首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Amphetamine, a potent sympathomimetic amine, has powerful stimulant actions in the central nervous system. These actions are believed to be related to the influence of amphetamine on release and uptake of catecholamine neurotransmitters. The [14C]deoxyglucose method makes it possible to study changes in cerebral metabolic rate in different areas of gray and white matter. Because of the close relationship between metabolic rate and functional activity, this method may be used to identify specific structures in the brain in which functional activity is altered. The [14C]deoxyglucose method was used to explore for changes in metabolic rate produced by d-and l-amphetamine (5 mg/kg) in forty gray and four white matter structures in normal conscious rats. d-Amphetamine produced increases in local cerebral glucose utilization in a number of components of the extrapyramidal motor system, as well as in some other structures known to contain dopamine-producing and/or dopaminoceptive cells. The largest increases after d-amphetamine administration occurred in the subthalamic nucleus and the zona reticulata of the substantia nigra. l-Amphetamine produced increases in some but not all of these same structures, and these were generally smaller than those observed with d-amphetamine. Decreases in local cerebral glucose utilization after either d- or l-amphetamine administration were found in the habenula and the suprachiasmatic nuclei of the hypothalamus. The effects in the suprachiasmatic nuclei may reflect their normal diurnal rhythm in metabolic rate. These results indicate that amphetamines may influence behavior through effects on specific regions of the brain. Only some of these regions have previously been studied as possible sites of action of amphetamine.  相似文献   

2.
Quantitative autoradiography of [14C]deoxyglucose, [14C]iodoantipyrine, and [14C]leucine was used to estimate regional cerebral glucose metabolism, cerebral blood flow, and cerebral protein synthesis, respectively, in rats during morphine dependence and withdrawal. Glucose metabolism was elevated in 19 of 26 selected brain regions; the elevations in glucose metabolism were similar when data were expressed as either optical density ratios or as calculated rate values of mol/100 gm/min. Restraining the rats produced heterogeneous effects on glucose metabolism during morphine withdrawal (MW). Neither estimated cerebral blood flow nor cerebral protein synthesis were affected by morphine and/or naloxone treatments in either naive or morphine-dependent rats. The data demonstrate that changes in regional cerebral glucose utilization occur independently of blood flow changes and exclude the possibility that regional changes in glucose utilization occur as a consequence of large regional changes in protein synthesis rates in brain. These data confirm the utility of 2-deoxyglucose measures of MW as objective biochemical indices of opiate agonist and antagonist effects in vivo.  相似文献   

3.
Abstract— A method has been developed for the simultaneous measurement of the rates of glucose consumption in the various structural and functional components of the brain in vivo. The method can be applied to most laboratory animals in the conscious state. It is based on the use of 2-deoxy-D-[14C]glucose ([14C]DG) as a tracer for the exchange of glucose between plasma and brain and its phosphorylation by hexokinase in the tissues. [14C]DG is used because the label in its product, [14C]deoxyglucose-6-phosphate, is essentially trapped in the tissue over the time course of the measurement. A model has been designed based on the assumptions of a steady state for glucose consumption, a first order equilibration of the free [14C]DG pool in the tissue with the plasma level, and relative rates of phosphorylation of [14C]DG and glucose determined by their relative concentrations in the precursor pools and their respective kinetic constants for the hexokinase reaction. An operational equation based on this model has been derived in terms of determinable variables. A pulse of [14C]DG is administered intravenously and the arterial plasma [14C]DG and glucose concentrations monitored for a preset time between 30 and 45min. At the prescribed time, the head is removed and frozen in liquid N2-chilled Freon XII, and the brain sectioned for autoradiography. Local tissue concentrations of [14C]DG are determined by quantitative autoradiography. Local cerebral glucose consumption is calculated by the equation on the basis of these measured values. The method has been applied to normal albino rats in the conscious state and under thiopental anesthesia. The results demonstrate that the local rates of glucose consumption in the brain fall into two distinct distributions, one for gray matter and the other for white matter. In the conscious rat the values in the gray matter vary widely from structure to structure (54-197 μmol/100 g/min) with the highest values in structures related to auditory function, e.g. medial geniculate body, superior olive, inferior colliculus, and auditory cortex. The values in white matter are more uniform (i.e. 33–40 μmo1/100 g/min) at levels approximately one-fourth to one-half those of gray matter. Heterogeneous rates of glucose consumption are frequently seen within specific structures, often revealing a pattern of cytoarchitecture. Thiopental anesthesia markedly depresses the rates of glucose utilization throughout the brain, particularly in gray matter, and metabolic rate throughout gray matter becomes more uniform at a lower level.  相似文献   

