首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Linkage relationship between retinoschisis and four marker loci   总被引:3,自引:1,他引:2  
Summary The linkage relationship between the locus for juvenile retinoschisis (RS) and four X-chromosomal marker loci DXS9 (RC8), DXS16 (XUT23), DXS41 (99-6), and DXS43 (D2) has been studied in six families showing a history of this disease. Recombination with RS was found for all marker loci except DXS9. The maximum lod score is =2.66 for RS vs. SXS9 at a recombination fraction of =0.0. Multipoint linkage analysis was performed and the locus order best supported by our data is: RS-DXS9-DXS43-DXS16-DXS41.  相似文献   

2.
Linkage analysis was performed to evaluate the relationship between the locus for X-linked juvenile retinoschisis (RS) and five X-chromosomal markers-RC8 (DXS9), SE3.2L (DXS16), 99-6 (DXS41), D2 (DXS43), and 782 (DXS85)-all mapped to the interval Xp22.1-p22.3. Seven U.S. families with 56 affected males were studied. No recombinants were found between RS and DXS9 with a maximum lod score (Z) of 4.93 at a recombination fraction of zero. Obligate recombinants were found for RS with DXS16, DXS41, DXS43, and DXS85. Multipoint linkage analysis and consideration of recombination events within pedigrees suggest that DXS41 and DXS43, and also DXS41 and DXS16, flank RS and that DXS85 lies outside the interval DXS41-DXS43. Our pedigrees provide no evidence for genetic heterogeneity of RS, with five of our families individually showing evidence of linkage. (Z greater than 2.0) to the least one of these probes from Xp22.1-p22.3.  相似文献   

3.
X-linked Amelogenesis imperfecta (AI) is a genetic disorder affecting the formation of enamel. In the present study two families, one with X-linked dominant and one with X-linked recessive AI, were studied by linkage analysis. Eleven cloned RFLP markers of known regional location were used. Evidence was obtained for linkage between the AI locus and the marker p782, defining the locus DXS85 at Xp22, by using two-point analysis. No recombination was scored between these two loci in 15 informative meioses, and a peak lod score (Zmax) of 4.45 was calculated at zero recombination fraction. Recombination was observed between the more distal locus DXS89 and AI, giving a peak lod score of 3.41 at a recombination fraction of .09. Recombination was also observed between the AI locus and the more proximal loci DXS43 and DXS41 (Zmax = 0.09 at theta max = 0.31 and Zmax = 0.61 at theta max = 0.28, respectively). Absence of linkage was observed between the AI locus and seven other loci, located proximal to DXS41 or on the long arm of the X chromosome. On the basis of two-point linkage analysis and analysis of crossover events, we propose the following order of loci at Xp22: DXS89-(AI, DXS85)-DXS43-DXS41-Xcen.  相似文献   

4.
X-linked recessive retinoschisis (RS) is a hereditary disorder with variable clinical features. The main symptoms are poor sight; radial, cystic macula degeneration; and peripheral superficial retinal detachment. The disease is quite common in Finland, where at least 300 hemizygous males have been diagnosed. We used nine polymorphic DNA markers to study the localization of RS on the short arm of the X chromosome in 31 families comprising 88 affected persons. Two-point linkage results confirmed close linkage of the RS gene to the marker loci DXS43, DXS16, DXS207, and DXS41 and also revealed close linkage to the marker loci DXS197 and DXS9. Only one recombination was observed between DXS43 and RS in 59 informative meioses, giving a maximum lod score of 13.87 at the recombination fraction .02. No recombinations were observed between the RS locus and DXS9 and DXS197 (lods between 3 and 4), but at neither locus was the number of informative meioses sufficient to provide reliable estimates of recombination fractions. The most likely gene order on the basis of multilocus analysis was Xpter-DXS85-(DXS207,DXS43)-RS-DXS41-DXS 164-Xcen. Because multilocus linkage analysis indicated that the most probable location of RS is proximal to DXS207 and DXS43 and distal to DXS41, these three flanking markers are the closest and most informative markers currently available for carrier detection.  相似文献   

5.
Nance-Horan Syndrome (NHS) or X-linked cataract-dental syndrome (MIM 302350) is a disease of unknown pathogenesis characterized by congenital cataracts and dental anomalies. We performed linkage analysis in three kindreds with NHS by using six RFLP markers between Xp11.3 and Xp22.3. Close linkage was found between NHS and polymorphic loci DXS43 (theta = 0 with lod score 2.89), DXS41 (theta = 0 with lod score 3.44), and DXS67 (theta = 0 with lod score 2.74), defined by probes pD2, p99-6, and pB24, respectively. Recombinations were found with the marker loci DXS84 (theta = .04 with lod score 4.13), DXS143 (theta = .06 with lod score 3.11) and DXS7 (theta = .09 with lod score 1.68). Multipoint linkage analysis determined the NHS locus to be linked completely to DXS41 (lod score = 7.07). Our linkage results, combined with analysis of Xp interstitial deletions, suggest that the NHS locus is located within or close to the Xp22.1-Xp22.2 region.  相似文献   

