首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 672 毫秒
1.
Creatine, which is increasingly being used as an oral supplement, is naturally present in the body. Studies on the fate of a particular dose of creatine require that the creatine be labeled, and for studies in humans the use of a stable isotopic label is desirable. The concentrations of total creatine and total creatinine were determined using HPLC. Creatine and creatinine were then separated using cation exchange chromatography and each fraction was derivatized with trifluoroacetic anhydride and the ratio of the deuterated:undeuterated species determined using GC-MS. Ratios of creatine:creatine-d(3), and creatinine:creatinine-d(3), and the concentrations of each of these species, were able to be determined in urine, plasma and red blood cells. Thus, the uptake of labeled creatine into plasma and red blood cells and its excretion in urine could be followed for a subject who ingested creatine-d(3). Creatine-d(3) was found in the plasma and red blood cells 10 min after ingestion, while creatine-d(3) and creatinine-d(3) were found in the urine collected after the first hour.  相似文献   

2.
Creatine is found in the urine of subjects ingesting creatine monohydrate as an ergogenic aid. Creatinine, the catabolic breakdown product of creatine, is a major constituent of normal urine. It is of interest to follow the excretion of creatine and creatinine in urine as a function of time after creatine ingestion. In this study, creatine and creatinine were analyzed in urine by capillary electrophoresis. The optimization of the method was discussed, with the best results being obtained using a 30 mM phosphate–150 mM sodium dodecyl sulfate buffer at pH 6, with the detector set at 214 nm and an applied voltage of 15 kV across a 45 cm capillary. Verification of the method was provided by HPLC analysis and spiking. The application of the method was demonstrated by analysis of creatine and creatinine in urine samples collected in a 24-h period following creatine ingestion.  相似文献   

3.
With a recently developed high-performance liquid chromatography (HPLC) method based on anion exchange chromatography, precise fraction collection, and reversed-phase chromatography, the oxidative DNA damage marker 8-hydroxydeoxyguanosine (8-OH-dG) was measured in human urine samples. The HPLC analysis was further modified to measure 8-OH-dG in rat and mouse urine samples. In addition, the urinary RNA degradation product 7-methylguanine (m7Gua) was analyzed simultaneously. The correlation coefficient (r) for the correlation between urinary creatinine and m7Gua was 0.9 for rats and 0.8 for humans and mice. Levels of 8-OH-dG in relation to urinary creatinine were compared and found to be similar for humans and rats and twice as high for mice. Urinary levels of m7Gua, as normalized to creatinine, were several-fold higher in rodents as compared with human levels, thereby correlating with the higher resting metabolic rate of rodents. The presented results show that 8-OH-dG and m7Gua can be analyzed simultaneously and reliably in urine from humans and rodents. In addition, m7Gua may be used as a reliable marker instead of creatinine for the normalization of 8-OH-dG in urine from rats and mice and also may be used in addition to normalization with creatinine in measurements of 8-OH-dG in human urine samples.  相似文献   

