共查询到20条相似文献,搜索用时 15 毫秒
1.
The functional role of ribosomal RNA in protein synthesis 总被引:41,自引:0,他引:41
A E Dahlberg 《Cell》1989,57(4):525-529
2.
Christopher U.T. Hellen 《Biochimica et Biophysica Acta (BBA) - Gene Regulatory Mechanisms》2009,1789(9-10):558-570
Translation of the genomes of several positive-sense RNA viruses follows end-independent initiation on an internal ribosomal entry site (IRES) in the viral mRNA. There are four major IRES groups, and despite major differences in the mechanisms that they use, one unifying characteristic is that each mechanism involves essential non-canonical interactions of the IRES with components of the canonical translational apparatus. Thus the ~ 200nt.-long Type 4 IRESs (epitomized by Cricket paralysis virus) bind directly to the intersubunit space on the ribosomal 40S subunit, followed by joining to a 60S subunit to form active ribosomes by a factor-independent mechanism. The ~ 300nt.-long type 3 IRESs (epitomized by Hepatitis C virus) binds independently to eukaryotic initiation factor (eIF) 3, and to the solvent-accessible surface and E-site of the 40S subunit: addition of eIF2-GTP/initiator tRNA is sufficient to form a 48S complex that can join a 60S subunit in an eIF5/eIF5B-mediated reaction to form an active ribosome. Recent cryo-electron microscopy and biochemical analyses have revealed a second general characteristic of the mechanisms of initiation on Type 3 and Type 4 IRESs. Both classes of IRES induce similar conformational changes in the ribosome that influence entry, positioning and fixation of mRNA in the ribosomal decoding channel. HCV-like IRESs also stabilize binding of initiator tRNA in the peptidyl (P) site of the 40S subunit, whereas Type 4 IRESs induce changes in the ribosome that likely promote subsequent steps in the translation process, including subunit joining and elongation. 相似文献
3.
J W Fox D P Owens K P Wong 《International journal of peptide and protein research》1988,31(3):255-264
Ribosomal protein L25 from the large subunit of E. coli ribosomes has been purified using a new procedure involving a 2M LiCl extraction followed by phosphocellulose chromatography in 6 M urea elution buffer. The conformation of purified L25 was studied employing circular dichroism and ultraviolet absorption spectroscopy in reconstitution buffer. The analysis of the far u.v. circular dichroism spectrum of L25 indicates L25 contains approximately 16% alpha-helix and approximately 19% beta-structure. The conformation of L25 was also studied using the predictive methods of Chou & Fasman and Maxfield & Scheraga. Both of these methods predict approximately three times the percent alpha-helix present in L25 as compared with that determined from the analysis of the circular dichroism spectrum. A structure for L25 is predicted which contains two positively charged binding domains and is consistent with published binding data on the interaction of 5S RNA and L25. The large difference in the % alpha-helix as determined from the analysis of the circular dichroism spectrum and the predictive techniques is suggested to result from the denaturing effects of 6 M urea used in the preparation of ribosomal proteins. 相似文献
4.
Ribosome synthesis in eukaryotes requires a multitude of trans-acting factors. These factors act at many steps as the pre-ribosomal particles travel from the nucleolus to the cytoplasm. In contrast to the well-studied trans-acting factors, little is known about the contribution of the ribosomal proteins to ribosome biogenesis. Herein, we have analysed the role of ribosomal protein Rpl3p in 60S ribosomal subunit biogenesis. In vivo depletion of Rpl3p results in a deficit in 60S ribosomal subunits and the appearance of half-mer polysomes. This phenotype is likely due to the instability of early and intermediate pre-ribosomal particles, as evidenced by the low steady-state levels of 27SA3, 27SBS and 7SL/S precursors. Furthermore, depletion of Rpl3p impairs the nucleocytoplasmic export of pre-60S ribosomal particles. Interestingly, flow cytometry analysis indicates that Rpl3p-depleted cells arrest in the G1 phase. Altogether, we suggest that upon depletion of Rpl3p, early assembly of 60S ribosomal subunits is aborted and subsequent steps during their maturation and export prevented. 相似文献
5.
