首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Sequential transfections of P815 murine mastocytoma cells with class I gene encoding either HLA-Cw3, HLA-A3, or HLA-B7 H chain and subsequently with a human beta 2-microglobulin gene were performed to evaluate the relative efficiency of human and murine beta 2-microglobulins in promoting the cell-surface expression of HLA-class I molecules. A 6-, 11-, and 40-fold specific enhancement of the cell-surface expression of HLA-Cw3, HLA-A3, and HLA-B7 molecules, respectively, was observed in cells co-transfected with human beta 2-microglobulin gene. This effect was attributed to a more efficient association of HLA H chains with human than with murine beta 2-microglobulin, which apparently allowed a more rapid transport of the HLA molecules from the endoplasmic reticulum to the Golgi apparatus.  相似文献   

2.
3.
The HLA-CW3 gene contained in a cosmid clone identified by transfection expression experiments has been completely sequenced. This provides, for the first time, data on the structure of HLA-C locus products and constitutes, together with that of the gene coding for HLA-A3, the first complete nucleotide sequences of genes coding for serologically defined class I HLA molecules. In contrast to the organisation of the two class I HLA pseudogenes whose sequences have previously been determined, the sequence of the HLA-CW3 gene reveals an additional cytoplasmic encoding domain, making the organisation of this gene very similar to that of known H-2 class I genes and also the HLA-A3 gene. The deduced amino acid sequences of HLA-CW3 and HLA-A3 now allow a systematic comparison of such sequences of HLA class I molecules from the three classical transplantation antigen loci A, B, C. The compared sequences include the previously determined partial amino acid sequences of HLA-B7, HLA-B40, HLA-A2 and HLA-A28. The comparisons confirm the extreme polymorphism of HLA classical class I molecules, and permit a study of the level of diversity and the location of sequence differences. The distribution of differences is not uniform, most of them being located in the first and second extracellular domains, the third extracellular domain is extremely conserved, and the cytoplasmic domain is also a variable region. Although it is difficult to determine locus-specific regions, we have identified several candidate positions which may be C locus-specific.  相似文献   

4.
HLA-A3-, HLA-B7-, and HLA-CW3-transfected L cells, maintained in medium supplemented with murine serum so as to ensure that the human heavy chains were associated with murine beta 2-microglobulin, were subjected to a systematic serologic analysis for an evaluation of the structural consequences of such an heterologous association. The hybrid molecules exhibited alterations of their serologic reactivities that suggest the occurrence of structural modifications of both light and heavy chains. Thus, reactivity of HLA-A3-, HLA-B7-, and HLA-Cw3-transfected L cells with a monoclonal antibody (B1.1G6) directed at a human beta 2-microglobulin specific antigenic determinant was observed; this implies structural modifications of murine beta 2-microglobulin after its association with HLA class I heavy chains. Conversely, a profound reduction of the reactivity of the same transfectants with a monoclonal antibody (W6/32) directed at a monomorphic heavy chain related epitope was observed. The W6/32 reactivity was restored after replacement of the murine by the human light chain, indicating that the conformation adopted by the HLA class I heavy chain depends on the origin of the beta 2-microglobulin associated. Therefore it appears that the complex interactions that develop between the extracellular domains (including the one formed by the light chain) markedly influence the overall structure and the antigenic properties of HLA class I molecules.  相似文献   

5.
6.
Human leukocyte antigen (HLA) class I molecule expression was investigated by DNA-mediated gene transfer. Cell surface expression was increased up to 75% by transfection of HLA-A2 or HLA-B8 heavy chain genes but not genes encoding light chains (beta(2)-microglobulin (beta(2)m)), transporter associated with antigen processing (TAP), or tapasin. Interferon (IFN) treatment further increased expression of transfected heavy chains, suggesting that IFN inducible molecules support heavy chain expression. IFN induces beta(2)m, TAP, and tapasin mRNAs. Transfected heavy chain expression increased upon cotransfection with genes encoding TAP1 and TAP2 but not individual TAP subunits, beta(2)m, or tapasin. Tetracycline inducible heavy chain gene expression was also increased by IFN treatment or TAP cotransfection, suggesting that IFN-induced TAP supports heavy chain maturation. Expression of a mutant that does not interact strongly with TAP, HLA-A2-T134K, was also increased by IFN. Inhibition of TAP-dependent peptide transport by ICP47 reduced heavy chain expression. Expression of HLA-A2, but not HLA-B8, was restored in ICP47 cells by HLA-A2-binding (IP-30) signal peptides. However, these peptides did not further increase transfected HLA-A2 expression, suggesting that peptide availability does not limit heavy chain expression in the absence of ICP47. These results suggest that cytokine-induced TAP supports maturation of HLA class I molecules through combined chaperone and peptide supply functions.  相似文献   