4.
《Biomarkers》2013,18(6-7):436-452
Abstract

Environmental exposure diagnostics use creatinine concentrations in urine aliquots as the internal standard for dilution normalization of all other excreted metabolites when urinary excretion rate data are not available. This is a reasonable approach for healthy adults as creatinine is a human metabolite that is continually produced in skeletal muscles and presumably excreted in the urine at a stable rate. However, creatinine also serves as a biomarker for glomerular filtration rate (efficiency) of the kidneys, so undiagnosed kidney function impairment could affect this commonly applied dilution calculation. The United States Environmental Protection Agency (US EPA) has recently conducted a study that collected approximately 2600 urine samples from 50 healthy adults, aged 19–50 years old, in North Carolina in 2009–2011. Urinary ancillary data (creatinine concentration, total void volume, elapsed time between voids), and participant demographic data (race, gender, height, and body weight) were collected. A representative subset of 280 urine samples from 29 participants was assayed using a new kidney injury panel (KIP). In this article, we investigated the relationships of KIP biomarkers within and between subjects and also calculated their interactions with measured creatinine levels. The aims of this work were to document the analytical methods (procedures, sensitivity, stability, etc.), provide summary statistics for the KIP biomarkers in “healthy” adults without diagnosed disease (distribution, fold range, central tendency, variance), and to develop an understanding as to how urinary creatinine level varies with respect to the individual KIP proteins. Results show that new instrumentation and data reduction methods have sufficient sensitivity to measure KIP levels in nominally healthy urine samples, that linear regression between creatinine concentration and urinary excretion explains only about 68% of variability, that KIP markers are poorly correlated with creatinine (r2 ~ 0.34), and that statistical outliers of KIP markers are not random, but are clustered within certain subjects. In addition, we interpret these new adverse outcome pathways based in vivo biomarkers for their potential use as intermediary chemicals that may be diagnostic of kidney adverse outcomes to environmental exposure.  相似文献   

5.
Creatine plays a key role in muscle function and its evaluation is important in athletes. In this study, urinary creatine concentration was measured in order to highlight its possible significance in monitoring sprinters. The study included 51 sprinters and 25 age- and sex-matched untrained subjects as a control group. Body composition was measured and dietary intake estimated. Urine samples were collected before and after standardized physical exercise. Creatine was assessed by gas chromatography mass spectrometry. Basal urinary creatine (UC) was significantly lower in sprinters than controls (34±30 vs. 74±3 µmol/mmol creatinine, p < 0.05). UC was inversely correlated with body mass (r = −0.34, p < 0.01) and lean mass (r = −0.30, p < 0.05), and positively correlated with fat mass (r = 0.32, p < 0.05). After acute exercise, urinary creatine significantly decreased in both athletes and controls. UC is low in sprinters at rest and further decreases after exercise, most likely due to a high uptake and use of creatine by muscles, as muscle mass and physical activity are supposed to be greater in athletes than untrained subjects. Further studies are needed to test the value of urinary creatine as a non-invasive marker of physical condition and as a parameter for managing Cr supplementation in athletes.  相似文献   

6.
Epidermal growth factor (EGF) has been first isolated from the submandibular glands of the male mouse and recently from human urine. Despite its potent mitogenic effect in a variety of tissues, the physiological functions of EGF in human still remain undetermined. In order to study the effect of age on urinary human EGF (hEGF), we have evaluated urinary excretion of hEGF in normal subjects over a wide range of age (20–79 yr.) using homologous radioimmunoassay (RIA) for hEGF. Urinary excretion of hEGF expressed as a function of creatinine significantly decreased with increasing age, age, while females excreted significantly more hEGF than males. These data suggest that urinary excretion of hEGF decreases with age in normal subjects which may be due to reduced synthesis and/or secretion of hEGF.  相似文献   

7.
《Free radical research》2013,47(4):423-428
Several diseases of prematurity are thought to be related to oxidative injury and many of the available markers are unsatisfactory. An assay was developed using HPLC with electrochemical detection for the quantitation of urinary 8-hydroxy-2′-deoxyguanosine (8-OHdG) as a proposed indicator for oxygen-derived free radical injury to DNA in preterm infants.

A median value of 3.79 pmol/mol creatinine was obtained for normal children (2–15 years old, n = 14). Urinary 8-OHdG excretion in neonates ranged from 0–99μmol/mol creatinine. There were no gestation or birthweight related differences in urinary 8-OHdG, and no correlation with urinary malondialdehyde. Mean 8-OHdG excretion increased with postnatal age (r= 0.80, p < 0.0001, n = 15), mirroring the growth velocity curve. These changes could also be due to changes in the activity of the enzyme responsible for 8-OHdG excision.