Conformational alterations induced by streptomycin in the bacterial ribosome have been investigated using as probes, ethidium bromide, N-[14C]ethylmaleimide and a spin label nitroxide analog of N-ethylmaleimide. 1. The binding of the antibiotic to the ribosome does not affect the reactivity of sulfhydryl groups towards N-ethylmaleimide. 2. The motional freedom of spin labels bound to ribosomal proteins S1 and S18 is increased but it is hardly affected at other labeled sites. This observation suggests that the binding of streptomycin causes a local loosening of the ribosomal structure. 3. Ribosomes are found to bind less ethidium bromide in the presence of streptomycin, which suggests that the binding of streptomycin decreases the degree of organization of ribosomal RNA. 相似文献
6.
7.
Control of protein synthesis in mammalian tissues through changes in ribosome activity 总被引:32,自引:0,他引:32
E C Henshaw C A Hirsch B E Morton H H Hiatt 《The Journal of biological chemistry》1971,246(2):436-446
8.
The role of small nucleolar ribonucleoproteins in ribosome synthesis 总被引:14,自引:0,他引:14
9.
10.
The role of human ribosomal proteins in the maturation of rRNA and ribosome production 总被引:2,自引:0,他引:2
Robledo S Idol RA Crimmins DL Ladenson JH Mason PJ Bessler M 《RNA (New York, N.Y.)》2008,14(9):1918-1929
Production of ribosomes is a fundamental process that occurs in all dividing cells. It is a complex process consisting of the coordinated synthesis and assembly of four ribosomal RNAs (rRNA) with about 80 ribosomal proteins (r-proteins) involving more than 150 nonribosomal proteins and other factors. Diamond Blackfan anemia (DBA) is an inherited red cell aplasia caused by mutations in one of several r-proteins. How defects in r-proteins, essential for proliferation in all cells, lead to a human disease with a specific defect in red cell development is unknown. Here, we investigated the role of r-proteins in ribosome biogenesis in order to find out whether those mutated in DBA have any similarities. We depleted HeLa cells using siRNA for several individual r-proteins of the small (RPS6, RPS7, RPS15, RPS16, RPS17, RPS19, RPS24, RPS25, RPS28) or large subunit (RPL5, RPL7, RPL11, RPL14, RPL26, RPL35a) and studied the effect on rRNA processing and ribosome production. Depleting r-proteins in one of the subunits caused, with a few exceptions, a decrease in all r-proteins of the same subunit and a decrease in the corresponding subunit, fully assembled ribosomes, and polysomes. R-protein depletion, with a few exceptions, led to the accumulation of specific rRNA precursors, highlighting their individual roles in rRNA processing. Depletion of r-proteins mutated in DBA always compromised ribosome biogenesis while affecting either subunit and disturbing rRNA processing at different levels, indicating that the rate of ribosome production rather than a specific step in ribosome biogenesis is critical in patients with DBA. 相似文献
11.
12.
The proton NMR spectrum of S1 reveals that S1 has considerable tertiary structure in physiological buffers, but more structural flexibility than normal for globular proteins. S1's NMR spectrum is independent of the method of preparation. 相似文献
13.
The plenty of data about structural changes in the ribosome during its functioning has been accumulated. The most interesting information on such changes was obtained by cryo-EM of various ribosomal complexes with the ligands and by combination of rRNA site-directed mutagenesis with the analysis of structural changes in ribosome by chemical modification technique (chemical probing). The most studied structural transformations of the ribosome interacting with tRNAs and elongation factors are considered in this review. The structural rearrangements are discussed in the context of interactions between the functional centers of the ribosome. We also describe the system of tertiary contacts between the rRNA helices and proteins which forms the universal structure in the ribosome. We pay attention that by means of such system the allosteric conformational signal can be transmitted between the functional centers. Besides the discussion of different biochemical data in the scope of structural data we also consider the hypothesis that the position of GTPase associated center (GAC) in the ribosome regulates the binding of elongation factors. 相似文献
14.
