首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Disruption of the SC3 gene in the basidiomycete Schizophyllum commune affected not only formation of aerial hyphae but also attachment to hydrophobic surfaces. However, these processes were not completely abolished, indicating involvement of other molecules. We here show that the SC15 protein mediates formation of aerial hyphae and attachment in the absence of SC3. SC15 is a secreted protein of 191 aa with a hydrophilic N-terminal half and a highly hydrophobic C-terminal half. It is not a hydrophobin as it lacks the eight conserved cysteine residues found in these proteins. Besides being secreted into the medium, SC15 was localized in the cell wall and the mucilage that binds aerial hyphae together. In a strain in which the SC15 gene was deleted (DeltaSC15) formation of aerial hyphae and attachment were not affected. However, these processes were almost completely abolished when the SC15 gene was deleted in the DeltaSC3 background. The absence of aerial hyphae in the DeltaSC3DeltaSC15 strain can be explained by the inability of the strain to lower the water surface tension and to make aerial hyphae hydrophobic.  相似文献   

2.
Two monokaryons of Schizophyllum commune can form a fertile dikaryon when the mating-type genes differ. Monokaryons form sterile aerial hyphae, while dikaryons also form fruiting bodies that function in sexual reproduction. The SC3 hydrophobin gene is expressed both in monokaryons and in dikaryons. The SC4 hydrophobin is dikaryon specific. In the monokaryon, SC3 lowers the water surface tension, coats aerial hyphae with a hydrophobic layer and mediates attachment of hyphae to hydrophobic surfaces. The SC4 protein lines gas channels within fruiting bodies with a hydrophobic membrane. Using gene disruptions, in this study, we show that in dikaryons SC3 fulfils the same roles as in monokaryons. SC4, on the other hand, has a role within fruiting bodies. In contrast to gas channels in fruiting bodies of the wild type, those of a DeltaSC4 strain easily filled with water. Thus, SC4 prevents gas channels filling with water under wet conditions, probably serving uninterrupted gas exchange. Other dikaryon-specific hydrophobin genes, SC1 and SC6, apparently do not substitute for the SC4 gene. In addition, by expressing the SC4 gene behind the SC3 promoter in a DeltaSC3 monokaryon, it was shown that SC4 cannot fully substitute for SC3, indicating that both hydrophobins evolved to fulfil specific functions.  相似文献   

3.
H A W?sten  F H Schuren    J G Wessels 《The EMBO journal》1994,13(24):5848-5854
The SC3p hydrophobin of Schizophyllum commune is a small hydrophobic protein (100-101 amino acids with eight cysteine residues) that self-assembles at a water/air interface and coats aerial hyphae with an SDS-insoluble protein membrane, at the outer side highly hydrophobic and with a typical rodlet pattern. SC3p monomers in water also self-assemble at the interfaces between water and oils or hydrophobic solids. These materials are then coated with a 10 nm thick SDS-insoluble assemblage of SC3p making their surfaces hydrophilic. Hyphae of S. commune growing on a Teflon surface became firmly attached and SC3p was shown to be present between the fungal cell wall and the Teflon. Decreased attachment of hyphae to Teflon was observed in strains not expressing SC3, i.e. a strain containing a targeted mutation in this gene and a regulatory mutant thn. These findings indicate that hydrophobins, in addition to forming hydrophobic wall coatings, play a role in adherence of fungal hyphae to hydrophobic surfaces.  相似文献   

