首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
2.
In a previous study, a quorum-sensing signaling system essential for genetic competence in Streptococcus mutans was identified, characterized, and found to function optimally in biofilms (Li et al., J. Bacteriol. 183:897-908, 2001). Here, we demonstrate that this system also plays a role in the ability of S. mutans to initiate biofilm formation. To test this hypothesis, S. mutans wild-type strain NG8 and its knockout mutants defective in comC, comD, comE, and comX, as well as a comCDE deletion mutant, were assayed for their ability to initiate biofilm formation. The spatial distribution and architecture of the biofilms were examined by scanning electron microscopy and confocal scanning laser microscopy. The results showed that inactivation of any of the individual genes under study resulted in the formation of an abnormal biofilm. The comC mutant, unable to produce or secrete a competence-stimulating peptide (CSP), formed biofilms with altered architecture, whereas the comD and comE mutants, which were defective in sensing and responding to the CSP, formed biofilms with reduced biomass. Exogenous addition of the CSP and complementation with a plasmid containing the wild-type comC gene into the cultures restored the wild-type biofilm architecture of comC mutants but showed no effect on the comD, comE, or comX mutant biofilms. The fact that biofilms formed by comC mutants differed from the comD, comE, and comX mutant biofilms suggested that multiple signal transduction pathways were affected by CSP. Addition of synthetic CSP into the culture medium or introduction of the wild-type comC gene on a shuttle vector into the comCDE deletion mutant partially restored the wild-type biofilm architecture and further supported this idea. We conclude that the quorum-sensing signaling system essential for genetic competence in S. mutans is important for the formation of biofilms by this gram-positive organism.  相似文献   

3.
Bacteria use quorum-sensing signals or autoinducers to communicate. The signals in Gram-positive bacteria are often peptides activated by proteolytic removal of an N-terminal leader sequence. While investigating stimulation of antimicrobial peptide production by the Streptococcus mutans synthetic competence stimulating peptide signal (21-CSP), we found a peptide similar to the 21-CSP, but lacking the three C-terminal amino acid residues (18-CSP). The 18-CSP was more potent in inducing competence, biofilm formation, and antimicrobial activity than the 21-CSP. Our results indicate that cleavage of the three C-terminal residues occurred post export, and was not regulated by the CSP-signalling system. Deletion of comD encoding the CSP receptor abolished the competence and biofilm responses to the 21-CSP and the 18-CSP, suggesting that signal transduction via the ComD receptor is involved in the responses to both CSPs. In S. mutans GS5, beside the 18-CSP we also purified to homogeneity a two-peptide bacteriocin which production was stimulated by the 18-CSP and the 21-CSP. Partial sequence of the two-peptide bacteriocin revealed the product of the smbAB genes recently described. We found that the peptide SmbB was slightly different from the deduced sequence, and confirmed the prediction that both peptides constituting SmbAB bacteriocin are post-translationally modified. SmbAB exhibited antimicrobial activity against 11 species of streptococci, Enterococcus faecalis and Staphylocococcus epidermidis. Taken together, the findings support the involvement of the CSP response in bacteriocin production by streptococci and suggest a novel strategy to potentiate autoinducer activity.  相似文献   

4.
Streptococcus mutans has been recognized as an important etiological agent in human dental caries. Some strains of S. mutans also produce bacteriocins. In this study, we sought to demonstrate that bacteriocin production by S. mutans strains GS5 and BM71 was mediated by quorum sensing, which is dependent on a competence-stimulating peptide (CSP) signaling system encoded by the com genes. We also demonstrated that interactions with some other oral streptococci interfered with S. mutans bacteriocin production both in broth and in biofilms. The inhibition of S. mutans bacteriocin production by oral bacteria was stronger in biofilms than in broth. Using transposon Tn916 mutagenesis, we identified a gene (sgc; named for Streptococcus gordonii challisin) responsible for the inhibition of S. mutans bacteriocin production by S. gordonii Challis. Interruption of the sgc gene in S. gordonii Challis resulted in attenuated inhibition of S. mutans bacteriocin production. The supernatant fluids from the sgc mutant did not inactivate the exogenous S. mutans CSP as did those from the parent strain Challis. S. gordonii Challis did not inactivate bacteriocin produced by S. mutans GS5. Because S. mutans uses quorum sensing to regulate virulence, strategies designed to interfere with these signaling systems may have broad applicability for biological control of this caries-causing organism.  相似文献   

