首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The dihydrolipoyl transacetylase (E2)-protein X-kinase subcomplex was resolved to produce an oligomeric transacetylase that was free of protein X and kinase subunits. We investigated the properties of this transacetylase E2 oligomer and of a form of the subcomplex from which only the lipoyl-bearing domain of protein X (XL) was removed. While retaining other catalytic and binding properties of the native subcomplex, the oligomeric transacetylase and the subcomplex lacking the XL domain had greatly reduced capacities both to support the overall reaction of the complex (upon reconstitution with other components) and to bind the dihydrolipoyl dehydrogenase component. Our results indicate that protein X, in part through its XL domain, contributes to the binding of the dihydrolipoyl dehydrogenase component and to the overall reaction of the complex.  相似文献   

2.
We isolated from a placental cDNA library by immunoscreening a cDNA clone encoding the transacylase (E2b) precursor of the human branched chain alpha-keto acid dehydrogenase (BCKDH) complex. The cDNA insert consists of 2,649 base pairs with an open reading frame of 1,431 base pairs which can be translated into 477 amino acids and a 3'-untranslated region of 1,205 base pairs. The deduced amino acid sequence includes a leader peptide of 56 amino acid residues, a lipoyl-bearing domain, a E3-binding domain and an inner core domain. A mature human E2b subunit is likely to contain 421 amino acid residues with a calculated Mr 46,322. The nucleotide sequence of the open reading frame and the deduced amino acid sequence of the human E2b shows 91.6% and 92.0% homology with those of the bovine E2b subunit, respectively.  相似文献   

3.
The dihydrolipoyl transacetylase component, which serves as the structural core of mammalian pyruvate dehydrogenase complexes, is acetylated when treated with either pyruvate or with acetyl-CoA in the presence of NADH. Besides the dihydrolipoyl transacetylase component, we have found that another protein, referred to as protein X, is rapidly acetylated at thiol residues. Protein X remains fully bound to the transacetylase core under conditions that remove the pyruvate dehydrogenase and dihydrolipoyl dehydrogenase components. Mapping of 125I-tryptic peptides indicated that the transacetylase subunits and protein X are structurally distinct; however, under the same mapping conditions, there is considerable similarity in the positions of acetylated peptides derived from these subunits. Affinity-purified rabbit immunoglobulin G prepared against the dihydrolipoyl transacetylase core reacted exclusively with the transacetylase and with both its tryptic-derived inner domain and outer lipolyl-bearing domain. Those results further indicate that protein X is not derived from the transacetylase subunit Affinity-purified mouse antibody to protein X reacted selectively with large tryptic polypeptides derived from protein X and did not react with the inner domain of the transacetylase. However, the anti-protein X antibody did react with the intact transacetylase subunit, the lipoyl-bearing domain of the transacetylase, and weakly with the transsuccinylase component of the alpha-ketoglutarate dehydrogenase complex. This cross-reactivity reflected specificity of a portion of the polyclonal antibodies for a related structural region in the transacetylase and protein X (possibly a similar lipoyl-bearing region). Furthermore, a major portion of that polyclonal antibody was shown to react exclusively with protein X. Thus, protein X subunits differ substantially from transacetylase subunits but the two components have a region of structural similarity. We estimate that there are about 5 mol of protein X per mol of the kidney pyruvate dehydrogenase complex. Under a variety of conditions that result in a wide range of levels of acetylation of sites in the complex, about 1 acetyl group is incorporated into protein X per 10 acetyl groups incorporated into the transacetylase subunits per mol of complex. That ratio is close to the ratio of protein X subunits of transacetylase subunits in the complex, indicating that there are efficient mechanisms for acylation and deacylation of protein X.  相似文献   