Both rat liver and Escherichia coli rRNA in 0.1m-sodium chloride were titrated with acid or alkali over the range pH3-7 at approx. 0 degrees C. rRNA did not bind acid reversibly and hysteresis was observed, i.e. the plot of acid bound to rRNA against pH had the form of a loop showing that the amount of acid bound at a particular pH depended on the direction of the titration. Although the boundary curves were reproducibly followed on titration from pH7 to 3 and from pH3 to 7, points within the loop were ;scanned', e.g. by titration from pH7 to a point in the range pH3-4 followed by titration with alkali to pH7. It is inferred that the ;lag' in the release of certain bound protons is at least 1 pH unit, that at least about 9-15% of the titratable groups (adenine and cytosine residues) that are involved in this process and that the free energy dissipated in completing a cycle is approx. 4.2kJ/mol (1kcal/mol) of nucleotide involved in hysteresis. The interpretation of the ;scanning' curves was illustrated by means of a cycle of possible changes in the conformation of a hypothetical nucleotide sequence that allows formation of poly(A).poly(AalphaH(+))-like regions in acidic solutions. It is also inferred that the extent of ;hysteresis' might depend on the primary nucleotide sequence of rRNA as well as on secondary structure. 相似文献
15.
16.
Andrew C. Cuming 《Biochimica et Biophysica Acta (BBA) - Gene Structure and Expression》1984,783(1):42-52
Dry wheat embryos contain large quantities of ribosomes, synthesized and assembled during embryogenesis. When messenger RNA isolated from dry embryos is translated, in vitro, a significant proportion of the total translation products (approx. 10%) is identifiable as ribosomal proteins, by electrophoresis in two distinct two-dimensional polyacrylamide gel electrophoretic systems. When germinating embryos are labelled with [35S]methionine, during the first 24 h of imbibition, the appearance of newly synthesized ribosomal proteins in the cytosolic fraction is barely detectable. However, this low level (< 1% of total cytosolic protein synthesis) of observed ribosomal protein synthesis is not correlated with a correspondingly low level of ribosomal protein mRNA. Ribosomal proteins constitute at least 10% of the products of translation, in vitro, of mRNA isolated from germinating wheat embryos. Ribosomal proteins are also conspicuous products of translation when polyribosomes isolated from imbibing embryos are used to direct protein synthesis in a cell-free ‘run-off’ system, and newly synthesized ribosomal proteins can be detected in the nuclei isolated from germinating embryos. It is proposed that their absence from the cytosolic fraction is a consequence of post-translational regulatory events. 相似文献
17.
Protein-induced conformational changes in 16 S ribosomal RNA during the initial assembly steps of the Escherichia coli 30 S ribosomal subunit 总被引:6,自引:0,他引:6
V Mandiyan S Tumminia J S Wall J F Hainfeld M Boublik 《Journal of molecular biology》1989,210(2):323-336
The mechanism of 16 S ribosomal RNA folding into its compact form in the native 30 S ribosomal subunit of Escherichia coli was studied by scanning transmission electron microscopy and circular dichroism spectroscopy. This approach made it possible to visualize and quantitatively analyze the conformational changes induced in 16 S rRNA under various ionic conditions and to characterize the interactions of ribosomal proteins S4, S8, S15, S20, S17 and S7, the six proteins known to bind to 16 S rRNA in the initial assembly steps. 16 S rRNA and the reconstituted RNA-protein core particles were characterized by their mass, morphology, radii of gyration (RG), and the extent and stability of 16 S rRNA secondary structure. The stepwise binding of S4, S8 and S15 led to a corresponding increase of mass and was accompanied by increased folding of 16 S rRNA in the core particles, as evident from the electron micrographs and from the decrease of RG values from 114 A and 91 A. Although the binding of S20, S17 and S7 continued the trend of mass increase, the RG values of these core particles showed a variable trend. While there was a slight increase in the RG value of the S20 core particles to 94 A, the RG value remained unchanged (94 A) with the further addition of S17. With subsequent addition of S7 to the core particles, the RG values showed an increase to 108 A. Association with S7 led to the formation of a globular mass cluster with a diameter of about 115 A and a mass of about 300 kDa. The rest of the mass (about 330 kDa) remained loosely coiled, giving the core particle a medusa-like appearance. Morphology of the 16 S rRNA and 16 S rRNA-protein core particles, even those with all six proteins, does not resemble the native 30 S subunit, contrary to what has been reported by others. The circular dichroism spectra of the 16 S rRNA-protein complexes and of free 16 S rRNA indicate a similarity of RNA secondary structure in the core particles with the first four proteins, S4, S8, S15, S20. The circular dichroism melting profiles of these core particles show only insignificant variations, implying no obvious changes in the distribution or the stability of the helical segments of 16 S rRNA. However, subsequent binding of proteins S17 and S7 affected both the extent and the thermal stability of 16 S rRNA secondary structure.(ABSTRACT TRUNCATED AT 400 WORDS) 相似文献
18.