4.
Abstract: The effects of chronic treatment with N G-nitro- l -arginine methyl ester, a potent inhibitor of nitric oxide synthase activity, on local cerebral glucose utilization were examined in conscious rats. Intraperitoneal injections of 50 mg/kg of the nitroarginine twice daily for 4 days have been found to result in almost complete inhibition of nitric oxide synthase activity in brain. Local cerebral glucose utilization was determined by means of the quantitative autoradiographic [14C]deoxyglucose method in an experimental group (n = 7) of rats that were treated with the nitroarginine according to this schedule and in a normal control group (n = 7) treated similarly with saline. The rats were conscious but partially restrained during the determinations of local cerebral glucose utilization. The nitroarginine treatment raised mean arterial blood pressure statistically significantly to 147 ± 3 mm Hg (mean ± SEM) from a level of 120 ± 5 mm Hg in the saline controls ( p < 0.001 by grouped t test), but there were no statistically significant effects on glucose utilization in any of 39 brain structures examined. It is concluded that nitric oxide normally exerts no significant influence on energy metabolism in the rat brain.  相似文献   

5.
Rats were intravenously injected with 10μCi of [U-14C]deoxyglucose (DG) or [U-14C]fluorodeoxyglucose (FDG) and sacrificed by microwave irradiation 4, 45 and 240 min later. Fluorodeoxyglucose phosphate (FDGP) accumulated at a significantly greater rate than did deoxyglucose phosphate (DGP) in brain. Loss of the phosphorylated compounds from brain between 45 and 240 min after administration was similar. The per cent of radioactivity in non-phosphorylated compounds was lower with FDG as tracer at all times after injection. The probable basis for the difference in rate of phosphorylation of the two compounds is a difference in the kinetic properties of rat brain hexokinase with FDG and DG as substrates.The principal use of these isotopes is for studies of regional glucose utilization in brain. In the rat, our data indicate that FDG has two advantages over DG for such studies. Since FDGP accumulates in brain at about 150% the rate of DGP, the amounts (and costs) of isotope can be reduced by up to one third with FDG as tracer. The more rapid decrease in background of non-phosphorylated FDG potentially allows the study of shorter periods of time in autoradiographic work. These considerations apply to both qualitative and quantitative studies of glucose utilization by rat brain. For quantitative work, however, the constants necessary to convert rates of FDG phosphorylation to rates of glucose phosphorylation by rat brain have yet to be determined.  相似文献   

6.
The [14C]deoxyglucose [Sokoloff et al., J. Neurochem. 28, 897-916 (1977)] and [6-14C]glucose [Hawkins et al., Am. J. Physiol. 248, C170-C176 (1985)] quantitative autoradiographic methods were used to measure regional brain glucose utilization in awake rats. The spatial resolution and qualitative appearance of the autoradiograms were similar. In resting animals, there was no significant difference between the two methods among 18 gray and three white matter structures over a fourfold range in glucose utilization rates (coefficient of correlation = 0.97). In rats given increasing frequencies of photoflash visual stimulation, the two methods gave different results for glucose utilization within visual pathways. The linearity of the metabolic response was studied in the superior colliculus using an on-off checkerboard stimulus between 0 and 33 Hz. The greatest increment in activity occurred between 0 and 4 Hz stimulation with both methods, probably representing recruitment of neuronal elements into activity. Above 4 Hz, there was a progressive increase in labeling with [14C]deoxyglucose up to 1.7 times control at 33 Hz. With [6-14C]-glucose, there was no further increment in change above a 30% increase seen at 4 Hz. Measurement of tissue glucose revealed no drop in the visually stimulated structures compared to control. We interpret these results to indicate that, with increasing rates of physiological activity, the products of deoxyglucose metabolism accumulate progressively, but the products of glucose metabolism are removed from brain in 10 min.  相似文献   