7.
The expression of transfected HLA class I Ag has previously been shown to protect human target cells from NK-mediated conjugation and cytolysis. In this same system, transfected H-2 class I Ag fail to impart resistance to NK. In this study, we have mapped the portion of the HLA class I molecule involved in this protective effect by exploiting this HLA/H-2 dichotomy. Hybrid class I genes were produced by exon-shuffling between the HLA-B7 and H-2Dp genes, and transfected into the class I Ag-deficient B-lymphoblastoid cell line (B-LCL) C1R. Only those transfectants expressing class I Ag containing the alpha 1 and alpha 2 domains of the HLA molecule are protected from NK, suggesting the "protective epitope" is located within these domains. Since a glycosylation difference exists between HLA and H-2 class I Ag within these domains (i.e., at amino acid residue 176), the role of carbohydrate in the class I protective effect was examined. HLA-B7 mutant genes encoding proteins which either lack the normal carbohydrate addition site at amino acid residue 86 (B7M86-) or possess an additional site at residue 176 (B7M176+) were transfected into C1R. Transfectants expressing either mutant HLA-B7 Ag were protected from NK. Thus, carbohydrate is probably not integral to a class I "protective epitope." The potential for allelic variation in the ability of HLA class I Ag to protect C1R target cells from NK was examined in HLA-A2, A3, B7, and Bw58 transfectants. Although no significant variation exists among the HLA-A3, B7, and Bw58 alleles, HLA-A2 appears unable to protect. Comparison of amino acid sequences suggests a restricted number of residues which may be relevant to the protective effect.  相似文献   

8.
The frequency of murine CTL precursors (CTLp) that recognize the human histocompatibility Ag HLA-A2 and HLA-B7 was measured and found to be approximately two orders of magnitude lower than the frequency of CTLp that recognize murine H-2 alloantigens. The possible contribution of other cell surface molecules to this difference in response was addressed by expression of the H-2Ld molecule on a human cell and the HLA-B7 molecule on a murine cell. It was found that both human and murine H-2Ld expressing cells elicited comparable levels of H-2Ld specific CTL. Although murine HLA-B7 positive cells stimulated a higher frequency of HLA-B7-specific CTLp than did human cells, this appeared to be largely due to stimulation of CTLp that recognized HLA-B7 in the context of H-2 molecules; consequently, it was concluded that the difference in the frequency of murine CTLp elicited by human and murine class I Ag is due to species specific structural differences in these molecules. The regions of the class I molecule that were responsible for this difference were mapped using chimeric class I molecules constructed to replace domains of the human molecule with their murine counterparts. It was found that the frequency of CTLp is controlled by structures within the alpha 1 and alpha 2 domains of the molecule. These results are discussed in the light of models for T cell recognition of class I Ag and the diversification of the T cell receptor repertoire.  相似文献   

9.
10.
Human cytolytic T lymphocytes (CTL) clones and HLA-A2- and HLA-B7-transfected human, monkey, and mouse cell lines were used to investigate the basis for species-restricted antigen recognition. Most allospecific CTL clones obtained after stimulation with the human JY cell line (source of HLA-A2 and HLA-B7 genomic clones) recognized HLA antigens expressed in human and monkey cell lines but did not recognize HLA expressed in murine cells. By initially stimulating the responder cells with HLA-transfected mouse cells, two CTL clones were obtained that recognized HLA expressed in murine cells. Functional inhibition of these CTL clones with anti-class I monoclonal antibodies (MAb) indicated that clones reactive with HLA+ murine cells were of higher avidity than clones that did not recognize HLA+ murine target cells. MAb inhibition of accessory molecule interactions demonstrated that the LFA-1 and T8 surface molecules were involved in CTL-target cell interactions in all three species. In contrast, the LFA-2/CD2 molecule, previously shown to participate in a distinct activation pathway, was involved in the cytolysis of transfected human and monkey target cells, but not in the lysis of HLA+ murine cells. Thus transfection of HLA genes into different recipient species cell lines provides us with the ability to additionally delineate the functional requirements for allospecific CTL recognition and lysis.  相似文献   

