首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
TAK1, a member of the mitogen-activated kinase kinase kinase family, is activated in vivo by various cytokines, including interleukin-1 (IL-1), or when ectopically expressed together with the TAK1-binding protein TAB1. However, this molecular mechanism of activation is not yet understood. We show here that endogenous TAK1 is constitutively associated with TAB1 and phosphorylated following IL-1 stimulation. Furthermore, TAK1 is constitutively phosphorylated when ectopically overexpressed with TAB1. In both cases, dephosphorylation of TAK1 renders it inactive, but it can be reactivated by preincubation with ATP. A mutant of TAK1 that lacks kinase activity is not phosphorylated either following IL-1 treatment or when coexpressed with TAB1, indicating that TAK1 phosphorylation is due to autophosphorylation. Furthermore, mutation to alanine of a conserved serine residue (Ser-192) in the activation loop between kinase domains VII and VIII abolishes both phosphorylation and activation of TAK1. These results suggest that IL-1 and ectopic expression of TAB1 both activate TAK1 via autophosphorylation of Ser-192.  相似文献   

2.
TAK1 kinase is an indispensable intermediate in several cytokine signaling pathways including tumor necrosis factor, interleukin-1, and transforming growth factor-beta signaling pathways. TAK1 also participates in stress-activated intracellular signaling pathways such as osmotic stress signaling pathway. TAK1-binding protein 1 (TAB1) is constitutively associated with TAK1 through its C-terminal region. Although TAB1 is known to augment TAK1 catalytic activity when it is overexpressed, the role of TAB1 under physiological conditions has not yet been identified. In this study, we determined the role of TAB1 in TAK1 signaling by analyzing TAB1-deficient mouse embryonic fibroblasts (MEFs). Tumor necrosis factor- and interleukin-1-induced activation of TAK1 was entirely normal in Tab1-deficient MEFs and could activate both mitogen-activated protein kinases and NF-kappaB. In contrast, we found that osmotic stress-induced activation of TAK1 was largely impaired in Tab1-deficient MEFs. Furthermore, we showed that the C-terminal 68 amino acids of TAB1 were sufficient to mediate osmotic stress-induced TAK1 activation. Finally, we attempted to determine the mechanism by which TAB1 activates TAK1. We found that TAK1 is spontaneously activated when the concentration is increased and that it is totally dependent on TAB1. Cell shrinkage under the osmotic stress condition increases the concentration of TAB1-TAK1 and may oligomerize and activate TAK1 in a TAB1-dependent manner. These results demonstrate that TAB1 mediates TAK1 activation only in a subset of TAK1 pathways that are mediated through spontaneous oligomerization of TAB1-TAK1.  相似文献   

3.
TAK1, a member of the MAPKKK family, is involved in the intracellular signaling pathways mediated by transforming growth factor beta, interleukin 1, and Wnt. TAK1 kinase activity is specifically activated by the TAK1-binding protein TAB1. The C-terminal 68-amino acid sequence of TAB1 (TAB1-C68) is sufficient for TAK1 interaction and activation. Analysis of various truncated versions of TAB1-C68 defined a C-terminal 30-amino acid sequence (TAB1-C30) necessary for TAK1 binding and activation. NMR studies revealed that the TAB1-C30 region has a unique alpha-helical structure. We identified a conserved sequence motif, PYVDXA/TXF, in the C-terminal domain of mammalian TAB1, Xenopus TAB1, and its Caenorhabditis elegans homolog TAP-1, suggesting that this motif constitutes a specific TAK1 docking site. Alanine substitution mutagenesis showed that TAB1 Phe-484, located in the conserved motif, is crucial for TAK1 binding and activation. The C. elegans homolog of TAB1, TAP-1, was able to interact with and activate the C. elegans homolog of TAK1, MOM-4. However, the site in TAP-1 corresponding to Phe-484 of TAB1 is an alanine residue (Ala-364), and changing this residue to Phe abrogates the ability of TAP-1 to interact with and activate MOM-4. These results suggest that the Phe or Ala residue within the conserved motif of the TAB1-related proteins is important for interaction with and activation of specific TAK1 MAPKKK family members in vivo.  相似文献   

