首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We previously reported two modes of development of acquired TRAIL resistance: early phase and late phase [1]. In these studies, we observed that greater Akt activity and the expression of Bcl-xL were related mainly to the late phase of acquired TRAIL resistance.Recently we became aware of a possible mechanism of early phase TRAIL resistance development through internalization and degradation of TRAIL receptors (DR4 and DR5). Our current studies demonstrate that TRAIL receptors rapidly diminish at the membrane as well as the cytoplasm within 4 h after TRAIL exposure, but recover completely after one or two days. Our studies also reveal that Cbl, a ubiquitously expressed cytoplasmic adaptor protein, is responsible for the rapid degradation of TRAIL receptors; Cbl binds to them and induces monoubiquitination of these receptors concurrent with their degeneration soon after TRAIL exposure, creating the early phase of acquired TRAIL resistance.  相似文献   

2.
Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) is a member of the TNF superfamily. TRAIL shows strong cytotoxicity to many cancer cells but minimal cytotoxicity to most normal cells. Interestingly, our recent studies have demonstrated that pretreatment with TRAIL induces acquired resistance to TRAIL (Song et al. 2007 J Biol Chem 282: 319). Acquired TRAIL resistance develops within 1 day and gradually decays within 5 days after TRAIL treatment. In our current study, we examined whether human colorectal carcinoma CX-1 cells with acquired TRAIL resistance are resistant to UV irradiation as well. CX-1 cells were treated with 200 ng/ml TRAIL for 6 h and incubated various times (0.25-5 days) and then challenged to UV irradiation. Unexpectedly, we observed an increase in apoptosis in acquired TRAIL resistant cells after UVC as well as UVB exposure. This was due to an increase in caspase activation which was mediated through cytochrome c release. These results suggest that cells with acquired TRAIL resistance are sensitive to UV irradiation.  相似文献   

3.
Tumor necrosis factor α-related apoptosis-inducing ligand (TRAIL) is considered a promising cancer therapeutic agent due to its ability to induce apoptosis in a variety of cancer cells, while sparing normal cells. However, many human tumors including acute myeloid leukemia (AML) are partially or completely resistant to monotherapy with TRAIL, limiting its therapeutic utility. Therefore, identification of factors that contribute to TRAIL resistance may facilitate future development of more effective TRAIL-based cancer therapies. Here, we report a previously unknown role for WT1 in mediating TRAIL resistance in leukemia. Knockdown of WT1 with shRNA rendered TRAIL-resistant myeloid leukemia cells sensitive to TRAIL-induced cell death, and re-expression of shRNA-resistant WT1 restored TRAIL resistance. Notably, TRAIL-mediated apoptosis in WT1-silenced cells was largely due to down-regulation of the antiapoptotic protein Bcl-xL. Moreover, WT1 expression strongly correlated with overexpression of Bcl-xL in AML cell lines and blasts from AML patients. Furthermore, we found that WT1 transactivates Bcl-xL by directly binding to its promoter. We previously showed that WT1 is a novel client protein of heat shock protein 90 (Hsp90). Consistent with this, pharmacological inhibition of Hsp90 resulted in reduced WT1 and Bcl-xL expression leading to increased sensitivity of leukemia cells to TRAIL-mediated apoptosis. Collectively, our results suggest that WT1-dependent Bcl-xL overexpression contributes to TRAIL resistance in myeloid leukemias.  相似文献   

4.
We have previously observed that TRAIL (tumor necrosis factor-related apoptosis-inducing ligand) induces acquired TRAIL resistance by increasing Akt phosphorylation and Bcl-xL expression. In this study, we report that Src, c-Cbl, and PI3K are involved in the phosphorylation of Akt during TRAIL treatment. Data from immunoprecipitation and immunoblotting assay reveal that Src interacts with c-Cbl and PI3K. Data from immune complex kinase assay demonstrate that Src can directly phosphorylate c-Cbl and PI3K p85 subunit protein. Data from gene knockdown experiments with an RNA interference (RNAi) technique show that c-Cbl is involved in the interaction between Src and PI3K p85 during TRAIL treatment, playing an important role in TRAIL-induced Akt phosphorylation. Taken together, c-Cbl may act as a mediator to regulate the Src-PI3K-Akt signal transduction pathway during TRAIL treatment.  相似文献   

