首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 437 毫秒
1.
Governments have agreed to expand the global protected area network from 13% to 17% of the world''s land surface by 2020 (Aichi target 11) and to prevent the further loss of known threatened species (Aichi target 12). These targets are interdependent, as protected areas can stem biodiversity loss when strategically located and effectively managed. However, the global protected area estate is currently biased toward locations that are cheap to protect and away from important areas for biodiversity. Here we use data on the distribution of protected areas and threatened terrestrial birds, mammals, and amphibians to assess current and possible future coverage of these species under the convention. We discover that 17% of the 4,118 threatened vertebrates are not found in a single protected area and that fully 85% are not adequately covered (i.e., to a level consistent with their likely persistence). Using systematic conservation planning, we show that expanding protected areas to reach 17% coverage by protecting the cheapest land, even if ecoregionally representative, would increase the number of threatened vertebrates covered by only 6%. However, the nonlinear relationship between the cost of acquiring land and species coverage means that fivefold more threatened vertebrates could be adequately covered for only 1.5 times the cost of the cheapest solution, if cost efficiency and threatened vertebrates are both incorporated into protected area decision making. These results are robust to known errors in the vertebrate range maps. The Convention on Biological Diversity targets may stimulate major expansion of the global protected area estate. If this expansion is to secure a future for imperiled species, new protected areas must be sited more strategically than is presently the case.  相似文献   

2.
Increasingly, biogeographical knowledge and analysis are playing a fundamental role in assessing the representativeness of biodiversity in protected areas, and in identifying critical areas for conservation. With almost 20% of the country assigned to protected areas, Chile is well above the conservation target (i.e. 10–12%) proposed by many international conservation organizations. Moreover, the Chilean government has recently proposed new conservation priority sites to improve the current protected area network. Here, we used all 653 terrestrial vertebrate species present in continental Chile to assess the performance of the existing and proposed reserve networks. Using geographical information systems, we overlaid maps of species distribution, current protected areas, and proposed conservation priority sites to assess how well each species is represented within these networks. Additionally, we performed a systematic reserve selection procedure to identify alternative conservation areas for expanding the current reserve system. Our results show that over 13% of the species are not covered by any existing protected area, and that 73% of Chilean vertebrate species can be considered partial gaps, with only a small fraction of their geographical ranges currently under protection. The coverage is also deficient for endemic (species confined to Chile) and threatened species. While the proposed priority sites do increase coverage, we found that there are still several gaps and these are not the most efficient choices. Both the gap analysis and the reserve selection analysis identified important areas to be added to the existing reserve system, mostly in northern and central Chile. This study underscores the need for a systematic conservation planning approach to redefine the conservation priority sites in order to maximize the representation of species, particularly endemic and threatened species.  相似文献   

3.
Productivity is strongly associated with terrestrial species richness patterns, although the mechanisms underpinning such patterns have long been debated. Despite considerable consumption of primary productivity by fire, its influence on global diversity has received relatively little study. Here we examine the sensitivity of terrestrial vertebrate biodiversity (amphibians, birds and mammals) to fire, while accounting for other drivers. We analyse global data on terrestrial vertebrate richness, net primary productivity, fire occurrence (fraction of productivity consumed) and additional influences unrelated to productivity (i.e., historical phylogenetic and area effects) on species richness. For birds, fire is associated with higher diversity, rivalling the effects of productivity on richness, and for mammals, fire's positive association with diversity is even stronger than productivity; for amphibians, in contrast, there are few clear associations. Our findings suggest an underappreciated role for fire in the generation of animal species richness and the conservation of global biodiversity.  相似文献   