Urinary 8-OHdG levels are unlikely to accurately reflect oxygen derived free radical activity given the strength of the relationship with growth.  相似文献   

8.
It was previously observed that the acute or subchronic administration of some testicular toxicants, caused a significant raise in urinary creatine in rats. The aim of this study was to verify whether creatinuria could be detected in mice (a species with a different excretion profile of creatine) and whether it could be correlated to the levels of creatine in testis and to other parameters of testicular toxicity. The well known testicular toxicant methoxyacetic acid (MAA) was orally administered as a single dose (400 or 600 mg kg-) to male adult mice B6C3F1. Twenty-four hours after dosing, urinary creatine and creatinine showed a significant reduction with respect to the pre-treatment values. At the following times post-dosing (48 and 72 h) the creatine exceeded the control and pre-treatment values, while creatinine had not yet recovered. The ratio creatine/creatinine was significantly higher than control and pre-treatment values, at 24 and 48 h after the treatments. In testis a significant, dose-dependent, decrease of creatine was observed 24 h after dosing, with a pattern related to the histopathologic alterations observed at different times after the treatments. Creatine determination was the earlier quantitative parameter of testicular toxicity, since at this time testis weights, sperm head number and enzyme activities (LDH-C4, SDH) were less affected, their maximum decrease being reached at 14 days after the treatments. These data suggest that in mice, 2-MAA could interfere with the metabolism of creatine, both in testis and other biosynthetically active tissues.  相似文献   

9.
Benzene is an important industrial chemical and, due to its occurrence in mineral oil and its formation in many combustion processes, a widespread environmental pollutant. Since benzene is hematoxic and has been classified as a human carcinogen, monitoring and control of benzene exposure is of importance. Although trans,trans-muconic acid (ttMA) was identified as a urinary metabolite of benzene at the beginning of this century, only recently has its application as a biomarker for occupational and environmental benzene exposure been investigated. The range of metabolic conversion of benzene to ttMA is about 2–25% and dependent on the benzene exposure level, simultaneous exposure to toluene, and probably also to genetic factors. For the quantitation of ttMA in urine, HPLC methods using UV and diode array detection as well as GC methods combined with MS or FID detection have been described. Sample pretreatment for both HPLC and GC analysis comprises centrifugation and enrichment by solid-phase extraction on anion-exchange sorbents. Described derivatization procedures prior to GC analysis include reaction with N,O-bis(trimethysilyl)acetamide, N,O-bis(trimethylsilyl)trifluoroacetamide, pentafluorobenzyl bromide and borontrifluoride–methanol. Reported limits of detection for HPLC methods range from 0.1 to 0.003 mg l−1, whereas those reported for GC methods are 0.03–0.01 mg l−1. Due to its higher specificity, GC methods appear to be more suitable for determination of low urinary ttMA levels caused by environmental exposure to benzene. In studies with occupational exposure to benzene (>0.1 ppm), good correlations between urinary ttMA excretion and benzene levels in breathing air are observed. From the reported regressions for these variables, mean excretion rates of ttMA of 1.9 mg g−1 creatinine or 2.5 mg l−1 at an exposure dose of 1 ppm over 8 h can be calculated. The smoking-related increase in urinary ttMA excretion reported in twelve studies ranged from 0.022 to 0.2 mg g−1 creatinine. Only a few studies have investigated the effect of exposure to environmental levels of benzene (<0.01 ppm) on urinary ttMA excretion. A trend for slightly increased ttMA levels in subjects living in areas with high automobile traffic density was observed, whereas exposure to environmental tobacco smoke did not significantly increase the urinary ttMA excretion. It is concluded that urinary ttMA is a suitable biomarker for benzene exposure at occupational levels as low as 0.1 ppm. Biomonitoring of exposure to environmental benzene levels (<0.01 ppm) using urinary ttMA appears to be possible only if the ingestion of dietary sorbic acid, another precursor to urinary ttMA, is taken into account.  相似文献   