11.
The cytolytic responses of either normal (non transgenic), HLA-B7 (single transgenic) or HLA-B7 x human beta 2 microglobulin (double transgenic) DBA/2 mice induced by transfected HLA-Cw3 P815 (H-2d) mouse mastocytoma cells were compared, to evaluate whether the expression of an HLA class I molecule in responder mice would favor the emergence of HLA-specific, H-2-unrestricted CTL. Only 8 of 300 HLA-Cw3-specific CTL clones tested could selectively lyse HLA-Cw3-transfected cells in an H-2-unrestricted manner, all having been isolated after hyperimmunization of double transgenic mice. These clones also lysed HLA-Cw3+ human cells. Unexpectedly, the lysis of the human but not that of the murine HLA-Cw3 cells was inhibited by Ly-2,3-specific mAb. Despite significant expression of HLA-B7 class I molecules on transgenic lymphoid cells, including thymic cells, limiting dilution analysis and comparative study of TCR-alpha and -beta gene rearrangements of the eight isolated clones (which suggested that they all derived from the same CTL precursor) indicated that the frequency of HLA-Cw3-specific H-2 unrestricted cytotoxic T lymphocytes remained low (even in HLA-B7 x human beta 2-microglobulin double transgenic mice). This suggests that coexpression of HLA class I H and L chain in transgenic mice is not the only requirement for significant positive selection of HLA class I-restricted cytotoxic mouse T lymphocytes.  相似文献   

12.
Spontaneous mutants with altered HLA-A,B,C response to interferon-alpha (IFN-alpha) were isolated from the human thymus leukemia cell line Molt 4. Using fluorescein isothiocyanate (FITC)-conjugated W6/32 (a monoclonal antibody to HLA-A,B,C) and the fluorescence-activated cell sorter, the cells with highest and lowest fluorescence after 24-48 h of IFN-alpha treatment were selected and expanded. After several cycles of selection, mutant clones with low (greater than 10% of wild-type) and high (three times better) response were obtained. A similar protocol was employed to derive high responder mutants with the monoclonal antibody YT76, which recognises a subset of HLA strongly induced by IFN-alpha. Stable clones were derived for which YT-HLA induction was 7-fold that of Molt 4 cells and for which HLA induction occurred at 100-fold lower concentrations of IFN-alpha. The high response phenotype of the mutants was not accompanied by a significant increase in the constitutive level of expression of HLA-A,B,C (in the absence of IFN). The increase in the level of HLA-A,B,C expression after IFN-alpha treatment is mostly accounted for by the increase in the expression of a subset of HLA molecules, detected by the monoclonal antibody YT76 including HLA-B molecules.  相似文献   

13.
Assembly of HLA class I-peptide complexes is assisted by multiple proteins that associate with HLA molecules in loading complexes. These include the housekeeping chaperones calnexin and calreticulin and two essential proteins, the transporters associated with antigen processing (TAP) for peptide supply, and the protein tapasin which is thought to act as a specialized chaperone. We dissected functional effects of processing cofactors by co-expressing in insect cells various combinations of the human proteins HLA-A2, HLA-B27, beta(2)-microglobulin, TAP, calnexin, calreticulin, and tapasin. Stability at 37 degrees C and surface expression of class I dimers correlated closely in baculovirus-infected Sf9 cells, suggesting that these cells retain empty dimers in the endoplasmic reticulum. Both HLA molecules form substantial quantities of stable complexes with insect cell-produced peptide pools. These pools are TAP-selected cytosolic peptides for HLA-B27 but endoplasmic reticulum-derived, i.e. TAP-independent peptides for HLA-A2. This discrepancy may be due to peptide selection by human TAP which is much better adapted to the HLA-B27 than to the HLA-A2 ligand preferences. HLA class I assembly with peptides from TAP-dependent and -independent pools was enhanced strongly by tapasin. Thus, tapasin acts as a chaperone and/or peptide editor that facilitates assembly of peptides with HLA class I molecules independently of mediating their interaction with TAP and/or retention in the endoplasmic reticulum.  相似文献   