4.
Freshwater ecosystems are among the most diverse and dynamic ecosystems on Earth. At the same time, they are among the most threatened ecosystems but remain underrepresented in biodiversity research and conservation efforts. The rate of decline of vertebrate populations is much higher in freshwaters than in terrestrial or marine realms. Freshwater megafauna (i.e., freshwater animals that can reach a body mass ≥30 kg) are intrinsically prone to extinction due to their large body size, complex habitat requirements and slow life‐history strategies such as long life span and late maturity. However, population trends and distribution changes of freshwater megafauna, at continental or global scales, remain unclear. In the present study, we compiled population data of 126 freshwater megafauna species globally from the Living Planet Database and available literature, and distribution data of 44 species inhabiting Europe and the United States from literature and databases of the International Union for Conservation of Nature and NatureServe. We quantified changes in population abundance and distribution range of freshwater megafauna species. Globally, freshwater megafauna populations declined by 88% from 1970 to 2012, with the highest declines in the Indomalaya and Palearctic realms (?99% and ?97%, respectively). Among taxonomic groups, mega‐fishes exhibited the greatest global decline (?94%). In addition, freshwater megafauna experienced major range contractions. For example, distribution ranges of 42% of all freshwater megafauna species in Europe contracted by more than 40% of historical areas. We highlight the various sources of uncertainty in tracking changes in populations and distributions of freshwater megafauna, such as the lack of monitoring data and taxonomic and spatial biases. The detected trends emphasize the critical plight of freshwater megafauna globally and highlight the broader need for concerted, targeted and timely conservation of freshwater biodiversity.  相似文献   

5.
Given the heavy reliance placed on and investment in protected areas for biological conservation, there has been much debate as to how effective these are in representing biodiversity features within their boundaries. The majority of studies addressing this issue have been conducted on a regional or national basis, precluding a broad picture of patterns of representation at the species level. We present a global assessment of the representation of the terrestrial geographic ranges of complete taxonomic groups: all known extant amphibians, birds and mammals (20,736 species) within the current global system of protected areas. We conclude that it is necessary substantially to improve the levels of coverage of the geographic ranges of the majority of species, even the widespread ones. This is particularly true for rare species, which might be assumed to be foci for protected area systems. To improve on the low levels of coverage of vertebrate ranges attained by the existing areas, key regions should be targeted, but heavy reliance will also have to be placed on approaches to sustaining populations in the wider, unprotected landscape.  相似文献   

6.
Spatial patterns of species richness follow climatic and environmental variation, but could reflect random dynamics of species ranges (the mid-domain effect, MDE). Using data on the global distribution of birds, we compared predictions based on energy availability (actual evapotranspiration, AET, the best single correlate of avian richness) with those of range dynamics models. MDE operating within the global terrestrial area provides a poor prediction of richness variation, but if it operates separately within traditional biogeographic realms, it explains more global variation in richness than AET. The best predictions, however, are given by a model of global range dynamics modulated by AET, such that the probability of a range spreading into an area is proportional to its AET. This model also accurately predicts the latitudinal variation in species richness and variation of species richness both within and between realms, thus representing a compelling mechanism for the major trends in global biodiversity.  相似文献   

7.
Aim The goal of our study was to test fundamental predictions of biogeographical theories in tropical reef fish assemblages, in particular relationships between fish species richness and island area, isolation and oceanographic variables (temperature and productivity) in the insular Caribbean. These analyses complement an analogous and more voluminous body of work from the tropical Indo‐Pacific. The Caribbean is more limited in area with smaller inter‐island distances than the Indo‐Pacific, providing a unique context to consider fundamental processes likely to affect richness patterns of reef fish. Location Caribbean Sea. Methods We compiled a set of data describing reef‐associated fish assemblages from 24 island nations across the Caribbean Sea, representing a wide range of isolation and varying in land area from 53 to 110,860 km2. Regression‐based analyses compared the univariate and combined effects of island‐specific physical predictors on fish species richness. Results We found that diversity of reef‐associated fishes increases strongly with increasing island area and with decreasing isolation. Richness also increases with increasing nearshore productivity. Analyses of various subsets of the entire data set reveal the robustness of the richness data and biogeographical patterns. Main conclusions Within the relatively small and densely packed Caribbean basin, fish species richness fits the classical species–area relationship. Richness also was related negatively to isolation, suggesting direct effects of dispersal limitation in community assembly. Because oceanic productivity was correlated with isolation, however, the related effects of system‐wide productivity on richness cannot be disentangled. These results highlight fundamental mechanisms that underlie spatial patterns of biodiversity among Caribbean coral reefs, and which are probably also are functioning in the more widespread and heterogeneous reefs of the Indo‐Pacific.  相似文献   

