首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Conjugal transfer of chromosomal DNA in Mycobacterium smegmatis   总被引:5,自引:3,他引:2  
The genus Mycobacterium includes the major human pathogens Mycobacterium tuberculosis and Mycobacterium leprae . The development of rational drug treatments for the diseases caused by these and other mycobacteria requires the establishment of basic molecular techniques to determine the genetic basis of pathogenesis and drug resistance. To date, the ability to manipulate and move DNA between mycobacterial strains has relied on the processes of transformation and transduction. Here, we describe a naturally occurring conjugation system present in Mycobacterium smegmatis , which we anticipate will further facilitate the ability to manipulate the mycobacterial genome. Our data rule out transduction and transformation as possible mechanisms of gene transfer in this system and are most consistent with conjugal transfer. We show that recombinants are not the result of cell fusion and that transfer occurs from a distinct donor to a recipient. One of the donor strains is mc2155, a highly transformable derivative that is considered the prototype laboratory strain for mycobacterial genetics; the demonstration that it is conjugative should increase its genetic manipulability dramatically. During conjugation, extensive regions of chromosomal DNA are transferred into the recipient and then integrated into the recipient chromosome by multiple recombination events. We propose that DNA transfer is occurring by a mechanism similar to Hfr conjugation in Escherichia coli .  相似文献   

2.
The increased incidence of tuberculosis (TB) gave impetus for the increased interest in the study of mycobacterial genetics, which culminated in the publication of the full genome sequence of many mycobacterial strains. Since then, many genes and open reading frames of unknown function have been described and the expression of their encoded proteins is critical toward understanding the pathogenesis of TB and developing therapeutic and preventive strategies. Therefore there is an increased need for highly efficient methods for cloning of mycobacterial genes, as the limited cloning flexibility of current Escherichia coli–mycobacteria shuttle vectors remains a frequent impediment in genetic manipulation of mycobacteria. In order to overcome this limitation, we have converted representative extrachromosomal and integrative vectors into multiple destination mycobacterial vectors for one-step and restriction enzyme-free recombination cloning methodology that uses in vitro site-specific recombination. We provide several examples that highlight the potential of recombination cloning for gene expression in slow and fast-growing mycobacteria. Thus, a gene of interest can be transferred by simple recombination into our mycobacterial destination vectors, which serve a multitude of functional genomic studies.  相似文献   

3.
The world urgently needs a better tuberculosis vaccine. Bacille Calmette-Guerin (BCG), an attenuated strain of Mycobacterium bovis, has been very widely used as a vaccine for many years but has had no major effect on reducing the incidence of tuberculosis. A number of alternative living and non-living vaccines are being investigated. Live vaccine candidates include genetically modified forms of BCG, genetically attenuated strains of the Mycobacterium tuberculosis complex and genetically engineered vaccinia virus and Salmonella strains. Non-living vaccine candidates include killed mycobacterial species, protein subunits and DNA vaccines. One requirement for acceptance of any new vaccine will be a favourable comparison of the protection it induces relative to BCG in a range of animal models, some of which may need further development. Molecular genetic techniques are now available that enable production of live attenuated strains of the M. tuberculosis complex with vaccine potential. In the first of two broadly different approaches that are being used, large numbers of mutants are produced by transposon mutagenesis or illegitimate recombination and are screened for properties that correlate with attenuation. In the second approach, putative genes that may be required for virulence are identified and subsequently inactivated by allelic exchange. In both approaches, mutants that are attenuated need to be identified and subsequently tested for their vaccine efficacy in animal models. Many mutants of the M. tuberculosis complex have now been produced and the vaccine properties of a substantial number will be assessed in the next 3 years.  相似文献   

4.
Plant transformation has its roots in the research on Agrobacterium that was being undertaken in the early 1980s. The last two decades have seen significant developments in plant transformation technology, such that a large number of transgenic crop plants have now been released for commercial production. Advances in the technology have been due to development of a range of Agrobacterium-mediated and direct DNA delivery techniques, along with appropriate tissue culture techniques for regenerating whole plants from plant cells or tissues in a large number of species. In addition, parallel developments in molecular biology have greatly extended the range of investigations to which plant transformation technology can be applied. Research in plant transformation is concentrating now not so much on the introduction of DNA into plant cells, but rather more on the problems associated with stable integration and reliable expression of the DNA once it has been integrated.  相似文献   