4.
To characterize the lipoyl-bearing domain of the dihydrolipoyl transacylase (E2) component, purified branched-chain alpha-keto acid dehydrogenase complex from bovine liver was reductively acylated with [U-14C] alpha-ketoisovalerate in the presence of thiamin pyrophosphate and N-ethylmaleimide. Digestion of the modified complex with increasing concentrations of trypsin sequentially cleaved the E2 polypeptide chain (Mr = 52,000) into five radiolabeled lipoyl-containing fragments in the order of L1 (Mr = 28,000), L2 (Mr = 24,500), L3 (Mr = 21,000), L4 (Mr = 15,000) to L5 (Mr = 14,000) as determined by the autoradiography of sodium dodecyl sulfate-polyacrylamide gel. In addition, a lipoate-free inner E2 core consisting of fragment A (Mr = 26,000) and fragment B (Mr = 22,000) was produced. Fragment A contains the active site for transacylation reaction and fragment B is the subunit-binding domain. Fragment L5 and fragment B were stable and resistant to further tryptic digestion. Mouse antiserum against E2 reacted only with fragments L1, L2, and L3, and did not bind fragments L4, L5, A, and B as judged by immunoblotting analysis. The anti-E2 serum strongly inhibited the overall reaction catalyzed by the complex, but was without effect on the transacylation activity of E2. Measurement of incorporation of [1-14C]isobutyryl groups into the E2 subunit indicated the presence of 1 lipoyl residue/E2 chain. Based on the above data, a model is proposed in which the lipoyl-bearing domain is connected to the inner E2 core via a trypsin-sensitive hinge. The lipoyl-bearing domain contains five consecutive tryptic sites (L1 to L5), with the L1 site in the hinge region, and the L5 site next to the terminal lipoyl-binding sequence. An exposed and antigenic region is located between L1 and L4 tryptic sites of the lipoyl-bearing domain. The region accounts for about 24% of the E2 chain length. Binding of antibodies to this region probably impairs the mobility of the lipoyl-containing polypeptide, resulting in an interruption of the active-site interactions that are necessary for the overall reaction. The lack of antigenicity and resistance to tryptic digestion indicate a highly folded conformation for fragment L5, the limit polypeptide carrying the single lipoyl residue.  相似文献   

5.
Dihydrolipoamide acetyltransferase (E2) forms the structural core of pyruvate dehydrogenase complex. A cDNA clone (lambda E2-1) for mammalian E2 was identified from a human liver lambda gt11 library using anti-E2 serum. Affinity-selected antibodies using the fusion protein from lambda E2-1 immuno-reacted specifically with E2 of purified pyruvate dehydrogenase complex on immuno-blot analysis. The cDNA insert was approximately 2.3 kb in length with an internal EcoR1 site generating 1.4 and 0.9 kb fragments. A synthetic 17-mer oligodeoxynucleotide mixture based on the amino acid sequence surrounding the lipoic acid-containing lysine residue in bovine kidney E2 hybridized with the 2.3 kb cDNA insert and the 1.4 kb fragment.  相似文献   

6.
Branched-chain alpha-keto acid dehydrogenase complex is a macromolecule comprising three catalytic components: a dehydrogenase (E1) with alpha(2)beta(2) structure, an acyltransferase (E2) and a dihydrolipoamide dehydrogenase (E3). In the mammalian complex, the E2 component with 24 identical subunits forms a structural core, to which multiple copies of E1 and E3 bind noncovalently. We isolated cDNA clones encoding E1 alpha, E1 beta and E2 subunits from a chicken-liver cDNA library and performed nucleotide sequencing. Amino-acid sequences deduced from the nucleotide sequences revealed that chicken E1 alpha and E1 beta chains had substantially homologous sequences with the corresponding mammalian polypeptides, except for the N-terminus. Chicken E2 conserved three functional domains, a lipoyl-bearing domain, an E1/E3 binding domain and an inner-core domain, but contrasted strongly with mammalian E2 in respect of containing 11 additional residues in two interdomain linkers: nine sequential residues in one linker and two residues in the other. Replacement of many residues was also observed in the chicken linkers. When E2 activity for catalyzing the overall reaction was measured by activity reconstitution in combination with E1 and E3, chicken E2 was markedly less effective than mammalian E2. The capability of chicken E2 for binding E1 was also reduced when determined by the binding assay using sucrose density gradient centrifugation. Chicken E1 was functionally as well as structurally indistinguishable from mammalian E1. Thus the reduced catalytic activity of chicken E2 must arise from its reduced E1-binding capacity, which results from the characteristic structure of interdomain linkers in chicken E2.  相似文献   