4.
Hydrophobins fulfill a wide spectrum of functions in fungal growth and development. These proteins self-assemble at hydrophilic-hydrophobic interfaces into amphipathic membranes. Hydrophobins are divided into two classes based on their hydropathy patterns and solubility. We show here that the properties of the class II hydrophobins HFBI and HFBII of Trichoderma reesei differ from those of the class I hydrophobin SC3 of Schizophyllum commune. In contrast to SC3, self-assembly of HFBI and HFBII at the water-air interface was neither accompanied by a change in secondary structure nor by a change in ultrastructure. Moreover, maximal lowering of the water surface tension was obtained instantly or took several minutes in the case of HFBII and HFBI, respectively. In contrast, it took several hours in the case of SC3. Oil emulsions prepared with HFBI and SC3 were more stable than those of HFBII, and HFBI and SC3 also interacted more strongly with the hydrophobic Teflon surface making it wettable. Yet, the HFBI coating did not resist treatment with hot detergent, while that of SC3 remained unaffected. Interaction of all the hydrophobins with Teflon was accompanied with a change in the circular dichroism spectra, indicating the formation of an alpha-helical structure. HFBI and HFBII did not affect self-assembly of the class I hydrophobin SC3 of S. commune and vice versa. However, precipitation of SC3 was reduced by the class II hydrophobins, indicating interaction between the assemblies of both classes of hydrophobins.  相似文献   

5.
Fungi are well known to the casual observer for producing water-repelling aerial moulds and elaborate fruiting bodies such as mushrooms and polypores. Filamentous fungi colonize moist substrates (such as wood) and have to breach the water-air interface to grow into the air. Animals and plants breach this interface by mechanical force. Here, we show that a filamentous fungus such as Schizophyllum commune first has to reduce the water surface tension before its hyphae can escape the aqueous phase to form aerial structures such as aerial hyphae or fruiting bodies. The large drop in surface tension (from 72 to 24 mJ m-2) results from self-assembly of a secreted hydrophobin (SC3) into a stable amphipathic protein film at the water-air interface. Other, but not all, surface-active molecules (that is, other class I hydrophobins and streptofactin from Streptomyces tendae) can substitute for SC3 in the medium. This demonstrates that hydrophobins not only have a function at the hyphal surface but also at the medium-air interface, which explains why fungi secrete large amounts of hydrophobin into their aqueous surroundings.  相似文献   

6.
Fluorescent DNA and peptide nucleic acid (PNA) probes were used for in situ hybridisations in colonies of Schizophyllum commune and Aspergillus niger. DNA probes for 18S rRNA did not diffuse through the cell wall after mild chemical fixation. After permeabilising the cell wall with lysing enzymes or slow freezing and embedding, hybridisation was still poor and not reproducible. In contrast, PNA probes did diffuse through the cell wall after mild chemical fixation and reproducible fluorescent signals were obtained. The rRNA signal was most intense in the apical compartment of hyphae of S. commune. Within this compartment, the signal was lower at the extreme apex. Apparently, ribosomes are unevenly distributed in hyphae. In S. commune, the mRNA of the SC3 gene was also detected with a PNA probe. The ratio between 18S rRNA and SC3 mRNA signals were variable between hyphae and their compartments. This is the first report of using PNA probes for in situ hybridisation of mRNA in fungi. The method provides a powerful tool to study gene expression.  相似文献   

7.
M J Kershaw  G Wakley    N J Talbot 《The EMBO journal》1998,17(14):3838-3849
The functional relationship between fungal hydrophobins was studied by complementation analysis of an mpg1(-) gene disruption mutant in Magnaporthe grisea. MPG1 encodes a hydrophobin required for full pathogenicity of the fungus, efficient elaboration of its infection structures and conidial rodlet protein production. Seven heterologous hydrophobin genes were selected which play distinct roles in conidiogenesis, fruit body development, aerial hyphae formation and infection structure elaboration in diverse fungal species. Each hydrophobin was introduced into an mpg1(-) mutant by transformation. Only one hydrophobin gene, SC1 from Schizophyllum commune, was able partially to complement mpg1(-) mutant phenotypes when regulated by its own promoter. In contrast, six of the transformants expressing hydrophobin genes controlled by the MPG1 promoter (SC1 and SC4 from S.commune, rodA and dewA from Aspergillus nidulans, EAS from Neurospora crassa and ssgA from Metarhizium anisopliae) could partially complement each of the diverse functions of MPG1. Complementation was always associated with partial restoration of a rodlet protein layer, characteristic of the particular hydrophobin being expressed, and with hydrophobin surface assembly during infection structure formation. This provides the first genetic evidence that diverse hydrophobin-encoding genes encode functionally related proteins and suggests that, although very diverse in amino acid sequence, the hydrophobins constitute a closely related group of morphogenetic proteins.  相似文献   