7.
Effects of TRH and pentobarbital alone, and in combination, on local cerebral glucose utilization of rats were studied by the autoradiographic 2-deoxy[14C]glucose method. TRH (5 mg/kg i.v.) reduced the rate of cerebral glucose utilization slightly in the whole brain. Locally, significant depression was observed in the following structures: frontal and visual cortices, hippocampus Ammon's horn and dentate gyrus, medial and lateral geniculate bodies, nucleus accumbens, caudate-putamen, substantia nigra, pontine gray matter, superior colliculus, superior olivary nucleus, vestibular nucleus, lateral lemniscus and cerebellar cortex. Pentobarbital (30 mg/kg i.v.) produced a marked and diffuse reduction in the rate of glucose utilization throughout the brain. TRH given 15 min after the administration of pentobarbital markedly shortened the pentobarbital sleeping time and caused some reversal of the depression in local cerebral glucose utilization produced by pentobarbital. These effects were almost completely abolished by pretreatment with intracerebroventricular injection of atropine methyl bromide (20 microgram/rat). These results indicate that although TRH acts to cause a reduction in the rate of cerebral glucose utilization, it reverses the depression induced by pentobarbital, via a cholinergic mechanism, in a number of structures, some of which are related to monoaminergic systems and the reticulo-thalamo-cortical activating system.  相似文献   

8.
To evaluate the response of astrocytes in the auditory pathway to increased neuronal signaling elicited by acoustic stimulation, conscious rats were presented with a unilateral broadband click stimulus and functional activation was assessed by quantitative autoradiography using three tracers to pulse label different metabolic pools in brain: [2-14C]acetate labels the 'small' (astrocytic) glutamate pool, [1-14C]hydroxybutyrate labels the 'large' glutamate pool, and [14C]deoxyglucose, reflects overall glucose utilization (CMR(glc)) in all brain cells. CMR(glc) rose during brain activation, and increased activity of the oxidative pathway in working astrocytes during acoustic stimulation was registered with [2-14C]acetate. In contrast, the stimulation-induced increase in metabolic activity was not reflected by greater trapping of products of [1-14C]hydroxybutyrate. The [2-14C]acetate uptake coefficient in the inferior colliculus and lateral lemniscus during acoustic stimulation was 15% and 18% (p < 0.01) higher in the activated compared to contralateral hemisphere, whereas CMR(glc) in these structures rose by 66% (p < 0.01) and 42% (p < 0.05), respectively. Calculated rates of brain utilization of blood-borne acetate (CMR(acetate)) are about 15-25% of total CMR(glc) in non-stimulated tissue and 10-20% of CMR(glc) in acoustically activated structures; they range from 28 to 115% of estimated rates of glucose oxidation in astrocytes. The rise in acetate utilization during acoustic stimulation is modest compared to total CMR(glc), but astrocytic oxidative metabolism of 'minor' substrates present in blood can make a significant contribution to the overall energetics of astrocytes and astrocyte-neuron interactions in working brain.  相似文献   

9.
Regional cerebral glucose influx was measured using quantitative autoradiography after the intravenous infusion of [2-14C]glucose for a period of 10 or 20 s. Glucose influx varied considerably among structures over an almost threefold range. When compared with rates of regional glucose utilization, a significant correlation by region was found between glucose influx and utilization, demonstrating that the glucose supply to individual cere bral structures is closely matched to their metabolic needs.  相似文献   

10.
We studied the effects of chloramphenicol on brain glucose utilization and sleep-wake cycles in rat. After slightly anaesthetized animals were injected with [18F]fluoro-2-deoxy-D-glucose, we acquired time-concentration curves from three radiosensitive beta microprobes inserted into the right and left frontal cortices and the cerebellum, and applied a three-compartment model to calculate the cerebral metabolic rates for glucose. The sleep-wake cycle architecture was analysed in anaesthetic-free rats by recording electroencephalographic and electromyographic signals. Although chloramphenicol is a well-established inhibitor of oxidative phosphorylation, no compensatory increase in glucose utilization was detected in frontal cortex. Instead, chloramphenicol induced a significant 23% decrease in the regional cerebral metabolic rate for glucose. Such a metabolic response indicates a potential mismatch between energy supply and neuronal activity induced by chloramphenicol administration. Regarding sleep-wake states, chloramphenicol treatment was followed by a 64% increase in waking, a 20% decrease in slow-wave sleep, and a marked 59% loss in paradoxical sleep. Spectral analysis of the electroencephalogram indicates that chloramphenicol induces long-lasting modifications of delta-band power during slow-wave sleep.  相似文献   