5.
Despite the long-standing and widespread use of the symbiotic association between the aquatic fern Azolla and its cyanobacterial symbiontAnabaena azollae to augment nitrogen supplies in rice paddy soils, very little is known about taxonomic aspects of the symbiosis. The two partners normally remain associated throughout vegetative and reproductive development, limiting the opportunities for interchanges. We have used monoclonal antibodies and DNA/DNA hybridization techniques to show that the cyanobacterial partner is not uniform throughout the genus Azolla, and that substantial diversification has occurred. With these procedures it will be possible to characterize genotypes of the cyanobacterium and to monitor experiments aimed at synthesizing new combinations ofAzolla species andAnabaena azollae strains.  相似文献   

6.
Improving vaccines against tuberculosis   总被引:31,自引:0,他引:31  
Tuberculosis remains a major cause of mortality and physical and economic deprivation worldwide. There have been significant recent advances in our understanding of the Mycobacterium tuberculosis genome, mycobacterial genetics and the host determinants of protective immunity. Nevertheless, the challenge is to harness this information to develop a more effective vaccine than BCG, the attenuated strain of Mycobacterium bovis derived by Calmette and Guérin nearly 90 years ago. Some of the limitations of BCG include the waning of the protective immunity with time, reduced effectiveness against pulmonary tuberculosis compared to disseminated disease, and the problems of a live vaccine in immuno-compromised subjects. Two broad approaches to vaccine development are being pursued. New live vaccines include either attenuated strains of Mycobacterium tuberculosis produced by random mutagenesis or targeted deletion of putative virulence factors, or by genetic manipulation of BCG to express new antigens or cytokines. The second approach utilizes non-viable subunit vaccines to deliver immunodominant mycobacterial antigens. Both protein and DNA vaccines induce partial protection against experimental tuberculosis infection in mice, however, their efficacy has generally been equivalent to or less than that of BCG. The comparative effects of cytokine adjuvants and vaccines targeting antigen presenting cells on enhancing protection will be discussed. Coimmunization with plasmid interleukin-12 and a DNA vaccine expressing Antigen 85B, a major secreted protein, was as protective as BCG. The combination of priming with DNA-85B and boosting with BCG was superior to BCG alone. Therefore it is possible to achieve a greater level of protection against tuberculosis than with BCG, and this highlights the potential for new tuberculosis vaccines in humans.  相似文献   

7.
In 1993, the WHO declared tuberculosis a global emergency on the basis that there are 8 million new cases per year. The complete genome of the strain H37Rv of the causative microorganism, Mycobacterium tuberculosis, comprising 3924 genes has been sequenced. We compared the proteomes of two non-virulent vaccine strains of M. bovis BCG (Chicago and Copenhagen) with two virulent strains of M. tuberculosis (H37Rv and Erdman) to identify protein candidates of value for the development of vaccines, diagnostics and therapeutics. The mycobacterial strains were analysed by two-dimensional electrophoresis (2-DE) combining non-equilibrium pH gradient electrophoresis (NEPHGE) with SDS-PAGE. Distinct and characteristic proteins were identified by mass spectrometry and introduced into a dynamic 2-DE database (http://www.mpiib-berlin.mpg.de/2D-PAGE). Silver-stained 2-DE patterns of mycobacterial cell proteins or culture supernatants contained 1800 or 800 spots, respectively, from which 263 were identified. Of these, 54 belong to the culture supernatant. Sixteen and 25 proteins differing in intensity or position between M. tuberculosis H37Rv and Erdman, and H37Rv and M. bovis BCG Chicago, respectively, were identified and categorized into protein classes. It is to be hoped that the availability of the mycobacterial proteome will facilitate the design of novel measures for prevention and therapy of one of the great health threats, tuberculosis.  相似文献   

