain sexual differentiation occurs during steroid-sensitive phases in early development, and is affected particularly by exposure to oestrogens formed in the brain by aromatisation of androgen. The organisational effects of oestrogen result in male-specific neuronal morphology, control of reproductive behaviour, and patterns of gonadotrophin secretion. A question which still has to be resolved is what determines changes in aromatase activity effective for the differentiation of sexually dimorphic brain development during sensitive periods of growth. In the mouse, a sex difference exists at early stages of embryonic development in aromatase-containing neurones of the hypothalamus. The embryonic aromatase system is regulated later in foetal development by androgens. Testosterone treatment increases the numbers of aromatase-immunoreactive hypothalamic neuronal cell bodies. Kinetic evidence from studies on the avian brain suggest that endogenous steroid inhibitors of aromatase, probably formed within neuroglia, also have a role in the control of oestrogen production. Inhibitory kinetic constant determination of endogenous androgenic metabolites formed in the brain showed that preoptic aromatase is potently inhibited by 5-androstanedione (Ki = 6 nM) and less strongly by 5β-dihydrotestosterone (Ki = 350 nM). Regulation by steroidal and possibly non-steroidal inhibitors may contribute to the special characteristics and plasticity in aromatase activity which develops at certain stages in ontogeny.  相似文献   

4.
Steroid sex hormones have an organizational role in gender-specific brain development. Aromatase (cytochrome P450AR), converting testosterone (T) to estradiol-17β (E2) is a key enzyme in brain development and the regulation of aromatase determines the availability of E2 effective for neural differentiation. Gender differences in brain development and behaviour are likely to be influenced by E2 acting during sensitive periods. This differentiating action has been demonstrated in rodent and avian species, but also probably occurs in primates including humans. In rodents, E2 is formed in various hypothalamic areas of the brain during fetal and postnatal development. The question considered here is whether hypothalamic aromatase activity is gender-specific during sensitive phases of behavioural and brain development, and when these sensitive phases occur. In vitro preoptic and limbic aromatase activity has been measured in two strains of wild mice, genetically selected for behavioural aggression based on attack latency, and in the BALB/c mouse. Short attack latency males show a different developmental pattern of aromatase activity in hypothalamus and amygdala to long attack latency males. Using primary brain cell cultures of the BALB/c mouse, sex differences in hypothalamic aromatase activity during both early embryonic and later perinatal development can be demonstrated, with higher E2 formation in males. The sex dimorphisms are brain region specific, since no differences between male and female are detectable in cultured cortical cells. Immunoreactive staining with a polyclonal aromatase antibody identifies a neuronal rather than an astroglial localization of the enzyme. T increases fetal brain aromatase activity and numbers of aromatase-immunoreactive hypothalamic neuronal cell bodies. T appears to influence the growth of hypothalamic neurons containing aromatase. Differentiation of sexually dimorphic brain mechanisms may involve maturation of a gender-specific network of estrogen-forming neurons which are steroid-sensitive in early development.  相似文献   

5.
Castrated male quail were injected with the synthetic oestrogen, diethylstylbestrol (DES) or the synthetic androgen, methyltrienolone (R 1881) or both compounds simultaneously. Both R 1881 and DES activated male sexual behaviour, inhibited LH and FSH secretion and increased hypothalamic aromatase activity. Additive effects between R 1881 and DES were observed for the induction of brain aromatase and for the inhibition of FSH secretion. As a consequence, mechanisms mediated by androgen and estrogen receptors must be involved in the control of these reproductive characteristics.  相似文献   

6.
In adult male primates, estrogens play a role in both gonadotropin feedback and sexual behavior. Inhibition of aromatization in intact male monkeys acutely elevates serum levels of luteinizing hormone, an effect mediated, at least partially, within the brain. High levels of aromatase (CYP19) are present in the monkey brain and regulated by androgens in regions thought to be involved in the central regulation of reproduction. Androgens regulate aromatase pretranslationally and androgen receptor activation is correlated with the induction of aromatase activity. Aromatase and androgen receptor mRNAs display both unique and overlapping distributions within the hypothalamus and limbic system suggesting that androgens and androgen-derived estrogens regulate complimentary and interacting genes within many neural networks. Long-term castrated monkeys, like men, exhibit an estrogen-dependent neural deficit that could be an underlying cause of the insensitivity to testosterone that develops in states of chronic androgen deficiency. Future studies of in situ estrogen formation in brain in the primate model are important for understanding the importance of aromatase not only for reproduction, but also for neural functions such as memory and cognition that appear to be modulated by estrogens.  相似文献   