5.
The genetic variability in comC , the gene encoding the quorum-sensing molecule, competence-stimulating peptide (CSP) in Streptococcus mutans is reported. Seven comC alleles encoding three distinct mature CSPs were identified among 36 geographically diverse strains, although, compared with Streptococcus pneumoniae , the amount of predicted amino acid sequence variation is low. In agreement with other studies, significant variation was found in the natural competence for DNA uptake in these strains. However, there was no correlation between the CSP genotype and the ability to transform these strains. Representative strains encoding each of the CSP variants became competent in response to synthetic CSPs of each type. Therefore, in contrast to S. pneumoniae , comC alleles in S. mutans are functionally equivalent and there is no evidence of pherotype specificity.  相似文献   

6.
7.
Streptococcus mutans is a bacterium that has evolved to be dependent upon a biofilm "lifestyle" for survival and persistence in its natural ecosystem, dental plaque. We initiated this study to identify the genes involved in the development of genetic competence in S. mutans and to assay the natural genetic transformability of biofilm-grown cells. Using genomic analyses, we identified a quorum-sensing peptide pheromone signaling system similar to those previously found in other streptococci. The genetic locus of this system comprises three genes, comC, comD, and comE, that encode a precursor to the peptide competence factor, a histidine kinase, and a response regulator, respectively. We deduced the sequence of comC and its active pheromone product and chemically synthesized the corresponding 21-amino-acid competence-stimulating peptide (CSP). Addition of CSP to noncompetent cells facilitated increased transformation frequencies, with typically 1% of the total cell population transformed. To further confirm the roles of these genes in genetic competence, we inactivated them by insertion-duplication mutagenesis or allelic replacement followed by assays of transformation efficiency. We also demonstrated that biofilm-grown S. mutans cells were transformed at a rate 10- to 600-fold higher than planktonic S. mutans cells. Donor DNA included a suicide plasmid, S. mutans chromosomal DNA harboring a heterologous erythromycin resistance gene, and a replicative plasmid. The cells were optimally transformed during the formation of 8- to 16-h-old biofilms primarily consisting of microcolonies on solid surfaces. We also found that dead cells in the biofilms could act as donors of a chromosomally encoded antibiotic resistance determinant. This work demonstrated that a peptide pheromone system controls genetic competence in S. mutans and that the system functions optimally when the cells are living in actively growing biofilms.  相似文献   

8.
The induction of genetic competence is a strategy used by bacteria to increase their genetic repertoire under stressful environmental conditions. Recently, Streptococcus pneumoniae has been shown to co-ordinate the uptake of transforming DNA with fratricide via increased expression of the peptide pheromone responsible for competence induction. Here, we document that environmental stress-induced expression of the peptide pheromone competence-stimulating peptide (CSP) in the oral pathogen Streptococcus mutans . We showed that CSP is involved in the stress response and determined the CSP-induced regulon in S. mutans by microarray analysis. Contrary to pneumococcus, S. mutans responds to increased concentrations of CSP by cell lysis in only a fraction of the population. We have focused on the mechanism of cell lysis and have identified a novel bacteriocin as the 'death effector'. Most importantly, we showed that this bacteriocin causes cell death via a novel mechanism of action: intracellular action against self. We have also identified the cognate bacteriocin immunity protein, which resides in a separate unlinked genetic locus to allow its differential regulation. The role of the lytic response in S. mutans competence is also discussed. Together, these findings reveal a novel autolytic pathway in S. mutans which may be involved in the dissemination of fitness-enhancing genes in the oral biofilm.  相似文献   

9.
Identification of the streptococcal competence-pheromone receptor   总被引:23,自引:3,他引:20  
Competence for genetic transformation in certain species of streptococci has been known for many years to be induced by a secreted protease-sensitive pheromone, referred to as the competence factor or activator, which acts as a quorum-sensing signal to co-ordinate expression of late competence genes. We recently reported identification of the pheromone of Streptococcus pneumoniae strain Rx as a small unmodified peptide, which was termed competence-stimulating peptide (CSP). By identifying the gene ( comC ) encoding the Rx CSP we were able to show that it is synthesized as a precursor peptide containing an N-terminal double-glycine type leader. In the present work, we describe two alleles of the corresponding gene from Streptococcus gordonii strains Challis and NCTC 7865, which are strains with distinct competence pheromones and corresponding specific pheromone reactivities. In addition, the nucleic acid sequences of two genes located downstream of comC were determined; interestingly, these genes encode a two-component signal transduction system. We therefore speculated that their products, a histidine kinase (ComD) and its cognate response regulator (ComE), act downstream of the CSP in competence regulation. By tracing the CSP specificity of the competence response in these strains to strain-specific alleles of comD , we obtained evidence demonstrating that the histidine kinase ComD is the competence-pheromone receptor.  相似文献   