8.
While the protected area (PA) covers >15% of the planet's terrestrial land area and continues to expand, factors determining its effectiveness in conserving endangered species are being debated. We investigated the links between direct anthropogenic pressures, socioeconomic settings, and the coverage of vertebrate taxa by China's PA network, and indicated that high socioeconomic status and low levels of human pressure correlate with high species coverage, with threatened mammals more effectively conserved than reptiles or amphibians. Positive links between conservation outcomes and socioeconomic progress appear linked to local livelihood improvements triggering positive perceptions of local PAs—aided further by ecological compensation and tourism schemes introduced in wealthy areas and reinforced by continued positive conservation outcomes. Socioeconomic development of China's less developed regions might assist regional PA efficiency and achievement of the Kunming-Montreal Global Biodiversity Framework, while also addressing potential shortcomings from an insufficient past focus on socioeconomic impacts for biodiversity conservation.  相似文献   

9.
Delineating regions is an important first step in understanding the evolution and biogeography of faunas. However, quantitative approaches are often limited at a global scale, particularly in the marine realm. Reef fishes are the most diversified group of marine fishes, and compared to most other phyla, their taxonomy and geographical distributions are relatively well known. Based on 169 checklists spread across all tropical oceans, the present work aims to quantitatively delineate biogeographical entities for reef fishes at a global scale. Four different classifications were used to account for uncertainty related to species identification and the quality of checklists. The four classifications delivered converging results, with biogeographical entities that can be hierarchically delineated into realms, regions and provinces. All classifications indicated that the Indo-Pacific has a weak internal structure, with a high similarity from east to west. In contrast, the Atlantic and the Eastern Tropical Pacific were more strongly structured, which may be related to the higher levels of endemism in these two realms. The “Coral Triangle”, an area of the Indo-Pacific which contains the highest species diversity for reef fishes, was not clearly delineated by its species composition. Our results show a global concordance with recent works based upon endemism, environmental factors, expert knowledge, or their combination. Our quantitative delineation of biogeographical entities, however, tests the robustness of the results and yields easily replicated patterns. The similarity between our results and those from other phyla, such as corals, suggests that our approach may be of broad utility in describing and understanding global marine biodiversity patterns.  相似文献   

10.
In the face of accelerating species extinctions, map-based prioritization systems are increasingly useful to decide where to pursue conservation action most effectively. However, a number of seemingly inconsistent schemes have emerged, mostly focussing on endemism. Here we use global vertebrate distributions in terrestrial ecoregions to evaluate how continuous and categorical ranking schemes target and accumulate endangered taxa within the IUCN Red List, Alliance for Zero Extinction (AZE), and EDGE of Existence programme. We employed total, endemic and threatened species richness and an estimator for richness-adjusted endemism as metrics in continuous prioritization, and WWF''s Global200 and Conservation International''s (CI) Hotspots in categorical prioritization. Our results demonstrate that all metrics target endangerment more efficiently than by chance, but each selects unique sets of top-ranking ecoregions, which overlap only partially, and include different sets of threatened species. Using the top 100 ecoregions as defined by continuous prioritization metrics, we develop an inclusive map for global vertebrate conservation that incorporates important areas for endemism, richness, and threat. Finally, we assess human footprint and protection levels within these areas to reveal that endemism sites are more impacted but have more protection, in contrast to high richness and threat ones. Given such contrasts, major efforts to protect global biodiversity must involve complementary conservation approaches in areas of unique species as well as those with highest diversity and threat.  相似文献   

11.