6.
The human X-linked hypophosphatemic rickets gene locus (HYP, formerly HPDR) has been previously localized by linkage analysis to Xp22.31-Xp21.3 and the locus order Xpter-DXS43-HYP-DXS41-Xcen established. Recombination between HYP and these flanking markers is frequently observed and additional markers have been sought. The polymorphic loci DXS197 and DXS207 have been localized to Xpter-Xp11 and Xp22-Xp21, respectively. We have further localized DXS197 to Xpter-Xp21.3 by using a panel of rodent-human hybrid cells and have established the map positions of DXS197 and DXS207 in relation to HYP by linkage studies of hypophosphatemic rickets families. Linkage between DXS197 and the loci DXS43, DXS85, and DXS207 was established with peak lod score values of 6.19, 0 = 0.032; 4.14, 0 = 0.000; and 3.01, 0 = 0.000, respectively. Multilocus linkage analysis mapped the DXS197 and DXS207 loci distal to HYP and demonstrated the locus order Xpter-DXS85-(DXS207, DXS43, DXS197)-HYP-DXS41-Xcen. These additional genetic markers DXS197 and DXS207 will be useful as alternative markers in the genetic counseling of some families.  相似文献   

7.
Refined localization of the gene causing X-linked juvenile retinoschisis   总被引:9,自引:0,他引:9  
Previous linkage studies in X-linked juvenile retinoschisis (RS) placed the gene between the loci DXS43 and DXS41 in the region Xp22.2-p22.1. Here we have extended our earlier studies by analyzing 31 RS families with the markers DXS16 (pSE3.2-L), DXS274, DXS92, and ZFX. Pairwise linkage analysis revealed significant linkage of the RS gene to all markers used; locus DXS274 (probe CRI-L1391) was tightly-linked to the disorder, with a lod score of 9.02 at a recombination fraction of 0.05. The genetic map around the RS locus was refined by multilocus linkage studies in an expanded database including a large set of normal families (40 CEPH families). The results indicated that the RS gene locus lies between (DXS207, DXS43) and DXS274 with odds of 1.8 x 10(4):1 favoring this most likely location over the second most likely location, i.e., distal to DXS43. Analysis by LINKMAP gave a maximum location score of 136.4 with the order Xpter-DXS16-(DXS207,DXS43)-RS-DXS274-(D XS41,DXS92)-Xcen. To assess the diagnostic value of the markers in Finnish patients, a total of 12 markers were tested for allele frequencies in 126 Finnish unrelated blood donors. With the exception of the markers DXS207, DXS43, and DXS92, allele frequencies did not show any significant deviation from the data published elsewhere. Haplotype analysis was performed with five DNA markers flanking the RS locus. Patients from southwest Finland had a haplotype association that differed from the haplotype association found in the patients from north central Finland, favoring the hypothesis that the mutations in the two groups arose independently.  相似文献   

8.
A linkage study of Emery-Dreifuss muscular dystrophy   总被引:5,自引:0,他引:5  
Summary We have searched for linkage between polymorphic loci defined by DNA markers on the X chromosome and X-linked Emery-Dreifuss muscular dystrophy (EDMD). There are high recombination rates between EDMD and the Xp loci known to be linked to Becker and Duchenne muscular dystrophy. There is a suggestion of linkage between EDMD and the loci DXS52 and DXS15, defined by probes St 14 and DX13 respectively, located at Xq28. for DXS15=1.14 at =0.15. This is in agreement with the previously reported linkage between a disorder strongly resembling EDMD and colour-blindness (Thomas et al. 1972), suggesting that there is a second locus on the X chromosome concerned with muscle integrity.  相似文献   

9.
Three polymorphic markers have been used to improve the genetic map of the region Xp22.1-p22.2, which contains the HYP (hypophosphataemic rickets) locus. DXS365 gave no recombinants with HYP, with a peak Lod score of 5.4 at = 0.0. A microsatellite marker mPA274 was derived for the DXS274 locus; it detects five alleles with a polymorphism information content of 0.55. Combining information from this microsatellite and the original DXS274 marker, probe CRI-L1391, the peak Lod score for DXS274 against HYP was 9.6 at = 0.02. A microsatellite associated with the DXS207 locus (mPA207) gave a peak lod score against HYP of 4.7 at = 0.14. A consideration of key recombinants and multilocus analysis suggests the gene order: Xpter-DXS207-DXS43-DXS197-(DXS365, HYP)-DXS274-DXS41-Xcen.  相似文献   