5.
The EGF (epidermal growth factor) receptor-tyrosine kinase inhibitor ZD1839 (Gefitinib, 'Iressa') blocks the cell signaling pathways involved in cell proliferation, survival, and angiogenesis in various cancer cells. TNF-related death apoptosis inducing ligand (TRAIL) acts as an anticancer agent. We investigated the antitumor effects of ZD1839 alone or in combination with TRAIL against human esophageal squamous cell cancer (ESCC) lines. Although all ESCC cells expressed EGF receptor at a protein level, the effect of ZD1839 on cell growth did not correlate with the level of EGFR expression and phosphorylation of EGF receptor protein in ESCC lines. ZD1839 caused a dose-dependent growth arrest at G0-G1 phase associated with increased p27 expression. As TE8 cells are resistant to TRAIL, we tested whether ZD1839 combined with TRAIL induced apoptosis of TE8 cells via the inhibition of EGF receptor signaling by ZD1839. ZD1839 inhibited the phosphorylation of Akt, and enhanced TRAIL-induced apoptosis via activation of caspase-3 and caspase-9, and inactivation of Bcl-xL. Our results indicated that ZD1839 has anti-cancer properties against human esophageal cancer cells. ZD1839 also augmented the anti-cancer activity of TRAIL, even in TRAIL-resistant tumors. These results suggest that treatment with ZD1839 and TRAIL may have potential in the treatment of ESCC patients.  相似文献   

6.
7.
Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) selectively induces apoptosis in many transformed cells, suggesting TRAIL as an ideal candidate for cancer gene therapy. A main obstacle in cancer therapy is intrinsic or acquired therapy resistance of malignant cells. To study induction of resistance against TRAIL, we generated lentiviral vectors allowing efficient TRAIL expression and apoptosis induction in a variety of human cancer cell lines. Within days upon TRAIL overexpression, cells became resistant towards TRAIL, but not to CD95 ligation or DNA damage by cisplatin. Cell surface expression of TRAIL receptors 1 and 2 was completely abrogated in resistant cells due to intracellular retention of the receptors by TRAIL. SiRNA directed against TRAIL resensitized the resistant cells by restoring cell surface expression of TRAIL receptors. These findings represent a novel resistance mechanism towards TRAIL, specifically caused by TRAIL overexpression, and question the use of TRAIL expression in tumor-cell targeting gene therapy.  相似文献   

8.
9.
In this study, we attempted to develop a multimodality approach using chemotherapeutic agent mitomycin C, biologic agent tumor necrosis factor-related apoptosis-inducing ligand (TRAIL/Apo-2L), and mild hyperthermia to treat colon cancer. For this study, human colon cancer LS174T, LS180, HCT116 and CX-1 cells were infected with secretory TRAIL-armed adenovirus (Ad.TRAIL) and treated with chemotherapeutic agent mitomycin C and hyperthermia. The combinatorial treatment caused a synergistic induction of apoptosis which was mediated through an increase in caspase activation. The combinational treatment promoted the JNK-Bcl-xL-Bak pathway which transmitted the synergistic effect through the mitochondria-dependent apoptotic pathway. JNK signaling led to Bcl-xL phosphorylation at serine 62, dissociation of Bak from Bcl-xL, oligomerization of Bak, alteration of mitochondrial membrane potential, and subsequent cytochrome c release. Overexpression of dominant-negative mutant of Bcl-xL (S62A), but not dominant-positive mutant of Bcl-xL (S62D), suppressed the synergistic death effect. Interestingly, Beclin-1 was dissociated from Bcl-xL and overexpression of dominant-negative mutant of Bcl-xL (S62A), but not dominant-positive mutant of Bcl-xL (S62D), suppressed dissociation of Beclin-1 from Bcl-xL. A combinatorial treatment of mitomycin C, Ad.TRAIL and hyperthermia induced Beclin-1 cleavage, but the Beclin-1 cleavage was abolished in Beclin-1 double mutant (D133A/D146A) knock-in HCT116 cells, suppressing the apoptosis induced by the combination therapy. We believe that this study supports the application of the multimodality approach to colon cancer therapy.  相似文献   