7.
Preoptic/hypothalamic aromatase activity (AA) is sexually differentiated in birds and mammals but the mechanisms controlling this sex difference remain unclear. We determined here (1) brain sites where AA is sexually differentiated and (2) whether this sex difference results from organizing effects of estrogens during ontogeny or activating effects of testosterone in adulthood. In the first experiment we measured AA in brain regions micropunched in adult male and female Japanese quail utilizing the novel strategy of basing the microdissections on the distribution of aromatase-immunoreactive cells. The largest sex difference was found in the medial bed nucleus of the stria terminalis (mBST) followed by the medial preoptic nucleus (POM) and the tuberal hypothalamic region. A second experiment tested the effect of embryonic treatments known to sex-reverse male copulatory behavior (i.e., estradiol benzoate [EB] or the aromatase inhibitor, Vorozole) on brain AA in gonadectomized adult males and females chronically treated as adults with testosterone. Embryonic EB demasculinized male copulatory behavior, while vorozole blocked demasculinization of behavior in females as previously demonstrated in birds. Interestingly, these treatments did not affect a measure of appetitive sexual behavior. In parallel, embryonic vorozole increased, while EB decreased AA in pooled POM and mBST, but the same effect was observed in both sexes. Together, these data indicate that the early action of estrogens demasculinizes AA. However, this organizational action of estrogens on AA does not explain the behavioral sex difference in copulatory behavior since AA is similar in testosterone-treated males and females that were or were not exposed to embryonic treatments with estrogens.  相似文献   

8.
Testosterone at physiological levels cannot exert negative feedback action on LH secretion in long-term castrated male monkeys. The cellular basis of this refractoriness is unknown. To study it, we compared two groups of male rhesus macaques: one group (group 1, n = 4) was castrated and immediately treated with testosterone for 30 days; the second group (group 2, n = 4) was castrated and treated with testosterone for 9 days beginning 21 days after castration. Feedback control of LH by testosterone in group 1 was normal, whereas insensitivity to its action was found in group 2. Using the endpoints of concentrations of aromatase activity (P450(AROM) messenger RNA [mRNA]) and androgen receptor mRNA in the medial preoptic anterior hypothalamus and in the medial basal hypothalamus, we found that aromatase activity in both of these tissues was significantly lower, P: < 0.01, in group 2 compared with group 1 males. P450(AROM) mRNA and androgen receptor mRNA did not differ, however. Our data suggest that the cellular basis of testosterone insensitivity after long-term castration may reside in the reduced capacity of specific brain areas to aromatize testosterone. Because P450(AROM) mRNA did not change in group 2 males, we hypothesize that an estrogen-dependent neural deficit, not involving the regulation of the P450(AROM) mRNA, occurs in long-term castrated monkeys.  相似文献   

9.
A sensitive in vitro 3H2O microassay for aromatase activity was used to evaluate the potency and selectivity of three aromatase inhibitors in mammalian (gerbil) and avian (ring dove) hypothalamus. The steroidal inhibitors, 1,4,6-androstatrien-3,17-dione (ATD) and 4-hydroxy-androstenedione (4-OH-A) were compared with a new non-steroidal imidazole inhibitor, CGS 16949A [4-(5,6,7,8-tetrahydroimidazo-[1,5-a]-pyridin-5-yl)benzonitrile HCl]. Adult male dove hypothalamic aromatase is highly active [Vmax = 5.3 pmol testosterone (T) converted/h/mg protein], has high substrate binding affinity (Km = 4.0 nM), and direct involvement in control of sexual behaviour. With [1 beta-3H]T or [1 beta-3H]A as substrate, male dove preoptic aromatase activity was inhibited more effectively and selectively by CGS 16949A. Thus, Kis and IC50s for aromatization were approximately 50 times lower for the non-steroidal inhibitor, and inhibition of the other major androgen-metabolizing enzymes (5 alpha/beta-reductase) occurred at concentrations at least one order of magnitude greater than for ATD and 4-OH-A. Neonatal male gerbil hypothalamic aromatase activity (Vmax = 1.3 pmol T converted/h/mg protein) was lower than in the dove. Aromatase inhibition by CGS 16949A is more potent in the neonatal gerbil than in the dove (Kis of 0.03 and 0.60 nM, respectively, with A as substrate). We conclude that the imidazole is an effective aromatase inhibitor in both the adult and developing brain.  相似文献   