10.
Summary Suppression of Lutheran blood group expression is usually associated with an autosomal dominant suppressor gene In(Lu) which results in the rare Lu(a-b-) phenotype. X-linked recessive suppression can also occur under the control of the XS locus with normal (XS1) and suppressor (XS2) alleles. The only known kindred with XS2 segregating was examined for polymorphic DNA markers with known regional localisations on the X chromosome. Two point linkage analysis suggested linkage of XS to DXS14 (p58.1) with =0.00, =1.96. DXS14 is situated near the centromere at Xp11. Recombinants with DXS84 (distal to DXS14 on Xp) and recombinants with DXYS1 (pDP34) (on the proximal part of Xq) suggests a localisation for XS near the centromere, between DXS84 and DXYS1 (Xp21.2-Xq21.1). Linkage to a marker on the X chromosome confirms the original assignment of XS to the X chromosome, which was based on pedigree inspection from this family.  相似文献   

11.
Summary To provide a more precise genetic map of the p22.3–p21.2 region on the short arm of the human X chromosome, we performed multilocus linkage studies in an expanded database including 31 retinoschisis families and 40 normal families. Twelve loci from this region were examined. Although significant lod scores were observed between various pairs of markers by two-point linkage analysis, the confidence limits were found to be broad. The most likely gene order on the basis of multilocus analysis was Xpter-DXS89-DXS85-DXS16-(DXS207, DXS43)-DXS274-(DXS41, DXS92)-ZFX-DXS164-Xcen. All other alternative orders were excluded by odds of at least 401.  相似文献   

12.
Summary Three families with androgen resistance syndromes — two with testicular feminization and one with Reifenstein syndrome — have been studied for linkage analysis. Using three cloned DNA sequences from the centromere region and the proximal long arm of the X chromosome (p8, pDP34, and S9, which define respectively the chromosomal segments DXS1, DXYS1, and DXS17), we found no recombination between the DXS1 locus and the mutant genes in the three families. Assuming that these disorders are the result of allelic mutations at the same locus for the androgen receptor, we can conclude that there is a close linkage between DXS1 and the androgen receptor locus, with a maximum lod score =3.5 at a recombination fraction =0.0 using the LIPED program (Ott 1974).  相似文献   

13.
Summary A linkage analysis has been performed in a large Dutch kindred with progressive mixed deafness with perilymphatic gusher during stapes surgery (DFN3) using a panel of X-chromosomal RFLPs. Tight linkage (zmax=3.07 at =0.00) was demonstrated with the locus for phosphoglycerate kinase (PGK), which is located at Xq13. Tight linkage was excluded for DXS9 (probe RC8) and DXS41 (probe 99.6) on Xp and for blood clotting factor 9 (FIX) on distal Xq. Deafness is one of the predominant clinical features in males with deletions of the Xq21 band. Our results suggest that this association may be due to involvement of the DFN3 gene.  相似文献   

14.
Summary This paper presents three markers, 16D/E, pHMAI (DXS208), and CRI-L1391 (DXS274), that show close linkage for X-linked hypophosphataemic rickets (HYP). DXS274 is closely linked to HYP ( max= 0.00, Zmax = 4.20), and DXS41 (99.6), ( max= 0.00, Zmax = 5.20). Marker 16D/E maps distal to the disease locus ( max= 0.05, Zmax = 3.11). The pHMAI probe recognises the same restriction fragment length polymorphism (RFLP) as 99.6. Multipoint analysis suggests that the most probable order of loci is Xpter-(DXS43, 16D/E)-HYP-DXS274-(DXS208, DXS41)-Xcen. The location of DXS274 distal to HYP cannot be excluded, as no recombinants were observed between DXS274 and HYP, or between DXS274 and DXS41/DXS208. One of the families contains a large number of recombinants, four of which are double recombinants. This most probably means that the disease in this family maps elsewhere on the X chromosome or on an autosome, indicating locus heterogeneity.  相似文献   

15.
The gene involved in juvenile retinoschisis (RS) has previously been localized, by genetic linkage analyses, to Xp22.1-p22.2, between DXS274 and DXS43/ DXS207; it is closely linked to the latter markers. From our recent data, this interval represents a genetic distance of approximately 10 cM. In the present study, we have studied 14 French families with X-linked juvenile RS by using four CA polymorphisms that are closely linked to the RS locus and that have recently been included in an Xp22.1-p22.2 high-resolution map. Complete cosegregation with the disease locus was observed for three of them, DXS207, DXS418, and DXS999, which further confirms the locus homogeneity for RS and the close linkage to this region. One recombinant was found with the most proximal marker, AFM291wf5, thereby defining this marker as the new proximal boundary of the candidate region for RS. Under the assumption that DXS207 and DXS43 constitute the distal boundary, the present study further reduces the region containing the disease gene to a interval of 3–4 cM. The results reported here should facilitate the eventual cloning of the RS gene.  相似文献   