10.
Urinary cadmium levels during pregnancy and postpartum   总被引:4,自引:0,他引:4  
It is well established that pregnancy induces physiological, metabolical and hormonal changes. As a consequence, trace metal metabolism can be affected. The aim of the present study was to assess the urinary cadmium levels in women during gestation and postpartum. The survey was conducted in a group of nonoccupationally cadmium-exposed women from Southern Catalonia (NE, Spain). Urine samples were obtained before pregnancy, during the 6th, 10th, 26th, and 30th wk of gestation, as well as during the 5th and 24th wk after delivery. Urinary cadmium levels were determined by graphite furnace atomic absorption spectrophotometry. The concentrations of zinc and copper in plasma were also measured. Moreover, to assess the effect of the diet during pregnancy, dietary ingestions of zinc, iron, and calcium were also determined. A significant decrease of plasma zinc levels could be observed during the last two trimesters of pregnancy, while plasma copper concentrations significantly increased during the same period. Urinary cadmium concentrations ranged from 0.05 to 3.79 μg/g creatinine (geometric mean 0.49±2.26 μg/g creatinine). No significant changes in urinary cadmium concentrations during pregnancy and postpartum could be observed.  相似文献   

11.
Using an established high-performance liquid chromatography (HPLC) method based on anion exchange chromatography, fraction collection, and electrochemical detection, the oxidative DNA damage marker 8-hydroxy-2′-deoxyguanosine (8-OH-dG) can be analyzed rapidly and precisely in human urine samples. In addition, by ultraviolet (UV) detection, it was shown recently that it is possible to simultaneously analyze creatinine and 7-methylguanine (m7Gua), an RNA degradation product, in urine. By adding a fluorescence detector to the HPLC system, we now report that it is also possible to detect pteridins such as neopterin and biopterin. The fluorescence detection was evaluated in detail for neopterin, an immune response and tumor marker. The urinary content of neopterin, assessed by using the HPLC method, was verified with a commercial neopterin enzyme-linked immunosorbent assay (ELISA) kit as indicated by the high correlation between the two methods (r = 0.98). In urinary samples from 58 young healthy individuals (male and female nonsmokers, ages 19-39 years), it was found that there was no significant correlation (r = −0.04) between the levels of 8-OH-dG and neopterin (as normalized to urinary creatinine levels). In contrast, in urinary samples from 60 old healthy individuals (male and female nonsmokers, ages 60-86 years), there was a significant correlation (r = 0.47) found between the levels of 8-OH-dG and neopterin (as normalized to urinary creatinine levels). These findings strongly indicate that the higher level of immune response that was correlating with old age contributes significantly to the higher level of oxidative damage as assessed in the form of 8-OH-dG. Using this type of HPLC system, it is possible to evaluate oxidative DNA damage and immune response simultaneously using the respective urinary markers. These data may contribute to understanding of the pathophysiology of diseases such as infections and tumor progression where both oxidative stress and immune response occur simultaneously.  相似文献   

12.
The monitoring of heavy metals is important if adverse effects on health are to be avoided. In humans, metallothionein (MT) has been used as a biomonitor for the assessment of cadmium (Cd). In the present study, subjects drawn from the population of Tarragona Province (NE Spain) were investigated. Urinary MT, zinc (Zn), and copper (Cu) concentrations, corrected for creatine concentrations, were determined in 625 samples from healthy subjects aged between 10 and 65 yr. Mean values of MT and Cu in females were higher than those in males, with levels of 29.5 (23.8) vs. 22.7 (24.9) μg MT/creatinine (p<0.001) and 4.8 (6.1) vs 3.4 (4.9) μg Cu/g creatinine (p<0.001). No differences between males and females were observed with respect to urinary Zn: 78.0 (66.4) vs 73.0 (85.5) μg/g creatinine, respectively (p=0.332). Significantly higher MT, Zn, and Cu values were observed in the females aged 15–19 yr and, in the age group of 50–54 yr, only in the Zn and Cu values, when compared with those in males. Significant positive correlations of MT vs Zn and Cu as well as correlations of Zn vs Cu levels were observed in both genders. The present findings confirm the proposed role of MT as a biomonitor of mineral status.  相似文献   