7.
The dihydrolipoyl transacetylase (E2p) component of the pyruvate dehydrogenase complex (PDC) of Escherichia coli is a multidomain polypeptide comprising a catalytic domain, a domain that binds dihydrolipoyl dehydrogenase (E3-binding domain), and three domains containing lipoic acid (lipoyl domains). In PDC 24 subunits of E2p associate by means of interactions involving the catalytic domains to form the structural core of PDC. From cryoelectron microscopy and computer image analysis of frozen-hydrated isolated E2p cores it appears that the lipoyl domains are located peripherally about the core complex and do not assume fixed positions. To further test this interpretation the visibility of the lipoyl domains in electron micrographs was enhanced by specifically biotinylating the lipoic acids and labeling them with streptavidin. In agreement with the studies of native, unlabeled E2p cores, cryoelectron microscopy of the streptavidin-labeled E2p cores showed that the lipoic acid moieties are capable of extending approximately 13 nm from the surface of the core. Localization of the E3-binding domains was accomplished by cryoelectron microscopy of E2p-E3 subcomplexes prepared by reconstitution in vitro. Frequently an apparent gap of several nanometers separated the bound E3 from the surface of the core. The third component of PDC, pyruvate dehydrogenase (E1p), appeared to bind to the E2p core in a manner similar to that observed for E3. These results support a structural model of the E2p core in which the catalytic, E3-binding, and three lipoyl domains are interconnected by linker sequences that assume extended and flexible conformations.  相似文献   

8.
We report the isolation of a 1.5 kb cDNA clone for the beta subunit of human pyruvate dehydrogenase (E1) from a human liver lambda gt11 cDNA library using anti-E1 serum. We generated a peptide sequence of 24 amino acids starting from the N-terminus of bovine heart mature E1 beta. The identity of the E1 beta cDNA clone was confirmed by the similarity between the amino acid sequence deduced from the cDNA nucleotide sequence and the known amino acid sequence of bovine heart E1 beta. In Northern analysis of total RNA extracted from human heart, the E1 beta cDNA clone hybridized to a major 1.6 kb and a minor 5.2 kb RNA species.  相似文献   

9.
The subunit and subdomain requirements for NADH inhibition as well as Ca+ and spermine activation of the pyruvate dehydrogenaseb phosphatase were analyzed. The transacetylase-protein X subcomplex (E2-X) was required for all three effects. The oligomeric inner domain of the transacetylase did not support any of these regulatory effects. The presence of at least a portion of the outer (lipoyl-bearing) domains of the transacetylase but not the lipoyl-bearing portion of protein X was essential for expression of these regulatory effects on phosphatase activity. The inner domain of protein X may contribute to some effects. The E2-X subcomplex, alone, had no effect on phosphatase activity in the absence of Ca2+, but the subcomplex did support both NADH inhibition and spermine activation in the absence of Ca2+. Studies with peptide substrates established that spermine is directly bound by a phosphatase subunit. With the resolved pyruvate dehydrogenase component (E1b) used as the substrate, the E2-X subcomplex transformed the effect of spermine from inhibiting to stimulating the rate of dephosphorylation by the phosphatase. The above observations suggest that binding of E1b to the E2-X subcomplex alters its presentation to the phosphatase. We also present several observations that are consistent with NADH inhibition of the phosphatase being mediated through a dihydrolipoyl dehydrogenase-dependent reduction of lipoyl moieties in the E2-X subcomplex. Overall, our data establish that the outer, lipoyl-bearing domains of the oligomeric transacetylase core have an essential role in the function and regulation of the pyruvate dehydrogenase phosphatase.  相似文献   

10.
Studies were conducted on four pyruvate dehydrogenase kinase-containing fractions: purified pyruvate dehydrogenase complex, the dihydrolipoyl transacetylase-protein X-kinase subcomplex (E2.X.K), a kinase fraction (K fraction) prepared from the E2.X.K subcomplex, and a kinase fraction generated by limited trypsin-digestion of E2.X.K. We characterized the gel electrophoresis properties of dissociated subunits (one-dimensional and two-dimensional), the catalytic and ATP binding properties of kinase-containing fractions, and the subunit requirements for kinase binding to and being activated by the transacetylase-protein X subcomplex (E2.X). A significant portion of protein X was retained with the transacetylase core following release of virtually all the kinase. The K fraction had four major bands separated by sodium dodecyl sulfate-slab gel electrophoresis which corresponded to the dihydrolipoyl dehydrogenase, protein X, the trypsin-resistant catalytic subunit of the kinase and a chymotrypsin-resistant subunit which had a high pI and comigrated in one-dimensional systems with the chymotrypsin-sensitive alpha-subunit of the pyruvate dehydrogenase component. While purified kidney complex contained only about three molecules of kinase (determined by [14C]ATP binding), one molecule of E2.X subcomplex activated a large number (greater than 15) molecules of kinase associated with the protein X-containing K fraction. Sephadex G-200 chromatography of the K fraction in the presence of dithiothreitol led to coelution of protein X and kinase subunits. Limited trypsin digestion converted the transacetylase into subdomains and cleaved protein X and the high pI subunit of the kinase. Under those conditions, the intact catalytic subunit of the kinase did not bind to the large inner domain of the transacetylase but could be activated by untreated E2.X subcomplex. Thus, binding of the catalytic subunit of the kinase and its activation by E2.X required either protein X or the lipoyl-bearing outer domain of the transacetylase. In combination, our results suggest that protein X serves to anchor the kinase to the core of the complex.  相似文献   