10.
Although accumulating evidence has confirmed the important roles of thyroid hormone (T3) and its receptors (TRs) in tumor progression, the specific functions of TRs in carcinogenesis remain unclear. In the present study, tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL) was directly upregulated by T3 in TR-overexpressing hepatoma cell lines. TRAIL is an apoptotic inducer, but it can nonetheless trigger non-apoptotic signals favoring tumorigenesis in apoptosis-resistant cancer cells. We found that TR-overexpressing hepatoma cells treated with T3 were apoptosis resistant, even when TRAIL was upregulated. This apoptotic resistance may be attributable to simultaneous upregulation of Bcl-xL by T3, because (1) knockdown of T3-induced Bcl-xL expression suppressed T3-mediated protection against apoptosis, and (2) overexpression of Bcl-xL further protected hepatoma cells from TRAIL-induced apoptotic death, consequently leading to TRAIL-promoted metastasis of hepatoma cells. Moreover, T3-enhanced metastasis in vivo was repressed by the treatment of TRAIL-blocking antibody. Notably, TRAIL was highly expressed in a subset of hepatocellular carcinoma (HCC) patients, and this high-level expression was significantly correlated with that of TRs in these HCC tissues. Together, our findings provide evidence for the existence of a novel mechanistic link between increased TR and TRAIL levels in HCC. Thus, TRs induce TRAIL expression, and TRAIL thus synthesized acts in concert with simultaneously synthesized Bcl-xL to promote metastasis, but not apoptosis.  相似文献   

11.
The Bcl-2 related protein Bad is a promoter of apoptosis and has been shown to dimerize with the anti-apoptotic proteins Bcl-2 and Bcl-XL. Overexpression of Bad in murine FL5.12 cells demonstrated that the protein not only could abrogate the protective capacity of coexpressed Bcl-XL but could accelerate the apoptotic response to a death signal when it was expressed in the absence of exogenous Bcl-XL. Using deletion analysis, we have identified the minimal domain in the murine Bad protein that can dimerize with Bcl-xL. A 26-amino-acid peptide within this domain, which showed significant homology to the alpha-helical BH3 domains of related apoptotic proteins like Bak and Bax, was found to be necessary and sufficient to bind Bcl-xL. To determine the role of dimerization in regulating the death-promoting activity of Bad and the death-inhibiting activity of Bcl-xL, mutations within the hydrophobic BH3-binding pocket in Bcl-xL that eliminated the ability of Bcl-xL to form a heterodimer with Bad were tested for the ability to promote cell survival in the presence of Bad. Several of these mutants retained the ability to impart protection against cell death regardless of the level of coexpressed Bad protein. These results suggest that BH3-containing proteins like Bad promote cell death by binding to antiapoptotic members of the Bcl-2 family and thus inhibiting their survival promoting functions.  相似文献   

12.
13.
14.
Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) holds great potential as an anticancer drug, since it induces selective cell death in cancer cells but not in normal ones. However, cancer cells often acquire resistance to TRAIL, which hinders its clinical efficacy. We previously demonstrated that progesterone triggers apoptosis in human ovarian cancer (OCa) cells. In the present study, we evaluated the prospect of utilizing progestins in combination with TRAIL to enhance cell death in TRAIL-sensitive (OVCA 420, OVCA 429, and OVCA 433) and -resistant (OVCA 432) OCa cell lines. TRAIL sensitivity (60-80% cell kill) bore no correlation with expression of the TRAIL receptors (DR4, DR5) or their decoys (DcR1 and DcR2), but was associated with activation of caspase-8 and -3, and downregulation of the long isoform of FLICE-like inhibitory protein (c-FLIP(L)), an anti-apoptosis mediator. Small interfering RNA-mediated knockdown of c-FLIP(L) expression restored TRAIL sensitivity in OVCA 432 cells. Induction of c-FLIP(L) overexpression increased TRAIL resistance in TRAIL-sensitive lines. Thus, persistent high level of c-FLIP(L) expression likely mediates TRAIL resistance in OCa cells. Treatment of OCa cells with progesterone enhanced TRAIL-induced cell death (>85%), but only in TRAIL-sensitive cell lines. Combined treatment with two progestins was superior to single progestin treatment, with progesterone plus medroxyprogesterone acetate (MPA) achieving over 85% cell kill in both TRAIL-sensitive and -resistant OCa cell lines. Significantly, unlike TRAIL, progestin-induced cell death did not involve c-FLIP(L) downregulation. Hence, combined progestin regimens, with or without TRAIL, may serve as an effective therapy for OCa by circumventing the anti-apoptotic action of c-FLIP(L).  相似文献   