Aim

Climate and land use changes are two major pervasive and growing global causes of rapid changes in the distribution patterns of biodiversity, challenging the future effectiveness of protected areas (PAs), which were mainly designed based on a static view of biodiversity. Therefore, evaluating the effectiveness of protected areas for protecting the species threatened by climate and land use change is critical for future biodiversity conservation.

Location

China.

Methods

Here, using distributions of 200 Chinese Theaceae species and ensemble species distribution models, we identified species threatened by future climate and land use change (i.e. species with predicted loss of suitable habitat ≥30%) under scenarios incorporating climate change, land use change and dispersal. We then estimate the richness distribution patterns of threatened species and identify priority conservation areas and conservation gaps of the current PA network.

Results

Our results suggest that 36.30%–51.85% of Theaceae species will be threatened by future climate and land use conditions and that although the threatened species are mainly distributed at low latitudes in China under both current and future periods, the mean richness of the threatened species per grid cell will decline by 0.826–3.188 species by the 2070s. Moreover, we found that these priority conservation areas are highly fragmented and that the current PA network only covers 14.21%–20.87% of the ‘areas worth exploring’ and 6.91%–7.91% of the ‘areas worth attention’.

Main Conclusions

Our findings highlight the necessity of establishing new protected areas and ecological corridors in priority conservation areas to protect the threatened species. Moreover, our findings also highlight the importance of taking into consideration the potential threatened species under future climate and land use conditions when designating priority areas for biodiversity conservation.  相似文献   

12.
In the past years, efforts have been made to include connectivity metrics in conservation planning in order to promote and enhance well-connected systems of protected areas. Connectivity is particularly important for species that rely on more than one realm during their daily or life cycle (multi-realm species). However, conservation plans for the protection of multi-realm species usually involve a single realm, excluding other realms from the prioritization process. Here, we demonstrate an example of cross-realm conservation planning application for the island of Cyprus by taking into account the terrestrial and marine realms and their interface (i.e. coast). Operating within a data-poor context, we use functional connectivity metrics to identify priority areas for the conservation of six multi-realm species, by setting conservation targets simultaneously for the terrestrial and marine realms. MARXAN decision-support tool was used for the identification of the priority areas.Four scenarios were developed to evaluate the impacts of including connectivity in the prioritization process and the effectiveness of the existing coastal/marine protected areas in the achievement of the conservation targets set for the species. All scenarios considered land and sea anthropogenic uses as surrogate costs to influence the prioritization process.Our findings show an increase in the area of the reserve network and, therefore, the cost, when connectivity is included, whilst reducing the total boundary length. Furthermore, the current reserve network fails to achieve conservation targets, particularly for the marine part, which has a substantially smaller protection coverage than the terrestrial part.We conclude that focus should be given in the expansion of the current coastal/marine reserve network following a cross-realm conservation approach. This approach is not only relevant for the conservation of multi-realm species, but also for islandscapes, in particular, where the interdependence between the hinterland and the coast is larger and therefore the magnitude of the impacts generated in one realm and affects the other.  相似文献   

13.
Identifying the factors determining the non-native species richness (NNSR) in a given area is essential for preventing species invasions. The relative importance of human-related and natural factors considered for explaining NNSR might depend upon both the spatial scale (i.e. the extent of the gradients sampled) and the historical context of the area surveyed. Here, using a worldwide database of freshwater fish occurrences, we tested whether the relative influence of human and ecological determinants of non-native fish species establishment at the scale of the biogeographic realm was consistent (i) with that observed worldwide, and (ii) among the different biogeographical realms. The prominent role of human activity in shaping the global (i.e. worldwide) pattern of NNSR cannot be directly extrapolated to the biogeographic realms. Furthermore, the relationships between human and ecological determinants and NNSR vary strikingly across biogeographic realms, revealing a strong context dependency of the determinants of NNSR. In particular, the human-related factors play a predominant role in explaining the establishment of non-native species in economically developed realms, while in the other realms environmental characteristics of the river basins best explained geographical patterns of NNSR. In the face of future biological invasions, considering both the spatial scale and the historical context of the surveyed area is crucial to adopt effective conservation strategies.  相似文献   