8.
d-ribose is an essential component of multiple important biological molecules and must first be phosphorylated by ribokinase before entering metabolic pathways. However, the function and regulation of ribokinases in Mycobacterium tuberculosis, the causative agent of tuberculosis, and its related species are largely unknown. In this study, we have characterized the activities of two putative ribokinases, Rv2436 and Ms4585, from M. tuberculosis and Mycobacterium smegmatis, respectively. The mycobacterial topoisomerase I (TopA) was found to physically interact with its ribokinase both in vitro and in vivo. By creating two ribokinase mutants that showed defective interactions with TopA, we further showed that the interaction between ribokinase and TopA had opposite effects on their respective function. While the interaction between the two proteins inhibited the ability of TopA to relax supercoiled DNA, it stimulated ribokinase activity. A cross-regulation assay revealed that the interaction between the two proteins was conserved in the two mycobacterial species. Thus, we uncovered an interplay between ribokinase and topoisomerase I in mycobacteria, which implies the existence of a novel regulatory strategy for efficient utilization of d-ribose in M. tuberculosis that may be useful in stressful environments with restricted access to nutrients.  相似文献   

9.
The growing pandemic of human tuberculosis has not been affected significantly by the widespread use of the only currently available vaccine, bacille Calmette Guerin. Bacille Calmette Guerin protects uniformly against serious paediatric forms of tuberculosis and against adult pulmonary tuberculosis in some parts of the world, but there are clearly populations in high-burden countries which do not benefit from the current vaccination regimen. New tuberculosis vaccines will be essential for the ultimate control of this ancient disease. Research over the past 10 years has produced literally hundreds of new tuberculosis vaccine candidates representing all of the major vaccine design strategies; protein/peptide vaccines in adjuvants, DNA vaccines, naturally and rationally attenuated strains of mycobacteria, recombinant mycobacteria and other living vaccine vectors expressing genes coding for immunodominant mycobacterial antigens, and non-peptide vaccines. Many of these vaccines have been tested for immunogenicity and protective efficacy in mouse and guinea pig models of low-dose pulmonary tuberculosis. In addition, alternative routes of tuberculosis vaccine delivery (e.g. oral, respiratory, gene gun) and various combinations of priming or boosting an experimental vaccine with bacille Calmette Guerin have been examined in relevant animal models. One of the most promising of these vaccines is currently in Phase I trials in human subjects, and others are expected to follow in the near future. This review will summarise the most recent progress made toward the development and preclinical evaluation of novel vaccines for human tuberculosis.  相似文献   

10.
Lactobacillus acidophilus has been recommended as a dietary adjunct because of its antagonistic action toward intestinal pathogens and anti-carcinogenic and hypocholesterolemic activities. ManyL. acidophilus strains harbour plasmids and such strains generally produce bacteriocin(s). Resistance to antibiotics has also been shown to be linked with plasmids. Gene transfer and cloning systems are being developed forL. acidophilus which should permit the rapid genetic characterization of desired species and their modification to obtain predetermined traits. Drug resistance determinants and production of antibiotic-like substances may serve as suitable markers for the study and development of these genetic systems. Recent developments in gene transfer systems have been reviewed here.  相似文献   

11.
The actinomycete Amycolatopsis mediterranei produces the commercially and medically important polyketide antibiotic rifamycin, which is widely used against mycobacterial infections. The rifamycin biosynthetic (rif) gene cluster has been isolated, cloned and characterized from A. mediterranei S699 and A. mediterranei LBGA 3136. However, there are several other strains of A. mediterranei which also produce rifamycins. In order to detect the variability in the rif gene cluster among these strains, several strains were screened by PCR amplification using oligonucleotide primers based on the published DNA sequence of the rif gene cluster and by using dEBS II (second component of deoxy-erythronolide biosynthase gene) as a gene probe. Out of eight strains of A. mediterranei selected for the study, seven of them showed the expected amplification of the DNA fragments whereas the amplified DNA pattern was different in strain A. mediterranei DSM 46095. This strain also showed striking differences in the banding pattern obtained after hybridization of its genomic DNA against the dEBS II probe. Initial cloning and characterization of the 4-kb DNA fragment from the strain DSM 46095, representing a part of the putative rifamycin biosynthetic cluster, revealed nearly 10% and 8% differences in the DNA and amino acid sequence, respectively, as compared to that of A. mediterranei S699 and A. mediterranei LBGA 3136. The entire rif gene cluster was later cloned on two cosmids from A. mediterranei DSM 46095. Based on the partial sequence analysis of the cluster and sequence comparison with the published sequence, it was deduced that among eight strains of A. mediterranei, only A. mediterranei DSM 46095 carries a novel rifamycin biosynthetic gene cluster.  相似文献   