10.
Garvicin ML (GarML) is a circular bacteriocin produced by Lactococcus garvieae DCC43. The recently published draft genome of this strain allowed determination of the genetic background for bacteriocin production. Bioinformatic analysis identified a gene cluster consisting of nine open reading frames likely involved in the production of and immunity to GarML. The garA gene encodes the bacteriocin precursor, garX a large transmembrane protein, garBCDE a putative immunity protein (garB) followed by an ATPase and two transmembrane proteins, and garFGH a putative ABC transporter complex. Functional genetic analysis revealed that deletion of garFGH had no effect on sensitivity to or production of GarML. In contrast, deletion of garBCDE or inactivation of garX resulted in high-level sensitivity to GarML and completely abolished production of active bacteriocin. Mass spectrometry of culture supernatants revealed that wild-type cultures contained the mature circular form as well as the linear forms of the bacteriocin, both with and without the three-amino-acid leader sequence, while bacteriocin-negative mutants contained only the linear forms. These results indicate that cleavage of the leader peptide precedes circularization and is likely performed by a functional entity separate from the GarML gene cluster. To our knowledge, this is the first conclusive evidence for these processes being separated in time. Loss of immunity and antimicrobial activity in addition to our inability to detect the circular bacteriocin in the ΔgarBCDE and garX::pCG47 mutants demonstrate that both these units are indispensable for GarML biosynthesis as well as immunity. Furthermore, the results indicate that these genes are implicated in the circularization of the bacteriocin and that their functions are probably interlinked.  相似文献   

11.
ComX activity of Streptococcus mutans growing in biofilms   总被引:1,自引:0,他引:1  
  相似文献   

12.
13.
Previous studies of genes involved in the production of sakacin P by Lactobacillus sakei Lb674 revealed the presence of an inducible promoter downstream of the known spp gene clusters. We show here that this promoter drives the expression of an operon consisting of a bacteriocin gene (sppQ), a cognate immunity gene (spiQ), another gene with an unknown function (orf4), and a pseudoimmunity gene containing a frameshift mutation (orf5). The leader peptide of the new one-peptide bacteriocin sakacin Q contains consensus elements that are typical for so-called “double-glycine” leader peptides. The mature bacteriocin shows weak similarity to the BrcA peptide of the two-peptide bacteriocin brochocin C. Sakacin Q has an antimicrobial spectrum that differs from that of sakacin P, thus expanding the antimicrobial properties of the producer strain. The genes encoding sakacin Q and its cognate immunity protein showed strong translational coupling, which was investigated in detail by analyzing the properties of a series of β-glucuronidase fusions. Our results provide experimental evidence that production of the bacteriocin and production of the cognate immunity protein are tightly coregulated at the translational level.  相似文献   

14.
15.
It is important to ensure DNA availability when bacterial cells develop competence. Previous studies in Streptococcus pneumoniae demonstrated that the competence-stimulating peptide (CSP) induced autolysin production and cell lysis of its own non-competent cells, suggesting a possible active mechanism to secure a homologous DNA pool for uptake and recombination. In this study, we found that in Streptococcus mutans CSP induced co-ordinated expression of competence and mutacin production genes. This mutacin (mutacin IV) is a non-lantibiotic bacteriocin which kills closely related Streptococcal species such as S. gordonii. In mixed cultures of S. mutans and S. gordonii harbouring a shuttle plasmid, plasmid DNA transfer from S. gordonii to S. mutans was observed in a CSP and mutacin IV-dependent manner. Further analysis demonstrated an increased DNA release from S. gordonii upon addition of the partially purified mutacin IV extract. On the basis of these findings, we propose that Streptococcus mutans, which resides in a multispecies oral biofilm, may utilize the competence-induced bacteriocin production to acquire transforming DNA from other species living in the same ecological niche. This hypothesis is also consistent with a well-known phenomenon that a large genomic diversity exists among different S. mutans strains. This diversity may have resulted from extensive horizontal gene transfer.  相似文献   

16.
Genetic Diversity of the Streptococcal Competence (com) Gene Locus   总被引:6,自引:0,他引:6       下载免费PDF全文
The com operon of naturally transformable streptococcal species contains three genes, comC, comD, and comE, involved in the regulation of competence. The comC gene encodes a competence-stimulating peptide (CSP) thought to induce competence in the bacterial population at a critical extracellular concentration. The comD and comE genes are believed to encode the transmembrane histidine kinase and response regulator proteins, respectively, of a two-component regulator, with the comD-encoded protein being a receptor for CSP. Here we report on the genetic variability of comC and comD within Streptococcus pneumoniae isolates. Comparative analysis of sequence variations of comC and comD shows that, despite evidence for horizontal gene transfer at this locus and the lack of transformability of many S. pneumoniae strains in the laboratory, there is a clear correlation between the presence of a particular comC allele and the cognate comD allele. These findings effectively rule out the possibility that the presence of noncognate comC and comD alleles may be responsible for the inability to induce competence in many isolates and indicate the importance of a functional com pathway in these isolates. In addition, we describe a number of novel CSPs from disease-associated strains of S. mitis and S. oralis. The CSPs from these isolates are much more closely related to those from S. pneumoniae than to most CSPs previously reported from S. mitis and S. oralis, suggesting that these particular organisms may be a potential source of DNA in recombination events generating the mosaic structures commonly reported in genes of S. pneumoniae that are under strong selective pressure.  相似文献   