8.
Three different hydrophobins (Vmh1, Vmh2, and Vmh3) were isolated from monokaryotic and dikaryotic vegetative cultures of the edible fungus Pleurotus ostreatus. Their corresponding genes have a number of introns different from those of other P. ostreatus hydrophobins previously described. Two genes (vmh1 and vmh2) were expressed only at the vegetative stage, whereas vmh3 expression was also found in the fruit bodies. Furthermore, the expression of the three hydrophobins varied significantly with culture time and nutritional conditions. The three genes were mapped in the genomic linkage map of P. ostreatus, and evidence is presented for the allelic nature of vmh2 and POH3 and for the different locations of the genes coding for the glycosylated hydrophobins Vmh3 and POH2. The glycosylated nature of Vmh3 and its expression during vegetative growth and in fruit bodies suggest that it should play a role in development similar to that proposed for SC3 in Schizophyllum commune.  相似文献   

9.
Disruption of genes by homologous recombination occurs at a low frequency in the basidiomycete Schizophyllum commune. For instance, the SC3 and SC15 genes were inactivated at frequencies of 1 and 5%, respectively. As an alternative to disruption, we used gene silencing through the introduction of a hairpin construct. The SC15 gene, which encodes an abundantly secreted structural protein, was silenced at a frequency of 80% in monokaryons of S. commune after introduction of a hairpin construct of the gene. Silencing also occurred in dikaryons in which one of the partners was not a silenced strain. The silencing mechanism resembles RNAi in other filamentous fungi and is a powerful tool for the functional analysis of genes expressed in monokaryons or dikaryons.  相似文献   

10.
An efficient transformation and expression system was developed for the industrially relevant basidiomycete Pycnoporus cinnabarinus. This was used to transform a laccase-deficient monokaryotic strain with the homologous lac1 laccase gene placed under the regulation of its own promoter or that of the SC3 hydrophobin gene or the glyceraldehyde-3-phosphate dehydrogenase (GPD) gene of Schizophyllum commune. SC3-driven expression resulted in a maximal laccase activity of 107 nkat ml(-1) in liquid shaken cultures. This value was about 1.4 and 1.6 times higher in the cases of the GPD and lac1 promoters, respectively. lac1-driven expression strongly increased when 25 g of ethanol liter(-1) was added to the medium. Accordingly, laccase activity increased to 1,223 nkat ml(-1). These findings agree with the fact that ethanol induces laccase gene expression in some fungi. Remarkably, lac1 mRNA accumulation and laccase activity also strongly increased in the presence of 25 g of ethanol liter(-1) when lac1 was expressed behind the SC3 or GPD promoter. In the latter case, a maximal laccase activity of 1,393 nkat ml(-1) (i.e., 360 mg liter(-1)) was obtained. Laccase production was further increased in transformants expressing lac1 behind its own promoter or that of GPD by growth in the presence of 40 g of ethanol liter(-1). In this case, maximal activities were 3,900 and 4,660 nkat ml(-1), respectively, corresponding to 1 and 1.2 g of laccase per liter and thus representing the highest laccase activities reported for recombinant fungal strains. These results suggest that P. cinnabarinus may be a host of choice for the production of other proteins as well.  相似文献   