10.
The intracellular conversion of testosterone to estradiol by the aromatase enzyme complex is an important step in many of the central actions of testosterone. In rats, estrogen given alone, or in combination with dihydrotestosterone, mimics most of the behavioral effects of testosterone, whereas treatment with antiestrogens or aromatase inhibitors block facilitation of copulatory behavior by testosterone. We used a highly sensitive in vitro radiometric assay to analyze the distribution and regulation of brain aromatase activity. Studies using micropunch dissections revealed that the highest levels of aromatase activity are found in an interconnected group of sexually dimorphic nuclei which constitutes a neural circuit important in the control of male sexual behavior. Androgen regulated aromatase activity in many diencephalic nucleic, including the medial preoptic nucleus, but not in the medial and cortical nuclei of the amygdala. Additional genetic evidence for both androgen-dependent and -independent control of brain AA was obtained by studies of androgen-insensitive testicular-feminized rats. These observations suggest that critical differences in enzyme responsiveness are present in different brain areas. Within several nuclei, sex differences in aromatase induction correlated with differences in nuclear androgen receptor concentrations suggesting that neural responsiveness to testosterone is sexually differentiated. Estradiol and dihydrotestosterone acted synergistically to regulate aromatase activity in the preoptic area. In addition, time-course studies showed that estrogen treatment increased the duration of nuclear androgen receptor occupation in the preoptic area of male rats treated with dihydrotestosterone. These results suggest possible ways that estrogens and androgens may interact at the cellular level to regulate neural function and behavior.  相似文献   

11.
We demonstrated previously that testosterone regulates aromatase activity in the anterior/dorsolateral hypothalamus of male rhesus macaques. To determine the level of the androgen effect, we developed a ribonuclease protection assay to study the effects of testosterone or dihydrotestosterone (DHT) on aromatase (P450(AROM)) mRNA in selected brain areas. Adult male rhesus monkeys were treated with testosterone or DHT. Steroids in serum were quantified by RIA. Fourteen brain regions were analyzed for P450(AROM) mRNA. Significant elevations of its message over controls (P<0.05) were found in the medial preoptic area/anterior hypothalamus of both androgen treatment groups and the medial basal hypothalamus of the testosterone-treated males. Other brain areas were not affected by androgen treatment. We conclude that testosterone and DHT regulate P450(AROM) mRNA in brain regions that mediate reproductive behaviors and gonadotropin release. The P450(AROM) mRNA of other brain areas is not androgen dependent. Brain-derived estrogens may also be important for maintaining neural circuitry in brain areas not related to reproduction. The control of P450(AROM) mRNA in these areas may differ from what we report here, but it is equally important to understand the function of in situ estrogen formation in these areas.  相似文献   

12.
This study examines the effects of nonaromatizable androgens, methyltrienolone (R1881) and 5 alpha-dihydrotestosterone (DHT) on aggressive courtship and vocal behavior in the male ring dove. Since androgens may influence behavior by increasing the formation of estrogen in the brain, the effects of R1881 and DHT on brain aromatase activity were also studied using an in vitro microassay. Under conditions in which testosterone induced aggressive courtship patterns, the nonaromatizable androgens were ineffective. But DHT and R1881 induced vocal behavior with equal efficiency, indicating that androgens can influence mechanisms of vocal behavior without conversion to estrogens. The behavioral effectiveness of both hormones was reduced (approximately 50%) when the period between castration and treatment was doubled. Testosterone propionate increased formation of E2 from 3H-testosterone in both the preoptic (POA) and anterior hypothalamic areas. Neither of the nonaromatizable androgens affected POA aromatase activity. The results suggest that only the aromatizable androgen, testosterone, which is also required specifically for male courtship, increases preoptic formation of estrogen.  相似文献   