16.
Summary Three families with anhidrotic ectodermal dysplasia (AED) have been studied by linkage analysis with seven polymorphic DNA markers from the Xp11-q21 region. Previously reported linkage to DXYS1 (Xq13-q21) has been confirmed (z()=4.08 at =0.05) and we have also established linkage to another polymorphic locus, DXS159, located in Xq11-q12 (z()=4.28 at =0.05). Physical mapping places DSX159 proximal to the Xq12 breakpoint of an X autosome translocation found in a female with clinical signs of ectodermal dysplasia. Of all markers that have been used in linkage analysis of AED, DXS159 would appear the closest on the proximal side of the disease locus.  相似文献   

17.
Summary Eleven families segregating for the X-linked recessive immune deficiency disorder, Wiskott-Aldrich syndrome (WAS), were studied by linkage analysis with an alpha satellite DNA probe, pBamX-7, which detects polymorphism at the X chromosome centromere, locus DXZ1, as well as three other polymorphic markers defining loci on the proximal short arm of the X chromosome. Linkage has been established between WAS and DXZ1 ( ()=7.08 at =0.03) and WAS and the TIMP gene locus ( ()=5.09 at =0.0). We have also confirmed close linkage between DXZ1 and two marker loci, DXS14 and DXS7, previously shown to be linked to the WAS locus. The probe pBamX-7 detected allelic variation in all females tested, reflecting the high frequency of polymorphism at the centromere. One WAS carrier revealed a recombination between WAS and both marker loci DXZ1 and DXS14, indicating that WAS does not map between these loci. In conjunction with previous data from genetic mapping studies of WAS, these results confirm the pericentromerix Xp localization of WAS and demonstrate the usefulness of alpha satelite DNA probes as tools for genetic prediction in WAS as well as other pericentric X-linked diseases.  相似文献   

18.
Summary In order to localize the gene for the X-linked form of Alport syndrome (ATS) more precisely, we performed restriction fragment length polymorphism analysis with nine different X-chromosomal DNA markers in 107 members of twelve Danish families segregating for classic ATS or progressive hereditary nephritis without deafness. Two-point linkage analysis confirmed close linkage to the markers DXS17(S21) (Z max = 4.44 at = 0.04), DXS94(pXG-12) (Z max=8.07 at =0.04), and DXS101(cX52.5) (Z max=6.04 at =0.00), and revealed close linkage to two other markers: DXS88(pG3-1) (Z max =6.36 at =0.00) and DXS11(p22–33) (z max=3.45 at =0.00). Multipoint linkage analysis has mapped the gene to the region between the markers DXS17 and DXS94, closely linked to DXS101. By taking into account the consensus map and results from other studies, the most probable order of the loci is: DXYS1(pDP34)-DXS3(p19-2)-DXS17-(ATS, DXS101)-DXS94-DXS11-DXS42(p43-15)-DXS51(52A). DXS88 was found to be located between DXS17 and DXS42, but the order in relation to the ATS locus and the other markers used in this study could not be determined.  相似文献   

19.
Summary Two families with X-linked dominant hypophosphatemia (McKusick No. *30780) were investigated for linkage of the disease locus with several marker genes defined by cloned, single-copy DNA sequences derived from defined regions of the X chromosome. Close linkage was found with DNA markers DXS41 (p99-6) and DXS43 (pD2) at Xp22, suggesting a location of the HPDR gene on the distal short arm of the X chromosome.  相似文献   

20.
Various polymorphic markers with a random distribution along the X chromosome were used in a linkage analysis performed on a family with apparently Xlinked recessive inheritance of neural tube defects (NTD). The lod score values were used to generate an exclusion map of the X chromosome; this showed that the responsible gene was probably not located in the middle part of Xp or in the distal region of Xq. A further refining of these results was achieved by haplotype analysis, which indicated that the gene for X-linked NTD was located either within Xp21.1-pter, distal from the DMD locus, or in the region Xq12–q24 between DXS106 and DXS424. Multipoint linkage analysis revealed that the likelihood for gene location is highest for the region on Xp. The region Xq26–q28, which has syntenic homology with the segment of the murine X chromosome carrying the locus for bent tail (Bn), a mouse model for X-linked NTD, is excluded as the location for the gene underlying X-linked NTD in the present family. Thus, the human homologue of the Bn gene and the present defective gene are not identical, suggesting that more than one gene on the X chromosome plays a role in the development of the neural tube.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号