13.
Creatine is a naturally occurring compound obtained in humans from endogenous production and consumption through the diet. It is used as an ergogenic aid to improve exercise performance and increase fat-free mass. Lately, creatine’s positive therapeutic benefits in various oxidative stress-associated diseases have been reported in literature and, more recently, creatine has also been shown to exert direct antioxidant effects. Oxidatively-challenged DNA was analysed to show possible protective effects of creatine. Acellular and cellular studies were carried out. Acellular assays, performed using molecular approaches, showed that creatine protects circular and linear DNA from oxidative attacks.  相似文献   

14.
The taste of creatine and creatinine   总被引:1,自引:1,他引:0  
Lawless  Harry 《Chemical senses》1979,4(3):249-258
Four experiments investigated the possibility of a taster-nontasterdimorphism for creatine and creatinine, and whether perceptionof these substances was related to sensitivity to phenylthiocarbamide(PTC). Threshold measurements, suprathreshold scaling of perceivedintensity, a cross-adaptation experiment and a category scalingtask produced consistent results. No relation to PTC was observed.In contrast to previous reports, no evidence of a taster-nontastereffect for creatine or creatinine was found. Creatine was anotably ineffective taste stimulus for all subjects tested.  相似文献   

15.
We have determined the urinary 8-hydroxydeoxyguanosine (8-OHdG) levels of eight professional cyclists during a 4-day and a 3-week stage races. Monitoring of heart rates was used to establish zones corresponding to different intensities of exercise. The urinary 8-OHdG excretion, expressed by body weight, increased significantly in the first day or the first week of each race, respectively, and did not show further increases thereafter. Maximum 8-OHdG levels were reached in parallel to longer times spent at high intensities of exercise. Urinary excretion of creatinine increased with exercise, and changes in 8-OHdG levels were not detected when corrected by creatinine excretion. Serum glutathione concentrations did not change significantly at any point during exercise. We conclude that road cycling courses with an oxidative damage to DNA, which is sustained as long as the exercise is repeated. Both adaptation of antioxidant defenses and a decreased capacity to maintain a high intensity of effort may contribute to explain the absence of progressive increases in 8-OHdG excretion. The results of this study also confirm that the correction procedure using the amount of creatinine excreted should not be used when studying effects of exercise on urinary 8-OHdG.  相似文献   

16.
We have determined the urinary 8-hydroxydeoxyguanosine (8-OHdG) levels of eight professional cyclists during a 4-day and a 3-week stage races. Monitoring of heart rates was used to establish zones corresponding to different intensities of exercise. The urinary 8-OHdG excretion, expressed by body weight, increased significantly in the first day or the first week of each race, respectively, and did not show further increases thereafter. Maximum 8-OHdG levels were reached in parallel to longer times spent at high intensities of exercise. Urinary excretion of creatinine increased with exercise, and changes in 8-OHdG levels were not detected when corrected by creatinine excretion. Serum glutathione concentrations did not change significantly at any point during exercise. We conclude that road cycling courses with an oxidative damage to DNA, which is sustained as long as the exercise is repeated. Both adaptation of antioxidant defenses and a decreased capacity to maintain a high intensity of effort may contribute to explain the absence of progressive increases in 8-OHdG excretion. The results of this study also confirm that the correction procedure using the amount of creatinine excreted should not be used when studying effects of exercise on urinary 8-OHdG.  相似文献   