11.
Regional Cerebral Glucose Utilization in Rats with Portacaval Anastomosis   总被引:5,自引:3,他引:2  
Regional cerebral glucose utilization was measured using [2-14C]glucose in rats with an end-to-side portacaval anastomosis. The experiments were conducted in two groups of rats 4 to 8 weeks after portacaval shunting was established. One group was paralyzed and given N2O:O2 (70:30), whereas the other was conscious, unstressed, and unaware of the experiment. In both groups the rate of glucose utilization was decreased in almost all brain structures by an average of 20% after portacaval shunting. The results showed definitively that cerebral energy metabolism was reduced at a time when there were no obvious neurological abnormalities.  相似文献   

12.
Abstract: Fetal cerebral metabolism changes during development. The normal fetal metabolic rate must be known to evaluate pathophysiological changes. Therefore, we determined the regional cerebral glucose consumption in the fetal guinea pig. This required the application of the 2-deoxyglucose method to this species. We measured both the transfer coefficients of deoxyglucose and glucose between the maternal arterial plasma and the fetal brain and the lumped constant in chronically prepared undisturbed guinea pig dams using a three-compartment model. Furthermore, the ratio between the initial clearances of deoxyglucose and glucose between the maternal arterial plasma and the fetal brain and the ratio between the phosphorylation coefficients of these substrates in the fetal brain were determined. The total cerebral glucose consumption measured by the deoxyglucose method (10 ± 1.2 µmol/100 g/min) was similar to that calculated from the glucose concentration and the phosphorylation coefficient of glucose in the cerebrum (10 ± 0.4 µmol/100 g/min). We conclude that the 2-deoxyglucose method is applicable to the guinea pig, and we further conclude that in the fetal guinea pig cerebral glucose consumption is 10 times lower than that in the adult.  相似文献   

13.
Developing rat brain undergoes a series of functional and anatomic changes which affect its rate of cerebral glucose utilization (CGU). These changes include increases in the levels of the glucose transporter proteins, GLUT1 and GLUT3, in the blood-brain barrier as well as in the neurons and glia. 55 kDa GLUT1 is concentrated in endothelial cells of the blood-brain barrier, whereas GLUT3 is the predominant neuronal transporter. 45 kDa GLUT1 is in non-vascular brain, probably glia. Studies of glucose utilization with the 2-14C-deoxyglucose method of Sokoloffet al., (1977), rely on glucose transport rate constants, k1 and k2, which have been determined in the adult rat brain. The determination of these constants directly in immature brain, in association with the measurement of GLUT1, GLUT3 and cerebral glucose utilization suggests that the observed increases in the rate constants for the transport of glucose into (k1) and out of (k2) brain correspond to the increases in 55 kDa GLUT1 in the blood-brain barrier. The maturational increases in cerebral glucose utilization, however, more closely relate to the pattern of expression of non-vascular GLUT1 (45 kDa), and more specifically GLUT3, suggesting that the cellular expression of the glucose transporter proteins is rate limiting for cerebral glucose utilization during early postnatal development in the rat.  相似文献   

14.
Methylmercuric chloride was given to rats in a neurotoxic dose regimen (six daily doses of 8 mg kg-1 p.o.). During the silent (asymptomatic) phase of intoxication, the rates of cerebral glucose influx and cerebral glucose phosphorylation were measured simultaneously using 2-deoxyglucose. Regional cerebral blood flow was also measured using iodoantipyrine. The unidirectional flux of glucose into brain was not affected by methylmercury, and differences in the rates of glucose phosphorylation from region to region remained coupled to the regional cerebral blood flow. However, the blood flow was reduced throughout the brain, an observation suggesting that the operational level of metabolically regulated blood flow had been reset. Thus, in spite of a generalised reduction in blood flow, there was no indication of impaired cerebral glucose supply or utilization during the silent phase of methylmercury intoxication.  相似文献   