11.
The pyruvate dehydrogenase complex (PDC) from muscle of the adult parasitic nematode Ascaris suum plays a unique role in its anaerobic mitochondrial metabolism. Resolution of the intact complex in high salt dissociates the pyruvate dehydrogenase subunit but leaves the dihydrolipoyl dehydrogenase subunit (E3) and two other proteins with apparent M(r)s of 45 and 43 kDa bound to the dihydrolipoyl transacetylase (E2) core. These proteins are not observable on Coomassie brilliant blue-stained gels of other eukaryotic PDCs, but the 45-kDa protein is similar in apparent M(r), pI, and sensitivity to trypsin to the Kb subunit of the bovine kidney PDH alpha kinase. Acetylation of the ascarid PDC with [2-14C]pyruvate under conditions designed to maximize the incorporation of label into protein yielded only a single radiolabeled subunit, E2. These results confirm earlier reports that the ascarid PDC lacks protein X, an integral component recently identified in other eukaryotic PDCs. About 1.6 to 1.8 mol of 14C was incorporated/mole of E2, suggesting that the ascarid E2 contained two lipoly-bearing domains. Domain mapping of the 14C-acetylated ascarid E2 by limited tryptic digestion identified two lipoyl-bearing fragments with apparent M(r)s of 50 and 34 kDa and two core fragments with apparent M(r)s of 46 and 30 kDa. The ascarid E2 domain structure appears to be similar to that of other E2s. However, it appears that the subunit-binding domain (E2B) of the ascarid E2 may be significantly larger or be flanked by larger than normal interdomain regions. An enlarged E2B domain may be necessary to accommodate the additional binding of E3 to the E2 subunit in the ascarid complex, in the absence of protein X.  相似文献   

12.
Klyuyeva A  Tuganova A  Popov KM 《Biochemistry》2005,44(41):13573-13582
Pyruvate dehydrogenase kinase 2 (PDK2) is a prototypical mitochondrial protein kinase that regulates the activity of the pyruvate dehydrogenase complex. Recent structural studies have established that PDK2 consists of a catalytic core built of the B and K domains and the relatively long amino and carboxyl tails of unknown function. Here, we show that the carboxy-terminal truncation variants of PDK2 display a greatly diminished capacity for phosphorylation of holo-PDC. This effect is due largely to the inability of the transacetylase component of PDC to promote the phosphorylation reaction catalyzed by the truncated PDK2 variants. Furthermore, the truncated forms of PDK2 bind poorly to the lipoyl-bearing domain(s) provided by the transacetylase component. Taken together, these data strongly suggest that the carboxyl tails of PDK isozymes contribute to the lipoyl-bearing domain-binding site of the kinase molecule. We also show that the carboxyl tails derived from isozymes PDK1, PDK3, and PDK4 are capable of supporting the kinase activity of the kinase core derived from PDK2 as well as binding of the respective PDK2 chimeras to the lipoyl-bearing domain. Furthermore, the chimera carrying the carboxyl tail of PDK3 displays a stronger response to the addition of the transacetylase component along with a better binding to the lipoyl-bearing domain, suggesting that, at least in part, the differences in the amino acid sequences of the carboxyl tails account for the differences between PDK isozymes.  相似文献   

13.
14.
A cDNA clone encoding the entire transacylase (E2b) precursor of the bovine branched-chain alpha-keto acid dehydrogenase complex has been constructed from two overlapping incomplete cDNA clones which were isolated from a lambda ZAP library prepared from bovine liver poly(A)+ RNA. Nucleotide sequencing indicates that this bovine E2b cDNA insert (bE2-11) is 2701 base pairs in length with an open reading frame of 1446 base pairs. The bE2-11 cDNA insert encodes a leader peptide of 61 residues and a mature E2b polypeptide of 421 amino acid residues with a calculated monomeric molecular mass of 46,518 daltons. The molecular mass of the native E2b component isolated from bovine liver is 1,110,000 daltons as determined by sedimentation equilibrium. This value establishes the 24-subunit octahedral model for the quaternary structure of bovine E2b. The amino-terminal sequences of two tryptic fragments (A and B) of the E2b protein have been determined. Fragment A comprises residues 175 to 421 of the E2b protein and is the inner E2 core domain which contains the transacylase active site. Fragment B, produced by further tryptic cleavage of fragment, comprises residues 205 to 421, but does not have transacylase activity. Both fragments A and B confer the highly assembled 24-mer structure. The primary structure of the inner E2 core domain of bovine E2b (fragment A) is very similar to those of three other E2 proteins (human E2p, Escherichia coli E2p, and E. coli E2k). These similarities suggest that these E2 proteins are structurally and evolutionarily related.  相似文献   