11.
During Arabidopsis seed development large quantities of mucilage, composed of pectins, are deposited into the apoplast underneath the outer wall of the seed coat. Upon imbibition of mature seeds, the stored mucilage expands through hydration and breaks the outer cell wall that encapsulates the whole seed. Mutant seeds carrying loss-of-function alleles of AtSBT1.7 that encodes one of 56 Arabidopsis thaliana subtilisin-like serine proteases (subtilases) do not release mucilage upon hydration. Microscopic analysis of the mutant seed coat revealed no visible structural differences compared with wild-type seeds. Weakening of the outer primary wall using cation chelators triggered mucilage release from the seed coats of mutants. However, in contrast to mature wild-type seeds, the mutant's outer cell walls did not rupture at the radial walls of the seed coat epidermal cells, but instead opened at the chalazal end of the seed, and were released in one piece. In atsbt1.7, the total rhamnose and galacturonic acid contents, representing the backbone of mucilage, remained unchanged compared with wild-type seeds. Thus, extrusion and solubility, but not the initial deposition of mucilage, are affected in atsbt1.7 mutants. AtSBT1.7 is localized in the developing seed coat, indicating a role in testa development or maturation. The altered mode of rupture of the outer seed coat wall and mucilage release indicate that AtSBT1.7 triggers the accumulation, and/or activation, of cell wall modifying enzymes necessary either for the loosening of the outer primary cell wall, or to facilitate swelling of the mucilage, as indicated by elevated pectin methylesterase activity in developing atsbt1.7 mutant seeds.  相似文献   

12.
13.
Currently, little is known about the mechanical properties of filamentous fungal hyphae. To study this topic, atomic force microscopy (AFM) was used to measure cell wall mechanical properties of the model fungus Aspergillus nidulans. Wild type and a mutant strain (deltacsmA), lacking one of the chitin synthase genes, were grown in shake flasks. Hyphae were immobilized on polylysine-coated coverslips and AFM force--displacement curves were collected. When grown in complete medium, wild-type hyphae had a cell wall spring constant of 0.29 +/- 0.02 N/m. When wild-type and mutant hyphae were grown in the same medium with added KCl (0.6 M), hyphae were significantly less rigid with spring constants of 0.17 +/- 0.01 and 0.18 +/- 0.02 N/m, respectively. Electron microscopy was used to measure the cell wall thickness and hyphal radius. By use of finite element analysis (FEMLAB v 3.0, Burlington, MA) to simulate AFM indentation, the elastic modulus of wild-type hyphae grown in complete medium was determined to be 110 +/- 10 MPa. This decreased to 64 +/- 4 MPa for hyphae grown in 0.6 M KCl, implying growth medium osmotic conditions have significant effects on cell wall elasticity. Mutant hyphae grown in KCl-supplemented medium were found to have an elastic modulus of 67 +/- 6 MPa. These values are comparable with other microbial systems (e.g., yeast and bacteria). It was also found that under these growth conditions axial variation in elastic modulus along fungal hyphae was small. To determine the relationship between composition and mechanical properties, cell wall composition was measured by anion-exchange liquid chromatography and pulsed electrochemical detection. Results show similar composition between wild-type and mutant strains. Together, these data imply differences in mechanical properties may be dependent on varying molecular structure of hyphal cell walls as opposed to wall composition.  相似文献   

14.
M B Mayfield  K Kishi  M Alic    M H Gold 《Applied microbiology》1994,60(12):4303-4309
The promoter region of the glyceraldehyde-3-phosphate dehydrogenase gene (gpd) was used to drive expression of mnp1, the gene encoding Mn peroxidase isozyme 1, in primary metabolic cultures of Phanerochaete chrysosporium. A 1,100-bp fragment of the P. chrysosporium gpd promoter region was fused upstream of the mnp1 gene to construct plasmid pAGM1, which contained the Schizophyllum commune ade5 gene as a selectable marker. pAGM1 was used to transform a P. chrysosporium ade1 auxotroph to prototrophy. Ade+ transformants were screened for peroxidase activity on a solid medium containing high carbon and high nitrogen (2% glucose and 24 mM NH4 tartrate) and o-anisidine as the peroxidase substrate. Several transformants that expressed high peroxidase activities were purified and analyzed further in liquid cultures. Recombinant Mn peroxidase (rMnP) was expressed and secreted by transformant cultures on day 2 under primary metabolic growth conditions (high carbon and high nitrogen), whereas endogenous wild-type mnp genes were not expressed under these conditions. Expression of rMnP was not influenced by the level of Mn in the culture medium, as previously observed for the wild-type Mn peroxidase (wtMnP). The amount of active rMnP expressed and secreted in this system was comparable to the amount of enzyme expressed by the wild-type strain under ligninolytic conditions. rMnP was purified to homogeneity by using DEAE-Sepharose chromatography, Blue Agarose chromatography, and Mono Q column chromatography. The M(r) and absorption spectrum of rMnP were essentially identical to the M(r) and absorption spectrum of wtMnP, indicating that heme insertion, folding, and secretion were normal.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