13.
We have studied the effects of various steroids on DNA synthesis in MCF-7 human breast carcinoma cells, which have aromatase activity and which exert an oestrogen receptor-mediated growth, to assess the significance of intracellular aromatase on growth stimulation as well as inhibition by aromatase inhibitors. The cells were cultured for 96 h in phenol red-free medium containing 10% charcoal-treated fetal bovine serum and test reagents and pulse-labelled with [3H]thymidine. Physiological concentrations of oestradiol, oestrone, testosterone (T) and androstenedione (AD) stimulated thymidine incorporation. However, oestrone-sulphate and dihydrotestosterone (DHT) only stimulated at concentrations greater than the physiological levels. T and DHT stimulation was blocked by tamoxifen, but not by cyproterone acetate, suggesting that the stimulation was mediated via the oestrogen receptor but not by the androgen receptor. Stimulation by T and AD was reduced by aminoglutethimide and 14 alpha-hydroxy-4-androstene-3,6,17-trione, both of which inhibit aromatase activity, however, stimulation by nonaromatizable DHT was not reduced by the inhibitors, suggesting that androgens were converted by the intracellular aromatase to oestrogens which stimulated the thymidine incorporation. It is suggested that intracellular aromatase significantly contributes to the stimulation of DNA synthesis and that aromatase inhibitors suppress the stimulation.  相似文献   

14.
The aim of the present study was to determine whether the fetal lamb brain has the capacity to aromatize androgens to estrogens during the critical period for sexual differentiation. We also determined whether administration of the aromatase-inhibitor 1,4,6-androstatriene-3,17-dione (ATD) could cross the placenta and inhibit aromatase activity (AA) in fetal brain. Eight pregnant ewes were utilized. On Day 50 of pregnancy, four ewes were given ATD-filled Silastic implants, and the other four ewes received sham surgeries. The fetuses were surgically delivered 2 wk later (Day 64 of gestation). High levels of AA (0.8-1.4 pmol/h/mg protein) were present in the hypothalamus and amygdala. Lower levels (0.02-0.1 pmol/h/mg protein) were measured in brain stem regions, cortex, and olfactory bulbs. The Michaelis-Menten dissociation constant (K(m)) for aromatase in the fetal sheep brain was 3-4 nM. No significant sex differences in AA were observed in brain. Treatment with ATD produced significant inhibition of AA in most brain areas but did not significantly alter serum profiles of the major sex steroids in maternal and fetal serum. Concentrations of testosterone in serum from the umbilical artery and vein were significantly greater in male than in female fetuses. No other sex differences in serum steroids were observed. These data demonstrate that high levels of AA are found in the fetal sheep hypothalamus and amygdala during the critical period for sexual differentiation. They also demonstrate that AA can be inhibited in the fetal lamb brain by treating the mother with ATD, without harming fetal development.  相似文献   

15.
Hormonal and neurotransmitter environment of nondifferentiated cells in the developing brain determines many of gender-specific behavioural and neuroendocrine functions. Early postnatal and long-term effects of maternal stress or prenatal glucocorticoid on sex-related peculiarities of the brain morphology, biogenic monoamine turnover, testosterone metabolism, hypothalamic noradrenaline (NA) and adrenocortical responses to an acute stress were studied in Wistar rat offsprings. Maternal stress (1 h immobilization daily for gestational days 15–21) prevented development of sexual dimorphism in neuronal cell nuclei volumes in suprachiazmatic nucleus (SCN) in 10 day old pups. That was associated with a disappearance of male–female differences in NA and 5-hydroxytryptamine turnover in the preoptic area (POA) and dopamine (DA) turnover in the mediobasal hypothalamus (MBH) by decreasing them in male pups. Hydrocortisone acetate (5 mg daily during the last week of pregnancy) produced changes in NA turnover in the POA of males and females which were quite similar to those after maternal stress. Changes in aromatase and 5-reductase activities in the POA of male pups were quite opposite as affected by maternal stress or prenatal glucocorticoid. Sexual differences in 5-reductase activity in the MBH appeared due to its increase in prenatally stressed male pups. In contrast to adult males, in adult females maternal stress did not restrict hypothalamic NA and blood plasma corticosterone response to acute stress (1 h immobilization). Our findings on morphology and functions of gender-related developing brain areas stand in correlation with modifying effects of maternal stress and prenatal glucocorticoid on behavior and neuroendocrine regulations.  相似文献   