15.
The tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) is a potent inducer of apoptosis in tumor cell lines, whereas normal cells appear to be protected from its cytotoxic effects. Therefore TRAIL holds promise as a potential therapeutic agent against cancer. To elucidate some of the critical factors that contribute to TRAIL resistance, we performed a genetic screen in the human colon carcinoma cell line SW480 by infecting this TRAIL-sensitive cell line with a human placental cDNA retroviral library and isolating TRAIL-resistant clones. Characterization of the resulting clones for inhibitors of TRAIL-induced death (ITIDs) led to the isolation of c-FLIP(S), Bax inhibitor 1, and Bcl-XL as candidate suppressors of TRAIL signaling. We have demonstrated that c-FLIP(S) and Bcl-XL are sufficient when overexpressed to convey resistance to TRAIL treatment in previously sensitive cell lines. Furthermore both c-FLIP(S) and Bcl-XL protected against overexpression of the TRAIL receptors DR4 and KILLER/DR5. When c-FLIP(S) and Bcl-XL were overexpressed together in SW480 and HCT 116, an additive inhibitory effect was observed after TRAIL treatment suggesting that these two molecules function in the same pathway in the cell lines tested. Furthermore, we have demonstrated for the first time that a proapoptotic member of the Bcl-2 family, Bax, is required for TRAIL-mediated apoptosis in HCT 116 cells. Surprisingly, we have found that the serine/threonine protein kinase Akt, which is an upstream regulator of both c-FLIP(S) and Bcl-XL, is not sufficient when overexpressed to protect against TRAIL in the cell lines tested. These results suggest a key role for c-FLIP(S), Bcl-XL, and Bax in determining tumor cell sensitivity to TRAIL.  相似文献   

16.
17.
TNF-related apoptosis-inducing ligand (TRAIL) shows promise as a cancer treatment, but acquired tumor resistance to TRAIL is a roadblock. Here we investigated whether nimbolide, a limonoid, could sensitize human colon cancer cells to TRAIL. As indicated by assays that measure esterase activity, sub-G(1) fractions, mitochondrial activity, and activation of caspases, nimbolide potentiated the effect of TRAIL. This limonoid also enhanced expression of death receptors (DRs) DR5 and DR4 in cancer cells. Gene silencing of the receptors reduced the effect of limonoid on TRAIL-induced apoptosis. Using pharmacological inhibitors, we found that activation of ERK and p38 MAPK was required for DR up-regulation by nimbolide. Gene silencing of ERK abolished the enhancement of TRAIL-induced apoptosis. Moreover, our studies indicate that the limonoid induced reactive oxygen species production, which was required for ERK activation, up-regulation of DRs, and sensitization to TRAIL; these effects were mimicked by H(2)O(2). In addition, nimbolide down-regulated cell survival proteins, including I-FLICE, cIAP-1, cIAP-2, Bcl-2, Bcl-xL, survivin, and X-linked inhibitor of apoptosis protein, and up-regulated the pro-apoptotic proteins p53 and Bax. Interestingly, p53 and Bax up-regulation by nimbolide was required for sensitization to TRAIL but not for DR up-regulation. Overall, our results indicate that nimbolide can sensitize colon cancer cells to TRAIL-induced apoptosis through three distinct mechanisms: reactive oxygen species- and ERK-mediated up-regulation of DR5 and DR4, down-regulation of cell survival proteins, and up-regulation of p53 and Bax.  相似文献   

18.

Background

TNF-related apoptosis-inducing ligand (TRAIL) is an immune effector molecule that functions as a selective anti-tumor agent. However, tumor cells, especially metastatic tumor cells often exhibit a TRAIL-resistant phenotype, which is currently a major impediment in TRAIL therapy. The aim of this study is to investigate the synergistic effect of TNFα and IFN-γ in sensitizing metastatic colon carcinoma cells to TRAIL-mediated apoptosis.