15.
Summary Extracellular polysaccharide/proteoglycan (EPS) mucilages play a crucial role in maintaining the structure of the extensive algal sheets that appear along the undersurface of nearshore Antarctic sea ice during the austral spring. In this study we have determined the composition and ultrastructural location of a family of novel sulphated polysaccharides/proteoglycans from the pennate ice diatomStauroneis amphioxys Gregory. They occur as soluble EPS in the culture supernatant, as an intercellular mucilage sheet, and as components of a distinct organic layer (diatotepum) underlying the silicious cell wall. The ultrastructural location and quantitative extraction of the mucilage EPS and the major diatotepum polysaccharides with hot water and alkali, respectively, was monitored by light and electron microscopy. The EPS and wall components were purified by Ultrafiltration, anion exchange and gel filtration chromatographies, and their monosaccharide composition was determined by gas-chro-matography mass spectrometry. The soluble and mucilage EPS, and major diatotepum polysaccharides/proteoglycans had an apparent molecular mass greater than 2 × 106 Da on gel. They contained a similar complex monosaccharide composition that includes glucuronic acid and galactose as the major sugars and significant levels of rhamnose, fucose, arabinose, xylose, mannose, glucose and the mono-O-methylated monosaccharides 3-O-methylrhamnose, 3-O-methylfucose, 3-O- and 4-O-methylxylose. The ratios of Gal to GlcA, which together account for 45% of the monosaccharides, varied from 0.8 (in the soluble EPS) to 2.3 (in diatotepum polysaccharides). The level of sulphation also varied from 5–15% (w/w), with the mucilage EPS being the most highly sulphated. The soluble EPS also contains a small amount of protein (ca. 5%, v/w) which cochromatographs with the polysaccharide during gel filtration and anion exchange chromatographies suggesting that it may be a sulphated proteoglycan. They are clearly distinct from a sulphated glucuronomannan that remained in the alkali-insoluble fraction and may be tightly associated with the silica wall components. The amount of mucilage EPS increased during logarithmic growth but decreased during stationary phase, when most of the EPS was found in the soluble pool. These changes correlate with the breakdown of the mucilage sheet and dispersal of diatom colonies during stationary growth. Interestingly, the soluble EPS from stationary-growth cultures was indistinguishable from the mucilage EPS of logarithmic- or stationary-phase cells, suggesting that the dissolution of the intercellular mucilage was not due to a change in EPS composition. The possibility that cell motility may be required for mucilage formation and the significance of these polysaccharides in the under-ice community is discussed.  相似文献   

16.
The spontaneous and recessive mutation thn in the basidiomycete Schizophyllum commune suppresses the formation of aerial hyphae in the monokaryon and, if present as a double dose, the formation of both aerial hyphae and fruit-bodies in the dikaryon. In the monokaryon, the mutation prevents accumulation of mRNA of the Sc3 gene, and in the dikaryon it also prevents the accumulation of fruiting-specific mRNAs, including mRNAs of the Sc1 and Sc4 genes, which are homologous to the Sc3 gene. These three genes code for hydrophobins, a family of small hydrophobic cysteine-rich proteins. In the thn monokaryon, the only detectable change in synthesized proteins is the disappearance of an abundant protein of apparent Mr = 28 K from the culture medium and from the cell walls. Protein sequencing shows that this is the product of the Sc3 gene. The Sc3 hydrophobin is present in the walls of aerial hyphae as a hot-SDS-insoluble complex. Submerged hyphae excrete large amounts of the hydrophobin into the medium.  相似文献   