4.
Transforming growth factor-beta-activated kinase 1 (TAK1) mitogen-activated protein kinase kinase kinase has been shown to be activated by cellular stresses including tumor necrosis factor-alpha (TNF-alpha). Here, we characterized the molecular mechanisms of cellular stress-induced TAK1 activation, focusing mainly on the phosphorylation of TAK1 at Thr-187 and Ser-192 in the activation loop. Thr-187 and Ser-192 are conserved among species from Caenorhabditis elegans to human, and their replacement with Ala resulted in inactivation of TAK1. Immunoblotting with a novel phospho-TAK1 antibody revealed that TNF-alpha significantly induced the phosphorylation of endogenous TAK1 at Thr-187, and subsequently the phosphorylated forms of TAK1 rapidly disappeared. Intermolecular autophosphorylation of Thr-187 was essential for TAK1 activation. RNA interference and overexpression experiments demonstrated that TAK1-binding protein TAB1 and TAB2 were involved in the phosphorylation of TAK1, but they regulated TAK1 phosphorylation differentially. Furthermore, SB203580 and p38alpha small interfering RNA enhanced TNF-alpha-induced Thr-187 phosphorylation as well as TAK1 kinase activity, indicating that the phosphorylation is affected by p38alpha/TAB1/TAB2-mediated feedback control of TAK1. These results indicate critical roles of Thr-187 phosphorylation in the stress-induced rapid and transient activation of TAK1 in a signaling complex containing TAB1 and TAB2.  相似文献   

5.
Several mitogen-activated protein kinase kinase kinases play critical roles in nuclear factor-kappaB (NF-kappaB) activation. We recently reported that the overexpression of transforming growth factor-beta-activated kinase 1 (TAK1), a member of the mitogen-activated protein kinase kinase kinase family, together with its activator TAK1-binding protein 1 (TAB1) stimulates NF-kappaB activation. Here we investigated the molecular mechanism of TAK1-induced NF-kappaB activation. Dominant negative mutants of IkappaB kinase (IKK) alpha and IKKbeta inhibited TAK1-induced NF-kappaB activation. TAK1 activated IKKalpha and IKKbeta in the presence of TAB1. IKKalpha and IKKbeta were coimmunoprecipitated with TAK1 in the absence of TAB1. TAB1-induced TAK1 activation promoted the dissociation of active forms of IKKalpha and IKKbeta from active TAK1, whereas the IKK mutants remained to interact with active TAK1. Furthermore, tumor necrosis factor-alpha activated endogenous TAK1, and the kinase-negative TAK1 acted as a dominant negative inhibitor against tumor necrosis factor-alpha-induced NF-kappaB activation. These results demonstrated a novel signaling pathway to NF-kappaB activation through TAK1 in which TAK1 may act as a regulatory kinase of IKKs.  相似文献   

6.
Interleukin-1 (IL-1) is a proinflammatory cytokine that recognizes a surface receptor complex and generates multiple cellular responses. IL-1 stimulation activates the mitogen-activated protein kinase kinase kinase TAK1, which in turn mediates activation of c-Jun N-terminal kinase and NF-kappaB. TAB2 has previously been shown to interact with both TAK1 and TRAF6 and promote their association, thereby triggering subsequent IL-1 signaling events. The serine/threonine kinase IL-1 receptor-associated kinase (IRAK) also plays a role in IL-1 signaling, being recruited to the IL-1 receptor complex early in the signal cascade. In this report, we investigate the role of IRAK in the activation of TAK1. Genetic analysis reveals that IRAK is required for IL-1-induced activation of TAK1. We show that IL-1 stimulation induces the rapid but transient association of IRAK, TRAF6, TAB2, and TAK1. TAB2 is recruited to this complex following translocation from the membrane to the cytosol upon IL-1 stimulation. In IRAK-deficient cells, TAB2 translocation and its association with TRAF6 are abolished. These results suggest that IRAK regulates the redistribution of TAB2 upon IL-1 stimulation and facilitates the formation of a TRAF6-TAB2-TAK1 complex. Formation of this complex is an essential step in the activation of TAK1 in the IL-1 signaling pathway.  相似文献   