16.
The expression of aromatase, the enzyme that catalyzes the biosynthesis of estrogens from precursor androgens, is increased in the brain after injury, suggesting that aromatase may be involved in neuroprotection. In the present study, the effect of inactivating aromatase has been assessed in a model of neurodegeneration induced by the systemic administration of neurotoxins. Domoic acid, at a dose that is not neurotoxic in intact male mice, induced significant neuronal loss in the hilus of the hippocampal formation of mice with reduced levels of aromatase substrates as a result of gonadectomy. Furthermore, the aromatase substrate testosterone, as well as its metabolite estradiol, the product of aromatase, were able to protect hilar neurons from domoic acid. In contrast, dihydrotestosterone, the 5 alpha-reduced metabolite of testosterone and a nonaromatizable androgen, was not. These findings suggest that aromatization of testosterone to estradiol may be involved in the neuroprotective action of testosterone in this experimental model. In addition, aromatase knock-out mice showed significant neuronal loss after injection of a low dose of domoic acid, while control littermates did not, indicating that aromatase deficiency increases the vulnerability of hilar neurons to neurotoxic degeneration. The effect of aromatase on neuroprotection was also tested in male rats treated systemically with the specific aromatase inhibitor fadrozole and injected with kainic acid, a well characterized neurotoxin for hilar neurons in the rat. Fadrozole enhanced the neurodegenerative effect of kainic acid in intact male rats and this effect was counterbalanced by the administration of estradiol. Furthermore, the neuroprotective effect of testosterone against kainic acid in castrated male rats was blocked by fadrozole. These findings suggest that neuroprotection by aromatase is due to the formation of estradiol from its precursor testosterone. Finally, a role for local cerebral aromatase in neuroprotection is indicated by the fact that intracerebral administration of fadrozole enhanced kainic acid induced neurodegeneration in the hippocampus of intact male rats. These findings indicate that aromatase deficiency decreases the threshold for neurodegeneration and that local cerebral aromatase is neuroprotective. Brain aromatase may therefore represent a new target for therapeutic approaches to neurodegenerative diseases.  相似文献   

17.
Aromatase pathway mediates sex change in each direction   总被引:2,自引:0,他引:2  
The enzyme aromatase controls the androgen/oestrogen ratio by catalysing the irreversible conversion of testosterone into oestradiol (E2). Therefore, the regulation of E2 synthesis by aromatase is thought to be critical in sexual development and differentiation. Here, we demonstrate for the first time that experimental manipulation of E2 levels via the aromatase pathway induces adult sex change in each direction in a hermaphroditic fish that naturally exhibits bidirectional sex change. Our results demonstrate that a single enzymatic pathway can regulate both female and male sexual differentiation, and that aromatase may be the key enzyme that transduces environmental, including social, cues to functional sex differentiation in species with environmental sex determination.  相似文献   

18.
Aromatase activity is higher in the male than in the female anterior hypothalamic-preoptic area (POA) in both the avian and the rodent adult brain. This sex difference is abolished after castration of the male and restored by androgen treatment. Gonadectomy has no effect on POA aromatase in the female. The aim of this study was to find out whether sex dimorphism in adult POA aromatase is only due to a sex difference in circulating gonadal hormones or dependent upon sexual differentiation of the brain. Aromatase activity was measured in vitro in microdissected POA samples using a sensitive radiometric assay. We examined the effects of gonadectomy and testosterone treatment on enzyme activity in adult rats and doves of both sexes. We also studied the effects of neonatal gonadectomy and hormone substitution in male and female rats. The results suggest that levels of POA aromatase in the adult depend primarily on gonadal activity, but that mechanisms involved in the regulation of aromatase activity and enzyme induction may be sex-specific and could result from sexual differentiation of the brain in early life. Further work will be required to determine the developmental stage when this occurs and the exact mechanism(s) responsible for increased sensitivity of the adult male POA to the inductive effect of testosterone.  相似文献   

19.
Aromatase activity is higher in the male than in the female anterior hypothalamic-preoptic area (POA) in both the avian and the rodent adult brain. This sex difference is abolished after castration of the male and restored by androgen treatment. Gonadectomy has no effect on POA aromatase in the female. The aim of this study was to find out whether sex dimorphism in adult POA aromatase is only due to a sex difference in circulating gonadal hormones or dependent upon sexual differentiation of the brain. Aromatase activity was measured in vitro in microdissected POA samples using a sensitive radiometric assay. We examined the effects of gonadectomy and testosterone treatment on enzyme activity in adult rats and doves of both sexes. We also studied the effects of neonatal gonadectomy and hormone substitution in male and female rats. The results suggest that levels of POA aromatase in the adult depend primarily on gonadal activity, but that mechanisms involved in the regulation of aromatase and enzyme induction may be sex-specific and could result from sexual differentiation of the brain in early life. Further work will be required to determine the developmental stage when this occurs and the exact mechanism(s) responsible for increased sensitivity of the adult male POA to the inductive effect of testosterone.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号