15.
The pyruvate dehydrogenase kinase consists of a catalytic subunit (Kc) and a basic subunit (Kb) which appear to be anchored to the dihydrolipoyl transacetylase core component (E2) by another subunit, referred to as protein X (Rahmatullah, M., Jilka, J. M., Radke, G. A., and Roche, T. E. (1986) J. Biol. Chem. 261, 6515-6523). We determined the catalytic requirements for reduction and acetylation of the lipoyl moiety in protein X and linked those changes in protein X to regulatory effects on kinase activity. Using fractions prepared by resolution and proteolytic treatments, we evaluated which subunits are required for regulatory effects on kinase activity. With X-KcKb fraction (treated to remove the mercurial agent used in its preparation), we found that the resolved pyruvate dehydrogenase component, the isolated inner domain of E2 (lacking the lipoyl-bearing region of E2), and the dihydrolipoyl dehydrogenase component directly utilize protein X as a substrate. The resulting reduction and acetylation of protein X occurs in association with enhancement of kinase activity. Following tryptic cleavage of E2 and protein X into subdomains, full acetylation of the lipoyl-bearing subdomains of these proteins is retained along with the capacity of acetylating substrates to stimulate kinase activity. All kinase-containing fractions, including those in which the Kb subunit was digested, were inhibited by pyruvate or ADP, alone, and synergistically by the combination suggesting that pyruvate and ADP bind to Kc. Our results suggest that the Kb subunit of the kinase does not contribute to the observed regulatory effects. A dynamic role of protein X in attenuating kinase activity based on changes in the mitochondrial redox and acetylating potentials is considered.  相似文献   

16.
Treatment of the dihydrolipoyl transacetylase-protein X-kinase subcomplex (E2-X-KcKb) with protease Arg C selectively converted protein X into an inner domain fragment (Mr approximately equal to 35,000) and an outer (lipoyl-bearing) domain fragment (Mr approximately equal to 15,500). These fragments were larger and much smaller, respectively, than the inner domain and outer domain fragments derived from the E2 component, supporting the conclusion that protein X is distinct from the E2 component. Protease Arg C cleaved the Kb subunit more slowly than protein X. An increase in kinase activity correlated with this cleavage of the Kb subunits. An even slower cleavage of E2 subunits generated an inner domain fragment (Mr approximately equal to 31,500) and a lipoyl-bearing domain fragment (Mr approximately equal to 49,000) which had Mr values at least 3,000 and 10,000 larger, respectively, than the corresponding E2 fragments generated by trypsin treatment of the subcomplex. Following various extents of cleavage with protease Arg C or trypsin, residual oligomeric subcomplexes were isolated and characterized. We found that selective removal of the lipoyl-bearing domain of protein X did not alter lipoyl-mediated regulation of the kinase indicating that the lipoyl residues bound to E2 subunits are effective, that the inner domain of protein X remained associated with the inner domain of E2 subunits following the complete removal of the outer domains of both E2 and protein X, that, with only 10% of the E2 subunits intact, nearly half of the catalytic (Kc) subunits of the kinase were bound by the residual subcomplex, and that removal of the remaining outer domains from E2 subunits released the Kc subunits. Thus, protein X is unique among the subunits of the complex in binding tightly to the oligomeric inner domain of the transacetylase, and the outer domain of the transacetylase serves to bind to and facilitate the regulation of the catalytic subunit of the kinase.  相似文献   