7.
Transforming growth factor beta-activated kinase 1 (TAK1), a member of the MAPKKK family, was initially described to play an essential role in the transforming growth factor beta-signaling pathway, but recent evidence has emerged implicating TAK1 in the interleukin (IL)-1 and tumor necrosis factor (TNF) pathways. Notably, two homologous proteins, TAB2 and TAB3, have been identified as adaptors linking TAK1 to the upstream adaptors TRAFs. However, it remains unclear whether the interaction between TAB2/TAB3 and TAK1 is necessary for its kinase activation and subsequent activation of the IKK and MAPK pathways. Here, we characterized the TAB2/TAB3-binding domain in TAK1 and further examined the requirement of this interaction for IL-1, TNF, and RANKL signaling. Through deletion mapping experiments, we demonstrated that the binding motif for TAB2/TAB3 is a non-contiguous region located within the last C-terminal 100 residues of TAK1. However, residues 479-553 of TAK1 appear to be necessary and sufficient for TAB2/TAB3 interaction. Conversely, residues 574-693 of TAB2 were shown to interact with TAK1. A green fluorescent protein fusion protein containing the last 100 residues of TAK1 (TAK1-C100) abolished the interaction of endogenous TAB2/TAB3 with TAK1, the phosphorylation of TAK1, and prevented the activation of IKK and MAPK induced by IL-1, TNF, and RANKL. Furthermore, TAK1-C100 blocked RANKL-induced nuclear accumulation of NFATc1 and consequently osteoclast differentiation consistent with the ability of a catalytically inactive TAK1 to block RANKL-mediated signaling. Significantly, our study provides evidence that the TAB2/TAB3 interaction with TAK1 is crucial for the activation of signaling cascades mediated by IL-1, TNF, and RANKL.  相似文献   

8.
TAK1 mitogen-activated protein kinase kinase kinase (MAP3K) is activated by its specific activator, TAK1-binding protein 1 (TAB1). A constitutively active TAK1 mutant has not yet been generated due to the indispensable requirement of TAB1 for TAK1 kinase activity. In this study, we generated a novel constitutively active TAK1 by fusing its kinase domain to the minimal TAK1-activation domain of TAB1. Co-immunoprecipitation assay demonstrated that these domains interacted intra-molecularly. The TAK1-TAB1 fusion protein showed a significant MAP3K activity in vitro and activated c-Jun N-terminal kinase/p38 MAPKs and IkappaB kinase in vivo, which was followed by increased production of interleukin-6. These results indicate that the fusion protein is useful for characterizing the physiological roles of the TAK1-TAB1 complex.  相似文献   

9.
The mechanism by which YopP simultaneously inhibits mitogen-activated protein kinase (MAPK) and nuclear factor-kappaB pathways has been elusive. Ectopic expression of YopP inhibits the activity and ubiquitination of a complex consisting of overexpressed TGF-beta-activated kinase 1 (TAK1) and its subunit TAK1-binding protein (TAB)1, but not of MEK kinase 1. YopP, but not the catalytically inactive mutant YopP(C172A), also suppresses basal and interleukin-1-inducible activation of endogenous TAK1, TAB1 and TAB2. YopP does not affect the interaction of TAK1, TAB1 and TAB2 but inhibits autophosphorylation of TAK1 at Thr 187 and phosphorylation of TAB1 at Ser 438. Glutathione S-transferase-tagged YopP (GST-YopP) binds to MAPK kinase (MAPKK)4 and TAB1 but not to TAK1 or TAB2 in vitro. Furthermore, YopP in synergy with a previously described negative regulatory feedback loop inhibits TAK1 by MAPKK6-p38-mediated TAB1 phosphorylation. Taken together, these data strongly suggest that YopP binds to TAB1 and directly inhibits TAK1 activity by affecting constitutive TAK1 and TAB1 ubiquitination that is required for autoactivation of TAK1.  相似文献   

10.
Transforming growth factor-beta (TGF-beta)-activated kinase 1 (TAK1) is a member of the MAPKKK family of protein kinases, and is involved in intracellular signalling pathways stimulated by transforming growth factor beta, interleukin-1 and tumour necrosis factor-alpha. TAK1 is known to rely upon an additional protein, TAK1-binding protein 1 (TAB1), for complete activation. However, the molecular basis for this activation has yet to be elucidated. We have solved the crystal structure of a novel TAK1 chimeric protein and these data give insight into how TAK1 is activated by TAB1. Our results reveal a novel binding pocket on the TAK1 kinase domain whose shape complements that of a unique alpha-helix in the TAK1 binding domain of TAB1, providing the basis for an intimate hydrophobic association between the protein activator and its target.  相似文献   