17.
Fungi typically grow by apical extension of hyphae that penetrate moist substrates. After establishing a branched feeding mycelium, the hyphae differentiate and grow away from the substrate into the air where they form various structures such as aerial hyphae and mushrooms. In the basidiomycete species Schizophyllum commune, we previously identified a family of homologous genes that code for small cysteine-rich hydrophobic proteins. We now report that the encoded hydrophobins are excreted in abundance into the culture medium by submerged feeding hyphae but form highly insoluble complexes in the walls of emerging hyphae. The Sc3 gene encodes a hydrophobin present in walls of aerial hyphae. The homologous Sc1 and Sc4 genes, which are regulated by the mating-type genes, encode hydrophobins present in walls of fruit body hyphae. The hydrophobins are probably instrumental in the emergence of these aerial structures.  相似文献   

18.
裂褶菌深层培养及多糖测定   总被引:5,自引:0,他引:5  
为了深层培养裂褶菌Schizophyllum commune Fr.产生多糖,对产多糖的适宜培养基,最佳时间,高产菌株进行了研究。从南京灵谷寺及南京大学校园生长的裂褶菌子实体分离到3株产多糖的裂褶菌菌株,编号南大835,南大843,南大853。对南大843用6种不同培养基进行深层培养,测定和比较了多糖和菌丝产量,其结果表明黄豆粉葡萄糖液体培养基是适于裂褶菌合成多糖的培养基,能培养出密集、白色、均匀的菌球和丰富的多糖。其组成为(g/L):葡萄糖30,黄豆粉5,酵母膏2,KH_2PO_4 1,MgSO_4·7H_2O0.5。pH5.5。最适发酵条件:pH5—5.5,温度26—28℃,振速:100—110次/分,当pH降至4.9—4.7,残糖量在1%以下,5—6天可终止发酵。在培养6天的浓缩滤液中加入等体积的95%乙醇后大量白色粘稠、纤维状的多糖被沉淀下来。在上述发酵条件下,3个菌株比较结果,南大853能明显提高多糖产量,6天的培养液中多糖量可达5.5—6g/L,南大843和南大835分别是5g/L和2.8g/L。  相似文献   

19.
Hydrophobins are small fungal proteins that self-assemble at hydrophilic/hydrophobic interfaces into amphipathic membranes that, in the case of Class I hydrophobins, can be disassembled only by treatment with agents like pure trifluoroacetic acid. Here we characterize, by spectroscopic techniques, the structural changes that occur upon assembly at an air/water interface and upon assembly on a hydrophobic solid surface, and the influence of deglycosylation on these events. We determined that the hydrophobin SC3 from Schizophyllum commune contains 16-22 O-linked mannose residues, probably attached to the N-terminal part of the peptide chain. Scanning force microscopy revealed that SC3 adsorbs specifically to a hydrophobic surface and cannot be removed by heating at 100 degrees C in 2% sodium dodecyl sulfate. Attenuated total reflection Fourier transform infrared spectroscopy and circular dichroism spectroscopy revealed that the monomeric, water-soluble form of the protein is rich in beta-sheet structure and that the amount of beta-sheet is increased after self-assembly on a water-air interface. Alpha-helix is induced specifically upon assembly of the protein on a hydrophobic solid. We propose a model for the formation of rodlets, which may be induced by dehydration and a conformational change of the glycosylated part of the protein, resulting in the formation of an amphipathic alpha-helix that forms an anchor for binding to a substrate. The assembly in the beta-sheet form seems to be involved in lowering of the surface tension, a potential function of hydrophobins.  相似文献   

20.
Abstract The SC3 hydrophobin gene of Schizophyllum commune was disrupted by homologous integration of an SC3 genomic fragment interrupted by a phleomycin resistance cassette. The phenotype of the mutant was particularly clear in sealed plates in which formation of aerial hyphae was blocked. In non-sealed plates aerial hyphae did form but these were hydrophilic and not hydrophobic as in wild-type strains. Complementation with a genomic SC3 clone restored formation of hydrophobic aerial hyphae in sealed plates. In a dikaryon homozygous for the SC3 mutation normal sporulating fruiting bodies were produced but aerial hyphae were hydrophilic.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号