14.
Knowledge of spatial patterns of biological diversity is fundamental for ecological and biogeographical analyses and for priority setting in nature conservation, particularly in West Africa where the existing high biodiversity is increasingly threatened by human activities. The maximum entropy approach was used to model the geographic distribution of 3,393 vascular plant species at a spatial resolution of 0.0833°. Species richness decreases along temperature and precipitation gradients with high species numbers in the south and lower numbers towards the north of the transect. All centres of plant species diversity are confined to humid areas in concordance with the high positive correlation between species richness and rainfall which appears to be the most important delimiter for the distribution ranges of many species in the area. The effectiveness of the existing protected areas at regional and national levels is investigated based on the proportion of species covered. Considering the whole study area, 95% of all species are covered by protected areas according to their distribution ranges. However, the proportion of species covered is considerably lower for some countries such as Benin and Togo. Our results could provide guidance for essential land use management interventions to decision‐makers and conservationists in the region.  相似文献   

15.
There are now over 100000 protected areas worldwide, covering over 12% of the Earth's land surface. These areas represent one of the most significant human resource use allocations on the planet. The importance of protected areas is reflected in their widely accepted role as an indicator for global targets and environmental assessments. However, measuring the number and extent of protected areas only provides a unidimensional indicator of political commitment to biodiversity conservation. Data on the geographic location and spatial extent of protected areas will not provide information on a key determinant for meeting global biodiversity targets: 'effectiveness' in conserving biodiversity. Although tools are being devised to assess management effectiveness, there is no globally accepted metric. Nevertheless, the numerical, spatial and geographic attributes of protected areas can be further enhanced by investigation of the biodiversity coverage of these protected areas, using species, habitats or biogeographic classifications. This paper reviews the current global extent of protected areas in terms of geopolitical and habitat coverage, and considers their value as a global indicator of conservation action or response. The paper discusses the role of the World Database on Protected Areas and collection and quality control issues, and identifies areas for improvement, including how conservation effectiveness indicators may be included in the database to improve the value of protected areas data as an indicator for meeting global biodiversity targets.  相似文献   

16.
As marine systems are threatened by increasing human impacts, mechanisms to maintain biodiversity and ecosystem functions and services are needed. Protecting areas of conservation importance may serve as a proxy for maintaining these functions, while also facilitating efficient use and management of limited resources. Biodiversity hotspots have been used as surrogates for spatial conservation importance; however, as many protected areas have been established opportunistically and under differing criteria, it is unclear how well they actually protect hotspots. We evaluated how well the current protected area network and priority areas selected through previous systematic conservation planning exercises preserve biodiversity hotspots in the Gulf of California, Mexico. We also determined spatial congruence between biodiversity hotspots based on different criteria, which may determine their ability to be used as surrogates for each other. We focus on the Gulf of California because it is a megadiverse system where limited information regarding species diversity and distribution has constrained development of strategies for conservation and management. We developed a species occurrence database and identified biodiversity hotspots using four different criteria: species richness, rarity, endemism, and threatened species. We interpolated species occurrence, while accounting for heterogeneous sampling efforts. We then assessed overlap of hotspots with existing protected areas and priority areas, and between hotspots derived by distinct criteria. We gathered 286,533 occurrence records belonging to 12,105 unique species, including 6388 species identified as rare, 642 as endemic, and 386 as threatened. We found that biodiversity hotspots showed little spatial overlap with areas currently under protection and previously identified priority areas. Our results highlight the importance of distinct spatial areas of biodiversity and suggest that different ecological mechanisms sustain different aspects of diversity and multiple criteria should be used when defining conservation areas.  相似文献   