11.
Epstein-Barr virus latent membrane protein 1 (LMP1) activates NF-kappaB and c-Jun N-terminal kinase (JNK), which is essential for LMP1 oncogenic activity. Genetic analysis has revealed that tumor necrosis factor receptor-associated factor 6 (TRAF6) is an indispensable intermediate of LMP1 signaling leading to activation of both NF-kappaB and JNK. However, the mechanism by which LMP1 engages TRAF6 for activation of NF-kappaB and JNK is not well understood. Here we demonstrate that TAK1 mitogen-activated protein kinase kinase kinase and TAK1-binding protein 2 (TAB2), together with TRAF6, are recruited to LMP1 through its N-terminal transmembrane region. The C-terminal cytoplasmic region of LMP1 facilitates the assembly of this complex and enhances activation of JNK. In contrast, IkappaB kinase gamma is recruited through the C-terminal cytoplasmic region and this is essential for activation of NF-kappaB. Furthermore, we found that ablation of TAK1 resulted in the loss of LMP1-induced activation of JNK but not of NF-kappaB. These results suggest that an LMP1-associated complex containing TRAF6, TAB2, and TAK1 plays an essential role in the activation of JNK. However, TAK1 is not an exclusive intermediate for NF-kappaB activation in LMP1 signaling.  相似文献   

12.
The Snf1/AMP-activated protein kinase (AMPK) family is important for metabolic regulation and is highly conserved from yeast to mammals. The upstream kinases are also functionally conserved, and the AMPK kinases LKB1 and Ca2+/calmodulin-dependent protein kinase kinase activate Snf1 in mutant yeast cells lacking the native Snf1-activating kinases, Sak1, Tos3, and Elm1. Here, we exploited the yeast genetic system to identify members of the mammalian AMPK kinase family by their function as Snf1-activating kinases. A mouse embryo cDNA library in a yeast expression vector was used to transform sak1Delta tos3Delta elm1Delta yeast cells. Selection for a Snf+ growth phenotype yielded cDNA plasmids expressing LKB1, Ca2+/calmodulin-dependent protein kinase kinase, and transforming growth factor-beta-activated kinase (TAK1), a member of the mitogen-activated protein kinase kinase kinase family. We present genetic and biochemical evidence that TAK1 activates Snf1 protein kinase in vivo and in vitro. We further show that recombinant TAK1, fused to the activation domain of its binding partner TAB1, phosphorylates Thr-172 in the activation loop of the AMPK catalytic domain. Finally, expression of TAK1 and TAB1 in HeLa cells or treatment of cells with cytokines stimulated phosphorylation of Thr-172 of AMPK. These findings indicate that TAK1 is a functional member of the Snf1/AMPK kinase family and support TAK1 as a candidate for an authentic AMPK kinase in mammalian cells.  相似文献   

13.
Responses to transforming growth factor beta and multiple cytokines involve activation of transforming growth factor beta-activated kinase-1 (TAK1) kinase, which activates kinases IkappaB kinase (IKK) and MKK3/6, leading to the parallel activation of NF-kappaB and p38 MAPK. Activation of TAK1 by autophosphorylation is known to involve three different TAK1-binding proteins (TABs). Here we report a protein phosphatase subunit known as type 2A phosphatase-interacting protein (TIP) that also acts as a TAB because it co-precipitates with and directly binds to TAK1, enhances TAK1 autophosphorylation at unique sites, and promotes TAK1 phosphorylation of IKKbeta and signaling to NF-kappaB. Mass spectrometry demonstrated that co-expression of TAB4 protein significantly increased phosphorylation of four sites in TAK1, in a linker region between the kinase and TAB2/3 binding domains, and two sites in TAB1. Recombinant GST-TAB4 bound in an overlay assay directly to inactive TAK1 and activated TAK1 but not TAK1 phosphorylated in the linker sites, suggesting a bind and release mechanism. In kinase assays using TAK1 immune complexes, added GST-TAB4 selectively stimulated IKK phosphorylation. TAB4 co-precipitated polyubiquitinated proteins dependent on a Phe-Pro motif that was required to enhance phosphorylation of TAK1. TAB4 mutated at Phe-Pro dominantly interfered with IL-1beta activation of NF-kappaB involving IKK-dependent but not p38 MAPK-dependent signaling. The results show that TAB4 binds TAK1 and polyubiquitin chains to promote specific sites of phosphorylation in TAK1-TAB1, which activates IKK signaling to NF-kappaB.  相似文献   