15.
Elevated blood levels of prolactin increase the synthesis, turnover, and release of 3,4-dihydroxyphenylethylamine (dopamine) from the tuberoinfundibular dopaminergic neurons, which project to the median eminence. The present study examined whether hyperprolactinemia also increases local cerebral glucose utilization, as determined by the 2-deoxy-D-[1-14C]glucose method, in the median eminence and other brain structures. Adult male rats were given ovine prolactin (4 mg/kg) subcutaneously every 8 h for 48 h. This treatment exerted an autoregulatory feedback effect on endogenous rat prolactin secretion, as evidenced by decreased circulating levels of rat prolactin. Ovine prolactin treatment also decreased plasma glucose concentrations. However, in both partially immobilized and free-ranging rats, glucose utilization in brain structures containing tuberoinfundibular dopaminergic cell bodies (the arcuate nucleus) and terminals (the median eminence) was not affected by ovine prolactin treatment. Hyperprolactinemia was, however, associated with decreased glucose utilization in the medial forebrain bundle and the CA subfield of the dorsal hippocampus. The lack of a significant effect of prolactin treatment on glucose utilization in the median eminence indicates that the resolution of the deoxyglucose technique, as used here, is not adequate to detect the ovine prolactin-induced increase in tuberoinfundibular dopaminergic neuronal activity, that the median eminence does not utilize glucose as its primary energy substrate, or that ovine prolactin treatment causes a counterbalancing decrease in the activity of other neurons projecting to the median eminence.  相似文献   

16.
Although the brain represents less than 5% of the body by mass, it utilizes approximately one quarter of the glucose used by the body at rest1. The function of non rapid eye movement sleep (NREMS), the largest portion of sleep by time, is uncertain. However, one salient feature of NREMS is a significant reduction in the rate of cerebral glucose utilization relative to wakefulness2-4. This and other findings have led to the widely held belief that sleep serves a function related to cerebral metabolism. Yet, the mechanisms underlying the reduction in cerebral glucose metabolism during NREMS remain to be elucidated.One phenomenon associated with NREMS that might impact cerebral metabolic rate is the occurrence of slow waves, oscillations at frequencies less than 4 Hz, in the electroencephalogram5,6. These slow waves detected at the level of the skull or cerebral cortical surface reflect the oscillations of underlying neurons between a depolarized/up state and a hyperpolarized/down state7. During the down state, cells do not undergo action potentials for intervals of up to several hundred milliseconds. Restoration of ionic concentration gradients subsequent to action potentials represents a significant metabolic load on the cell8; absence of action potentials during down states associated with NREMS may contribute to reduced metabolism relative to wake.Two technical challenges had to be addressed in order for this hypothetical relationship to be tested. First, it was necessary to measure cerebral glycolytic metabolism with a temporal resolution reflective of the dynamics of the cerebral EEG (that is, over seconds rather than minutes). To do so, we measured the concentration of lactate, the product of aerobic glycolysis, and therefore a readout of the rate of glucose metabolism in the brains of mice. Lactate was measured using a lactate oxidase based real time sensor embedded in the frontal cortex. The sensing mechanism consists of a platinum-iridium electrode surrounded by a layer of lactate oxidase molecules. Metabolism of lactate by lactate oxidase produces hydrogen peroxide, which produces a current in the platinum-iridium electrode. So a ramping up of cerebral glycolysis provides an increase in the concentration of substrate for lactate oxidase, which then is reflected in increased current at the sensing electrode. It was additionally necessary to measure these variables while manipulating the excitability of the cerebral cortex, in order to isolate this variable from other facets of NREMS.We devised an experimental system for simultaneous measurement of neuronal activity via the elecetroencephalogram, measurement of glycolytic flux via a lactate biosensor, and manipulation of cerebral cortical neuronal activity via optogenetic activation of pyramidal neurons. We have utilized this system to document the relationship between sleep-related electroencephalographic waveforms and the moment-to-moment dynamics of lactate concentration in the cerebral cortex. The protocol may be useful for any individual interested in studying, in freely behaving rodents, the relationship between neuronal activity measured at the electroencephalographic level and cellular energetics within the brain.  相似文献   

17.
2-Deoxy[1-14C]glucose uptake in rat adipocytes was measured as a function of time in the absence and presence of unlabelled glucose or 2-deoxyglucose. Uptake of tracer alone was linear from 2 s to 6 min. At 37°C the rate of uptake in insulin-stimulated cells decreased markedly after a few seconds in the presence of glucose (0.5–10 mM) and after 0.5–2 min in the presence of deoxyglucose (2–10 mM). Similar data were obtained at 22°C. With 10 mM glucose (37°C, 30 s) approx. 80% of the intracellular radioactivity was non-phosphorylated deoxyglucose and with 10 mM deoxyglucose approx. 40% was non-phosphorylated. The results show that deoxy[14C]glucose uptake after a few minutes is mainly limited by hexokinase in the presence of glucose and at least partially in the presence of deoxyglucose. The data suggest caution in using deoxyglucose uptake as a measure of transport, especially in complex kinetic studies.In addition, the initial velocity of tracer 13-O-methylglucose was found to be approx. 2-fold higher than that of tracer deoxyglucose even though both sugars inhibited the initial velocity of labelled methylglucose half-maximally at a concentration of 5 mM. These data suggest a fundamental difference between deoxyglucose and methylglucose transport.  相似文献   