17.
《PloS one》2014,9(8)

Background

An understanding of the conservation status of Madagascar''s endemic reptile species is needed to underpin conservation planning and priority setting in this global biodiversity hotspot, and to complement existing information on the island''s mammals, birds and amphibians. We report here on the first systematic assessment of the extinction risk of endemic and native non-marine Malagasy snakes, lizards, turtles and tortoises.

Methodology/Principal Findings

Species range maps from The IUCN Red List of Threatened Species were analysed to determine patterns in the distribution of threatened reptile species. These data, in addition to information on threats, were used to identify priority areas and actions for conservation. Thirty-nine percent of the data-sufficient Malagasy reptiles in our analyses are threatened with extinction. Areas in the north, west and south-east were identified as having more threatened species than expected and are therefore conservation priorities. Habitat degradation caused by wood harvesting and non-timber crops was the most pervasive threat. The direct removal of reptiles for international trade and human consumption threatened relatively few species, but were the primary threats for tortoises. Nine threatened reptile species are endemic to recently created protected areas.

Conclusions/Significance

With a few alarming exceptions, the threatened endemic reptiles of Madagascar occur within the national network of protected areas, including some taxa that are only found in new protected areas. Threats to these species, however, operate inside and outside protected area boundaries. This analysis has identified priority sites for reptile conservation and completes the conservation assessment of terrestrial vertebrates in Madagascar which will facilitate conservation planning, monitoring and wise-decision making. In sharp contrast with the amphibians, there is significant reptile diversity and regional endemism in the southern and western regions of Madagascar and this study highlights the importance of these arid regions to conserving the island''s biodiversity.  相似文献   

18.
19.
优先保护区识别对受威胁物种的多样性保护具有重要价值。基于GIS空间分析、管理及预测能力,以中国受威胁陆栖哺乳动物为对象,建立受威胁物种的分布二值网格系统;利用Dobson算法对研究区3810个网格单元进行筛除,确定全国范围下受威胁物种的优先保护区域;结合中国主要的自然保护地分布数据(国家公园和自然保护区),采用保护空缺方法分析优先保护区内受威胁动物的保护现状。研究发现,29个50km×50km的网格单元就包含了全部的受威胁陆栖哺乳物种,其中位于喜马拉雅山东南区等地的10个网格区域覆盖有80%以上的物种,其所处的10组县级行政区内被主要自然保护地保护的土地面积占25.9%,物种数占83.6%,存在一定的保护空缺。本文采用Dobson排除算法,以小面积规则网格为基本单元,顾及到了实验结果的客观性,有助于提高优先保护区的识别效率。  相似文献   

20.
The Brazilian Atlantic Forest is a highly threatened biodiversity hotspot that has been the subject of several complementary conservation assessments and priority-setting initiatives in the last 30 years. Results of these initiatives have relied on distinct types of distribution data for biodiversity features and differ in the objectivity and repeatability of their methodologies. Here we refine earlier priority-setting exercises using the key biodiversity areas (KBA) approach. We evaluate how well these KBAs are represented in the existing protected areas system, prioritize among them, and analyze critical aspects of the KBA methodology in the Brazilian Atlantic Forest context, such as its ability to guide specific conservation strategies. Building upon an extensive database with 1,636 species records and 122 previously identified Important Bird Areas, we demonstrate that conservation assessments in highly fragmented landscapes may be benefited by high resolution species data as is required by the KBA process. We identify 538 KBAs for 141 globally threatened vertebrate species. Prioritizing among these KBA, we highlight the 24 most irreplaceable sites for terrestrial vertebrate species conservation in the Atlantic Forest, based on existing data.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号