14.
TAK1 binding protein 1 (TAB1) binds and induces autophosphorylation of TGF-beta activating kinase (TAK1). TAK1, a mitogen-activated kinase kinase kinase, is involved in several distinct signaling pathways including non-Smad pathways for TGF-beta superfamily members and inflammatory responses caused by cytokines. Conventional disruption of the murine Tab1 gene results in late gestational lethality showing intraventricular septum defects and underdeveloped lung alveoli. To gain a better understanding of the roles of TAB1 in different tissues, at different stages of development, and in pathological conditions, we generated Tab1 floxed mice in which the loxP sites flank Exons 9 and 10 to remove the C-terminal region of TAB1 protein necessary for activation of TAK1. We demonstrate that Cre-mediated recombination using Sox2-Cre, a Cre line expressed in the epiblast during early embryogenesis, results in deletion of the gene and protein. These homozygous Cre-recombined null embryos display an identical phenotype to conventional null embryos. This animal model will be useful in revealing distinct roles of TAB1 in different tissues at different stages.  相似文献   

15.
The protein kinase TAK1 (transforming growth factor-beta-activated kinase 1), which has been implicated in the activation of MAPK (mitogen-activated protein kinase) cascades and the production of inflammatory mediators by LPS (lipopolysaccharide), IL-1 (interleukin 1) and TNF (tumour necrosis factor), comprises the catalytic subunit complexed to the regulatory subunits, termed TAB (TAK1-binding subunit) 1 and either TAB2 or TAB3. We have previously identified a feedback-control mechanism by which p38alpha MAPK down-regulates TAK1 and showed that p38alpha MAPK phosphorylates TAB1 at Ser(423) and Thr(431). In the present study, we identified two IL-1-stimulated phosphorylation sites on TAB2 (Ser(372) and Ser(524)) and three on TAB3 (Ser(60), Thr(404) and Ser(506)) in human IL-1R cells [HEK-293 (human embryonic kidney) cells that stably express the IL-1 receptor] and MEFs (mouse embryonic fibroblasts). Ser(372) and Ser(524) of TAB2 are not phosphorylated by pathways dependent on p38alpha/beta MAPKs, ERK1/2 (extracellular-signal-regulated kinase 1/2) and JNK1/2 (c-Jun N-terminal kinase 1/2). In contrast, Ser(60) and Thr(404) of TAB3 appear to be phosphorylated directly by p38alpha MAPK, whereas Ser(506) is phosphorylated by MAPKAP-K2/MAPKAP-K3 (MAPK-activated protein kinase 2 and 3), which are protein kinases activated by p38alpha MAPK. Studies using TAB1(-/-) MEFs indicate important roles for TAB1 in recruiting p38alpha MAPK to the TAK1 complex for the phosphorylation of TAB3 at Ser(60) and Thr(404) and in inhibiting the dephosphorylation of TAB3 at Ser(506). TAB1 is also required to induce TAK1 catalytic activity, since neither IL-1 nor TNFalpha was able to stimulate detectable TAK1 activity in TAB1(-/-) MEFs. Surprisingly, the IL-1 and TNFalpha-stimulated activation of MAPK cascades and IkappaB (inhibitor of nuclear factor kappaB) kinases were similar in TAB1(-/-), MEKK3(-/-) [MAPK/ERK (extracellular-signal-regulated kinase) kinase kinase 3] and wild-type MEFs, suggesting that another MAP3K (MAPK kinase kinase) may mediate the IL-1/TNFalpha-induced activation of these signalling pathways in TAB1(-/-) and MEKK3(-/-) MEFs.  相似文献   

16.
Autophagic responses are coupled to the activation of the inhibitor of NF-κB kinase (IKK). Here, we report that the essential autophagy mediator Beclin 1 and TGFβ-activated kinase 1 (TAK1)-binding proteins 2 and 3 (TAB2 and TAB3), two upstream activators of the TAK1-IKK signalling axis, constitutively interact with each other via their coiled-coil domains (CCDs). Upon autophagy induction, TAB2 and TAB3 dissociate from Beclin 1 and bind TAK1. Moreover, overexpression of TAB2 and TAB3 suppresses, while their depletion triggers, autophagy. The expression of the C-terminal domain of TAB2 or TAB3 or that of the CCD of Beclin 1 competitively disrupts the interaction between endogenous Beclin 1, TAB2 and TAB3, hence stimulating autophagy through a pathway that requires endogenous Beclin 1, TAK1 and IKK to be optimally efficient. These results point to the existence of an autophagy-stimulatory 'switch' whereby TAB2 and TAB3 abandon inhibitory interactions with Beclin 1 to engage in a stimulatory liaison with TAK1.  相似文献   