Methodology/Principal Findings

The efficacy and underlying molecular mechanism of cooperation between TNFα and IFN-γ in sensitizing metastatic colon carcinoma cells to TRAIL-mediated apoptosis were examined. The functional significance of TNFα- and IFN-γ-producing T lymphocyte immunotherapy in combination with TRAIL therapy in suppression of colon carcinoma metastasis was determined in an experimental metastasis mouse model. We observed that TNFα or IFN-γ alone exhibits minimal sensitization effects, but effectively sensitized metastatic colon carcinoma cells to TRAIL-induced apoptosis when used in combination. TNFα and IFN-γ cooperate to repress Bcl-xL expression, whereas TNFα represses Survivin expression in the metastatic colon carcinoma cells. Silencing Bcl-xL expression significantly increased the metastatic colon carcinoma cell sensitivity to TRAIL-induced apoptosis. Conversely, overexpression of Bcl-xL significantly decreased the tumor cell sensitivity to TRAIL-induced apoptosis. Furthermore, TNFα and IFN-γ also synergistically enhanced TRAIL-induced caspase-8 activation. TNFα and IFN-γ was up-regulated in activated primary and tumor-specific T cells. TRAIL was expressed in tumor-infiltrating immune cells in vivo, and in tumor-specific cytotoxic T lymphocytes (CTL) ex vivo. Consequently, TRAIL therapy in combination with TNFα/IFN-γ-producing CTL adoptive transfer immunotherapy effectively suppressed colon carcinoma metastasis in vivo.

Conclusions/Significance

TNFα and IFN-γ cooperate to overcome TRAIL resistance at least partially through enhancing caspase 8 activation and repressing Bcl-xL expression. Combined CTL immunotherapy and TRAIL therapy hold great promise for further development for the treatment of metastatic colorectal cancer.  相似文献   

19.
REDD1 is a gene induced by hypoxia and stimuli from multiple DNA damage. Here we show that REDD1 expression was elevated in RAS-transformed ovarian epithelial cells lines and that this overexpression increased these cells’ growth rate and anchorage-independent growth on soft agar. Injection of immortalized ovarian epithelial cells overexpressing REDD1 into nude mice resulted in tumor growth that developed into papillary serous carcinoma in the peritoneal cavity. Knockdown of REDD1 expression blocked the RAS-mediated transformation of these cell lines. Apoptosis was markedly decreased by increased expression of Bcl-xL or Bcl-2 and decreased expression of FADD, caspase1, caspase8, caspase 9, caspase 10, BAX, Bad and Bcl-Xs, which confirmed by the tunnel assay. Our data demonstrated that REDD1 is a key mediator in RAS-mediated transformation through an effect on anti-apoptosis.  相似文献   

20.
Acquired chemoresistance not only blunts anticancer therapy but may also promote cancer cell migration and metastasis. Our previous studies have revealed that acquired tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) resistance in lung cancer cells is associated with Akt-mediated stabilization of cellular caspase 8 and Fas-associated death domain (FADD)-like apoptosis regulator-like inhibitory protein (c-FLIP) and myeloid cell leukemia 1 (Mcl-1). In this report, we show that cells with acquired TRAIL resistance have significantly increased capacities in migration and invasion. By gene expression screening, tissue transglutaminase (TGM2) was identified as one of the genes with the highest expression increase in TRAIL-resistant cells. Suppressing TGM2 dramatically alleviated TRAIL resistance and cell migration, suggesting that TGM2 contributes to these two phenotypes in TRAIL-resistant cells. TGM2-mediated TRAIL resistance is likely through c-FLIP because TGM2 suppression significantly reduced c-FLIP but not Mcl-1 expression. The expression of matrix metalloproteinase 9 (MMP-9) was suppressed when TGM2 was inhibited, suggesting that TGM2 potentiates cell migration through up-regulating MMP-9 expression. We found that EGF receptor (EGFR) was highly active in the TRAIL-resistant cells, and suppression of EGFR dramatically reduced TGM2 expression. We further determined JNK and ERK, but not Akt and NF-κB, are responsible for EGFR-mediated TGM2 expression. These results identify a novel pathway that involves EGFR, MAPK (JNK and ERK), and TGM2 for acquired TRAIL resistance and cell migration in lung cancer cells. Because TGM2 couples TRAIL resistance and cell migration, it could be a molecular target for circumventing acquired chemoresistance and metastasis in lung cancer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号