18.
Abstract— The uptake into the non-raffinose space of cerebral cortex slices of a number of 14C-labelled glucose analogues has been studied. Evidence on competition with glucose for the transport process has been used to derive information on the substrate specificity of sugar uptake to the brain. The kinetic properties of the uptake of 2-deoxygIucose indicate that the transport is a facilitated process rather than diffusion. Classical competition between glucose and 2-deoxyglucose for transport is shown and arguments are advanced for regarding glucose as a competitive inhibitor of 2-deoxyglucose transport. The apparent Km for deoxyglucose is 10 mM and for glucose is suggested to be of the order of 5 mm , The value of such a kinetic approach to sugar transport in various conditions is discussed.  相似文献   

19.
The capacity of brain to dephosphorylate glucose-6-phosphate has been established, but the magnitude and significance of this capacity in vivo are debated, particularly in regard to dephosphorylation of the glucose analog 2-deoxyglucose. We now report results of external measurement in the brains of conscious rats with simultaneous resolution and quantification of both 2-deoxyglucose and its phosphorylated product by nuclear magnetic resonance (NMR) techniques that used 2-[6-13]deoxyglucose together with proton-decoupled 13C surface-coil spectroscopy. As NMR techniques require large doses of 2-deoxyglucose, a dose comparison was first made using decay curves of total label after tracer doses of 2-[14C]deoxyglucose without versus with unlabeled deoxyglucose at 500 mg/kg (the NMR dose). Similar cerebral half-lives for the two doses were found, and no behavioral evidence for toxicity of the NMR dose was seen. In vivo NMR monitoring of conscious rats showed that the analog reached maximal cerebral concentration within 10 min of the intravenous bolus and decayed with a half-life of 29 +/- 7 min (n = 4; mean +/- SEM), whereas 2-deoxyglucose-6-phosphate reached peak concentration between 30 and 40 min and decayed with a half-life of 2.1 +/- 0.3 h, equivalent to a fractional loss of 0.8%/min. Thirty-one percent (+/- 5%) of the total analog pool (which showed a half-life of 1.4 h) consisted of 2-deoxyglucose at 45 min after the bolus. The results support an active but limited role for dephosphorylation by normal brain in glucose analog (and potentially glucose) metabolism in the unstimulated conscious rat and a wide concentration range for the metabolic operations involved.  相似文献   

20.
The incorporation of 14C into glycogen in rat brain has been measured under the same conditions that exist during the measurement of local cerebral glucose utilization by the autoradiographic 2-[14C]deoxyglucose method. The results demonstrate that approximately 2% of the total 14C in brain 45 min after the pulse of 2-[14C]deoxyglucose is contained in the glycogen portion, and, in fact, incorporated into alpha-1-4 and alpha-1-6 deoxyglucosyl linkages. When the brain is removed by dissection, as is routinely done in the course of the procedure of the 2-[14C]deoxyglucose method to preserve the structure of the brain for autoradiography, the portion of total brain 14C contained in glycogen falls to less than 1%, presumably because of postmortem glycogenolysis which restores much of the label to deoxyglucose-phosphates. In any case, the incorporation of the 14C into glycogen is of no consequence to the validity of the autoradiographic deoxyglucose method, not because of its small magnitude, but because 2-[14C]deoxyglucose is incorporated into glycogen via [14C]deoxyglucose-6-phosphate, and the label in glycogen represents, therefore, an additional "trapped" product of deoxyglucose phosphorylation by hexokinase. With the autoradiographic 2-[14C]deoxyglucose method, in which only total 14C concentration in the brain tissue is measured by quantitative autoradiography, it is essential that all the labeled products derived directly or indirectly from [14C]deoxyglucose phosphorylation by hexokinase be retained in the tissue; their chemical identity is of no significance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号