17.
In an effort to manage the existing population of the endangered Florida manatee (Trichechus manatus latirostris), as many individuals as possible are rehabilitated from illness or injury and released back into the waters of the state of Florida. It is not uncommon, however, for manatees recaptured for health assessment following release from rehabilitation to have elevated concentrations of serum creatinine. Although such elevated levels would be indicative of kidney failure in most other mammals, problems associated with renal function have not been evident in these recaptured manatees. To determine the possible cause(s) of the serum creatinine increase, two captive Florida manatees were manipulated to simulate many of the environmental and physical changes that occur during and shortly after release. Routine chemical analyses of serum and urine, complete blood counts, serum cortisol concentrations, and lymphocyte proliferation responses were measured. Serum creatinine concentrations increased significantly in response to decreased food intake and changes in food type. The increases differed depending on the salinity of the water in which the animals were maintained. It was found that significant changes in urinary creatinine and serum creatine kinase occurred as well, but serum cortisol concentrations were elevated only during simulated transport. Lymphocyte proliferation assays indicated that immune function was potentially impaired by extreme levels of dietary restriction and by changes in salinity. These results suggest that serum creatinine elevations and subsequent effects on the immune system might be minimized by adapting manatees undergoing rehabilitation to the diet and salinity they would encounter following release. Zoo Biol 22:103–120, 2003. © 2003 Wiley‐Liss, Inc.  相似文献   

18.
Direct antioxidant properties of creatine.   总被引:1,自引:0,他引:1  
Creatine is the most popular supplement proposed to be an ergogenic aid. There is some evidence in the literature that creatine supplementation increases lean body mass, muscular strength, and sprint power. However, the efficacy of creatine has not been consistent, and the potential mechanisms are unresolved. While limited evidence that suggests that creatine could possess an antioxidant effect this has not been tested directly. Because oxidants such as free radicals can affect muscle fatigue and protein turnover, it is important to know whether creatine can neutralize free radicals and other reactive oxygen species. We tested the hypothesis that creatine would remove superoxide anions (O(*-)(2)), peroxynitrite (OONO-), hydrogen peroxide, and lipid peroxides (t-butyl hydroperoxide). We also determined whether creatine displayed a significant antioxidant scavenging capacity (ASC) using 2,2'-azino-bis(3-ethylbenzothiazolamine-6-sulfonic acid) (ABTS+) quenching as a marker. Creatine did not significantly reduce levels of hydrogen peroxide or lipid peroxidation. In contrast, creatine displayed a significant ability to remove ABTS+, O(*-)(2), and OONO- when compared with controls. Creatine quenching of ABTS+ was less than physiological levels of reduced glutathione (0.375 mM). To our knowledge, this is the first evidence that creatine has the potential to act as a direct antioxidant against aqueous radical and reactive species ions.  相似文献   

19.
Urinary testosterone and cortisol concentrations were quantified in a large number of samples (>500) collected from wild male chimpanzees (n=11) over the course of 1 year. For both steroids, urinary concentrations were higher and more variable in the morning than in the afternoon. Urinary creatinine levels showed no such diurnal pattern. These patterns are consistent with studies of steroid excretion in humans and gorillas. This study emphasizes the importance of considering time of day as a confounding variable in field studies of primate endocrine function. It also suggests that if a small number of samples are to be used to characterize an individual's basal steroid levels, afternoon samples may be preferable because they show less intra-individual variability.  相似文献   

20.
Production of guanidinoacetic acid, a precursor of creatinine is known to be reduced by metabolic disturbance when kidney function is damaged, and thus it may be a sensitive marker of renal damage. Therefore, the urinary levels of guanidinoacetic acid, creatinine and creatine from patients with urinary tract neoplasm who received cisplatin treatment were measured by liquid chromatography-mass spectrometry. Following the administration of cisplatin, the urinary excretion of guanidinoacetic acid decreased significantly, and the low concentration was maintained for at least five days. The concentrations of creatinine and creatine gradually decreased until the third day after cisplatin administration, and slightly increased on the fifth day. As superoxide might be concerned in renal damage by cisplatin, the effect of cisplatin on superoxide generation was also investigated using human neutrophils. Cisplatin significantly enhanced phorbol 12-myristate 13-acetate-induced superoxide generation in a concentration-dependent manner, but had no effect on the superoxide generation induced by N-formyl-methionyl-leucyl-phenylalanine and arachidonic acid. The superoxide generation increased by cisplatin was inhibited by staurosporine, an inhibitor of protein kinase C, but was rather enhanced by genistein, an inhibitor of protein tyrosine kinase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号