17.
PDHK2 is a mitochondrial protein kinase that phosphorylates pyruvate dehydrogenase complex, thereby down-regulating the oxidation of pyruvate. Here, we present the crystal structure of PDHK2 bound to the inner lipoyl-bearing domain of dihydrolipoamide transacetylase (L2) determined with or without bound adenylyl imidodiphosphate. Both structures reveal a PDHK2 dimer complexed with two L2 domains. Comparison with apo-PDHK2 shows that L2 binding causes rearrangements in PDHK2 structure that affect the L2- and E1-binding sites. Significant differences are found between PDHK2 and PDHK3 with respect to the structure of their lipoyllysine-binding cavities, providing the first structural support to a number of studies showing that these isozymes are markedly different with respect to their affinity for the L2 domain. Both structures display a novel type II potassium-binding site located on the PDHK2 interface with the L2 domain. Binding of potassium ion at this site rigidifies the interface and appears to be critical in determining the strength of L2 binding. Evidence is also presented that potassium ions are indispensable for the cross-talk between the nucleotide- and L2-binding sites of PDHK2. The latter is believed to be essential for the movement of PDHK2 along the surface of the transacetylase scaffold.  相似文献   

18.
Scanning transmission electron microscopy (STEM) was used to determine the radial distribution of mass within the bovine kidney branched-chain alpha-keto acid dehydrogenase complex (E1-E2) and its core enzyme, dihydrolipoamide acyltransferase (E2). The particle mass of E2 measured by STEM is (1.19 +/- 0.02) x 10(6). Assuming 24 subunits per E2 core, this value corresponds to a subunit molecular weight of (4.96 +/- 0.08) x 10(4), which agrees well with the subunit molecular weight estimated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis of 5.2 x 10(4) (Pettit et al., 1978) and that deduced from the gene sequence, 46,518 (Griffin et al., 1988). Thus, the STEM data reaffirms the 24-subunit model for this E2. Previous studies indicated that the E2 subunits contain an extended, outer lipoyl-bearing domain connected by a trypsin-sensitive segment to a compact, inner catalytic domain. The assemblage of 24 inner domains comprises a cubelike inner core. The quantity and spatial distribution of mass determined from STEM images for the E2 inner core are consistent with this model. The lipoyl-bearing domains are shown to occupy a zone defined by radii of 80-130 A over which the lipoyl moiety may range. This zone overlaps the positions of the 24 branched-chain alpha-keto acid dehydrogenase (E1) molecules, which apparently are located on the of the cubelike inner core.  相似文献   

19.
A subcomplex consisting of dihydrolipoyl transacetylase and dihydrolipoyl dehydrogenase, two of the three enzymes comprising the Escherichia coli pyruvate dehydrogenase complex, has been crystallized. X-ray diffraction data establish that the space group is P213 with unit cell dimension a=211 .5A?. The unit cell contains four molecules of the subcomplex, each possessing 3-fold crystallographic and molecular symmetry. This finding, together with biochemical and electron microscopic data reported elsewhere, establish unequivocally that dihydrolipoyl transacetylase, the core enzyme of the pyruvate dehydrogenase complex, consists of 24 identical subunits with octahedral (432) symmetry. In the case presented here, the 432 symmetry of the transacetylase is reduced to 3-fold symmetry in the subcomplex by the addition of dihydrolipoyl dehydrogenase subunits. Crystal density measurements indicate that the dihydrolipoyl transacetylase present in these crystals is considerably smaller than the core mass generally reported for intact transacetylase. The implications of these findings are discussed with respect to the subunit stoichiometry and structure of the E. coli pyruvate dehydrogenase complex.  相似文献   

20.
Branched-chain alpha-keto acid dehydrogenase complex (BCKADH) contains decarboxylase (E1), dihydrolipoyl transacylase (E2), and dihydrolipoyl dehydrogenase (E3) as catalytic components. BCKADH purified from rainbow trout (Oncorhynchus mykiss) liver was comparable with mammalian BCKADH in various enzymatic characteristics, but less efficient in catalyzing the overall reaction. The trout E2 subunit was larger than the mammalian subunit and rather similar to the chicken one in relative molecular mass on SDS-PAGE, whereas the E1 component was similar between trout and mammalian both in relative molecular mass of its alpha and beta subunits and in the catalytic activity. Trout E2 cDNA cloning and nucleotide sequencing revealed that the mature trout E2 subunit consists of 435 residues, and possesses 14 additional residues compared with mammalian E2. Eleven of these are localized in two interdomain segments as two sequences with two and nine residues, respectively. Trout E2 was inferior to rat E2 in the capacity for binding the E1 component, similar to chicken E2. Thus, it appears that non-mammalian BCKADH E2 is distinct from that in mammals in the structure of interdomain segments, resulting in reduction of overall activity of the enzyme complex.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号