17.
Streptococcus mutans has been recognized as an important etiological agent in human dental caries. Some strains of S. mutans also produce bacteriocins. In this study, we sought to demonstrate that bacteriocin production by S. mutans strains GS5 and BM71 was mediated by quorum sensing, which is dependent on a competence-stimulating peptide (CSP) signaling system encoded by the com genes. We also demonstrated that interactions with some other oral streptococci interfered with S. mutans bacteriocin production both in broth and in biofilms. The inhibition of S. mutans bacteriocin production by oral bacteria was stronger in biofilms than in broth. Using transposon Tn916 mutagenesis, we identified a gene (sgc; named for Streptococcus gordonii challisin) responsible for the inhibition of S. mutans bacteriocin production by S. gordonii Challis. Interruption of the sgc gene in S. gordonii Challis resulted in attenuated inhibition of S. mutans bacteriocin production. The supernatant fluids from the sgc mutant did not inactivate the exogenous S. mutans CSP as did those from the parent strain Challis. S. gordonii Challis did not inactivate bacteriocin produced by S. mutans GS5. Because S. mutans uses quorum sensing to regulate virulence, strategies designed to interfere with these signaling systems may have broad applicability for biological control of this caries-causing organism.  相似文献   

18.
Some species of ruminal bacteria are known to produce antimicrobial peptides, but the screening procedures have mostly been based on in vitro assays using standardized methods. Recent sequencing efforts have made available the genome sequences of hundreds of ruminal microorganisms. In this work, we performed genome mining of the complete and partial genome sequences of 224 ruminal bacteria and 5 ruminal archaea to determine the distribution and diversity of bacteriocin gene clusters. A total of 46 bacteriocin gene clusters were identified in 33 strains of ruminal bacteria. Twenty gene clusters were related to lanthipeptide biosynthesis, while 11 gene clusters were associated with sactipeptide production, 7 gene clusters were associated with class II bacteriocin production, and 8 gene clusters were associated with class III bacteriocin production. The frequency of strains whose genomes encode putative antimicrobial peptide precursors was 14.4%. Clusters related to the production of sactipeptides were identified for the first time among ruminal bacteria. BLAST analysis indicated that the majority of the gene clusters (88%) encoding putative lanthipeptides contained all the essential genes required for lanthipeptide biosynthesis. Most strains of Streptococcus (66.6%) harbored complete lanthipeptide gene clusters, in addition to an open reading frame encoding a putative class II bacteriocin. Albusin B-like proteins were found in 100% of the Ruminococcus albus strains screened in this study. The in silico analysis provided evidence of novel biosynthetic gene clusters in bacterial species not previously related to bacteriocin production, suggesting that the rumen microbiota represents an underexplored source of antimicrobial peptides.  相似文献   

19.
The present work describes the molecular characterization of five circular plasmids found in the human clinical strain Lactococcus garvieae 21881. The plasmids were designated pGL1-pGL5, with molecular sizes of 4,536 bp, 4,572 bp, 12,948 bp, 14,006 bp and 68,798 bp, respectively. Based on detailed sequence analysis, some of these plasmids appear to be mosaics composed of DNA obtained by modular exchange between different species of lactic acid bacteria. Based on sequence data and the derived presence of certain genes and proteins, the plasmid pGL2 appears to replicate via a rolling-circle mechanism, while the other four plasmids appear to belong to the group of lactococcal theta-type replicons. The plasmids pGL1, pGL2 and pGL5 encode putative proteins related with bacteriocin synthesis and bacteriocin secretion and immunity. The plasmid pGL5 harbors genes (txn, orf5 and orf25) encoding proteins that could be considered putative virulence factors. The gene txn encodes a protein with an enzymatic domain corresponding to the family actin-ADP-ribosyltransferases toxins, which are known to play a key role in pathogenesis of a variety of bacterial pathogens. The genes orf5 and orf25 encode two putative surface proteins containing the cell wall-sorting motif LPXTG, with mucin-binding and collagen-binding protein domains, respectively. These proteins could be involved in the adherence of L. garvieae to mucus from the intestine, facilitating further interaction with intestinal epithelial cells and to collagenous tissues such as the collagen-rich heart valves. To our knowledge, this is the first report on the characterization of plasmids in a human clinical strain of this pathogen.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号