14.
15.
HLA class I alleles are studied by representing them in a metric space where each dimension corresponds to each one of the amino acid positions. Their similarity in reference to their ability to present peptides to T cells is then evaluated by calculating the correlation matrix between the amino-acid-composition tables (or binding affinity tables) for the sets of peptides presented by each allele. This correlation matrix is considered an empirical similarity matrix between HLA alleles, and is modeled in terms of possible structures defined in the metric space of HLA class I amino acid sequences. These geometric structures are adequate models of the peptide-binding data currently available. The following clusters of HLA class I molecules are identified in reference to their ability to present peptides: Cluster I) HLA-A3/ HLA-A11/ HLA-A31/ HLA-A33/ HLA-A68; Cluster II) HLA-B35/ HLA-B51/ HLA-B53/ HLA-B54/ HLA-B7; and Cluster III) HLA-A29/ HLA-B61/HLA-B44; the last cluster showing possible similarities between alleles from different loci. In modeling these natural clusters, the geometric structures with more predictive power confirm the importance of those positions in the peptide-binding groove, particularly those in the B pocket. In addition, other positions (46, 79, 113, 131, 144, and 177) appeared to bear some relevance in determining which peptides can be presented by which HLA alleles. Received: 20 January 1998 / Revised: 30 March 1998  相似文献   

16.
17.
18.
Previous studies have indicated that the frequency of murine CTL precursors (CTLp) for human class I molecules is one to two orders of magnitude lower than that for murine class I alloantigens, and that this is due to species-specific structural differences between these molecules. Transgenic mice expressing the human class I MHC Ag HLA-A2.1 were used to examine changes in the frequency of class I HLA-specific precursors after T cell differentiation in an HLA-A2.1 positive environment. The HLA-A2.1 gene product was expressed at levels comparable to those of the endogenous H-2Db molecule in thymus, bone marrow, and spleen. By limiting dilution analysis, it was observed that the frequencies of CTLp in transgenic mice responding to the human alloantigens HLA-B7 or HLA-A2.2 were comparable to or lower than those in normal C57BL/6 mice, regardless of whether the Ag was presented on human or murine cells. Thus, expression of a human class I molecule in these animals did not result in an expansion of the number of CTLp specific for other human class I Ag. In addition, the frequency of HLA-A2.1-restricted, influenza specific CTLp was substantially lower than the frequency of H-2b restricted CTLp, indicating a poor utilization of HLA-A2.1 as a restricting element. Finally, the frequencies of CTLp for HLA-A2.1 expressed on syngeneic murine tumor cells were decreased significantly. Thus, expression of HLA-A2.1 in these animals appeared to induced tolerance to this Ag. Interestingly, however, these mice were not tolerant to the HLA-A2.1 molecule expressed on human cells. This indicates that the HLA-A2.1 associated epitopes expressed on murine and human cells differ and suggests that, under these circumstances, HLA-A2.1 acts as a restricting element for human nominal Ag. These results are discussed in the context of current models of T cell repertoire development.  相似文献   

19.
20.
Two groups of human and murine cytotoxic T lymphocyte (CTL) clones specific for human leukocyte antigen (HLA)-A2 or -B7 can be distinguished based on their ability to kill murine transfectants expressing these molecules. The clones which do not recognize murine transfectants exhibited greatly reduced conjugate formation with these cells, indicating that the inability to lyse these cells occurs in recognition and binding. No systematic differences in inhibitory titer between the two types of CTL clones were seen with anti-CD8 (Lyt-2), anti-LFA-1, or monoclonal antibodies against HLA class I molecules. However, blocking with anti-HLA class I monoclonal antibodies suggested that different CTL clones recognized spatially separate epitopes on HLA-A2 and -B7. In addition, a correlation between the inability to recognize murine transfectants and fine specificity was seen. Eight of nine clones which did not lyse murine transfectants also failed to recognize human cells expressing HLA-A2.2 or -A2.3. In contrast only 5 of 12 clones which lysed transfectants failed to recognize the variant molecules. Analogous data were obtained with human CTL clones raised against HLA-A2.1. These findings suggest that CTL clones that do not lyse murine cells expressing appropriate antigens recognize epitopes that have been altered or lost as a consequence of expression on the murine cell surface. It is suggested that the loss of HLA-associated epitopes on the murine cell surface may be due to differences between mouse and human cells in the processing or presentation of class I-associated peptides.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号