17.
In addition to caspase inhibition, X-linked inhibitor of apoptosis (XIAP) induces NF-kappaB and MAP kinase activation during TGF-b and BMP receptor signaling and upon overexpression. Here we show that the BIR1 domain of XIAP, which has no previously ascribed function, directly interacts with TAB1 to induce NF-kappaB activation. TAB1 is an upstream adaptor for the activation of the kinase TAK1, which in turn couples to the NF-kappaB pathway. We report the crystal structures of BIR1, TAB1, and the BIR1/TAB1 complex. The BIR1/TAB1 structure reveals a striking butterfly-shaped dimer and the detailed interaction between BIR1 and TAB1. Structure-based mutagenesis and knockdown of TAB1 show unambiguously that the BIR1/TAB1 interaction is crucial for XIAP-induced TAK1 and NF-kappaB activation. We show that although not interacting with BIR1, Smac, the antagonist for caspase inhibition by XIAP, also inhibits the XIAP/TAB1 interaction. Disruption of BIR1 dimerization abolishes XIAP-mediated NF-kappaB activation, implicating a proximity-induced mechanism for TAK1 activation.  相似文献   

18.
Feedback control of the protein kinase TAK1 by SAPK2a/p38alpha   总被引:1,自引:0,他引:1  
TAB1, a subunit of the kinase TAK1, was phosphorylated by SAPK2a/p38alpha at Ser423, Thr431 and Ser438 in vitro. TAB1 became phosphorylated at all three sites when cells were exposed to cellular stresses, or stimulated with tumour necrosis factor-alpha (TNF-alpha), interleukin-1 (IL-1) or lipopolysaccharide (LPS). The phosphorylation of Ser423 and Thr431 was prevented if cells were pre-incubated with SB 203580, while the phosphorylation of Ser438 was partially inhibited by PD 184352. Ser423 is the first residue phosphorylated by SAPK2a/p38alpha that is not followed by proline. The activation of TAK1 was enhanced by SB 203580 in LPS-stimulated macrophages, and by proinflammatory cytokines or osmotic shock in epithelial KB cells or embryonic fibroblasts. The activation of TAK1 by TNF-alpha, IL-1 or osmotic shock was also enhanced in embryonic fibroblasts from SAPK2a/p38alpha-deficient mice, while incubation of these cells with SB 203580 had no effect. Our results suggest that TAB1 participates in a SAPK2a/p38alpha-mediated feedback control of TAK1, which not only limits the activation of SAPK2a/p38alpha but synchronizes its activity with other signalling pathways that lie downstream of TAK1 (JNK and IKK).  相似文献   

19.
Transforming growth factor (TGF)-β-activated kinase 1 (TAK1) is a key serine/threonine protein kinase that mediates signals transduced by pro-inflammatory cytokines such as transforming growth factor-β, tumour necrosis factor (TNF), interleukin-1 (IL-1) and wnt family ligands. TAK1 is found in complex with binding partners TAB1-3, phosphorylation and ubiquitination of which has been found to regulate TAK1 activity. In this study, we show that TAB1 is modified with N-acetylglucosamine (O-GlcNAc) on a single site, Ser395. With the help of a novel O-GlcNAc site-specific antibody, we demonstrate that O-GlcNAcylation of TAB1 is induced by IL-1 and osmotic stress, known inducers of the TAK1 signalling cascade. By reintroducing wild-type or an O-GlcNAc-deficient mutant TAB1 (S395A) into Tab1(-/-) mouse embryonic fibroblasts, we determined that O-GlcNAcylation of TAB1 is required for full TAK1 activation upon stimulation with IL-1/osmotic stress, for downstream activation of nuclear factor κB and finally production of IL-6 and TNFα. This is one of the first examples of a single O-GlcNAc site on a signalling protein modulating a key innate immunity signalling pathway.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号