The PRC-barrel domain of the ribosome maturation protein RimM mediates binding to ribosomal protein S19 in the 30S ribosomal subunits
下载免费PDF全文

Lövgren JM Bylund GO Srivastava MK Lundberg LA Persson OP Wingsle G Wikström PM 《RNA (New York, N.Y.)》2004,10(11):1798-1812
The RimM protein in Escherichia coli is associated with free 30S ribosomal subunits but not with 70S ribosomes. A DeltarimM mutant is defective in 30S maturation and accumulates 17S rRNA. To study the interaction of RimM with the 30S and its involvement in 30S maturation, RimM amino acid substitution mutants were constructed. A mutant RimM (RimM-YY-->AA), containing alanine substitutions for two adjacent tyrosines within the PRC beta-barrel domain, showed a reduced binding to 30S and an accumulation of 17S rRNA compared to wild-type RimM. The (RimM-YY-->AA) and DeltarimM mutants had significantly lower amounts of polysomes and also reduced levels of 30S relative to 50S compared to a wild-type strain. A mutation in rpsS, which encodes r-protein S19, suppressed the polysome- and 16S rRNA processing deficiencies of the RimM-YY-->AA but not that of the DeltarimM mutant. A mutation in rpsM, which encodes r-protein S13, suppressed the polysome deficiency of both rimM mutants. Suppressor mutations, found in either helices 31 or 33b of 16S rRNA, improved growth of both the RimM-YY-->AA and DeltarimM mutants. However, they suppressed the 16S rRNA processing deficiency of the RimM-YY-->AA mutant more efficiently than that of the DeltarimM mutant. Helices 31 and 33b are known to interact with S13 and S19, respectively, and S13 is known to interact with S19. A GST-RimM but not a GST-RimM(YY-->AA) protein bound strongly to S19 in 30S. Thus, RimM likely facilitates maturation of the region of the head of 30S that contains S13 and S19 as well as helices 31 and 33b. 相似文献
19.
20.
Insulin-stimulated ribosomal protein synthesis in maize embryonic axes during germination 总被引:1,自引:0,他引:1
Estela Sánchez de Jiménez Elda Beltrán-Peña Adriana Ortíz-López 《Physiologia plantarum》1999,105(1):148-154
Addition of insulin to maize seed ( Zea mays L. cv. Chalqueño) was found to accelerate germination and seedling growth. Insulin-stimulated maize axes showed enhancement of 35 S-methionine incorporation into ribosomal proteins (rp) and mobilization of S6 rp mRNA into polysomes. Increase in S6 rp phosphorylation of the small ribosomal subunit (40S) was observed in 32 P-orthophosphate pulse-labeled experiments when maize axes were stimulated by insulin. Application of either wortmannin or rapamycin, inhibitors of protein kinases of the insulin transduction pathway, abolished the insulin stimulatory effect on S6 rp phosphorylation and on ribosomal protein synthesis. The above data are interpreted as an indication of the existence of an insulin-stimulated signal transduction pathway in maize tissues that is involved in the regulation of translation. 相似文献