12.
The emergence of multidrug- or extremely drug-resistant M. tuberculosis strains has made very few drugs available for current tuberculosis treatment. Antimicrobial peptides can be employed as a promising alternative strategy for TB treatment. Here, we designed and synthesized a series of peptide sequences based on the structure-activity relationships of natural sequences of antimicrobial peptides. The peptide W3R6 and its analogs were screened and found to have potent antimycobacterial activity against M. smegmatis, and no hemolytic activity against human erythrocytes. The evidence from the mechanism of action study indicated that W3R6 and its analogs can interact with the mycobacterial membrane in a lytic manner and form pores on the outer membrane of M. smegmatis. Significant colocalization of D-W3R6 with mycobacterial DNA was observed by confocal laser scanning microscopy and DNA retardation assays, which suggested that the antimycobacterial mechanism of action of the peptide was associated with the unprotected genomic DNA of M. smegmatis. In general, W3R6 and its analogs act on not only the mycobacterial membrane but also the genomic DNA in the cytoplasm, which makes it difficult for mycobacteria to generate resistance due to the peptides having two targets. In addition, the peptides can effectively eliminate M. smegmatis cells from infected macrophages. Our findings indicated that the antimicrobial peptide W3R6 could be a novel lead compound to overcome the threat from drug-resistant M. tuberculosis strains in the development of potent AMPs for TB therapeutic applications.  相似文献   

13.
噬菌体是微生物遗传学研究的有力工具及源泉.分枝杆菌噬菌体也是构建分枝杆菌,尤其是结核分枝杆菌遗传研究工具的基础.目前,基于分枝杆菌噬菌体重组酶的重组系统是国际热点.总结了近年来基于分枝杆菌噬菌体Che9c重组酶gp60、gp61所构建的分枝杆菌重组工程体系及其在分枝杆菌基因组研究方面的应用,并结合实验室工作展望了其研究前景.该体系不依赖细菌自身的RecA系统,不需要限制性内切核酸酶和DNA连接酶,不需要复杂的体外操作,只需表达分枝杆菌噬菌体重组酶,从而使结核分枝杆菌基因敲除、基因敲入及点突变和构建分枝杆菌噬菌体突变株更方便.这为分枝杆菌及其噬菌体基因诱变及基因功能研究提供了迅捷的新途径.  相似文献   

14.
This study explores the potential of the amplified ribosomal DNA restriction analysis (ARDRA) for intra- and interspecies identification of the genus Mycobacteria. A set of primers was used to amplify part of the 16S and 23S rDNA as well as the 16S-23S rDNA spacer from 121 isolates belonging to 13 different mycobacterial species. Restriction analysis was carried out with five different restriction enzymes, namely CfoI, HaeIII, RsaI, MspI and TaqI. Restriction digestion of the PCR product using CfoI enabled differentiation between 9 of the 13 mycobacterial species, whereas the remaining four enzymes differentiated between 7 of these 13 species. None of the five enzymes distinguished between different isolates of Mycobacterium tuberculosis or between species within the M. tuberculosis complex i.e., M. tuberculosis, M. bovis, M. bovis BCG and M. africanum. Although ARDRA analysis of the 16S-23S rDNA does not seem to have a potential for intraspecies differentiation, it has proven to be a rapid and technically relatively simple method to recognise strains belonging to the M. tuberculosis complex as well as to identify mycobacterial species outside this complex.  相似文献   

15.
The molecular aetiology of familial susceptibility to disseminated mycobacterial disease, usually involving weakly pathogenic strains of mycobacteria, has now been elucidated in more than 30 families. Mutations have been identified in five genes in the interleukin-12-dependent interferon-gamma pathway, highlighting the importance of this pathway in human mycobacterial immunity. Knowledge derived from the study of these rare patients contributes to our understanding of the immune response to common mycobacterial pathogens such as Mycobacterium tuberculosis and Mycobacterium leprae, which remain major public health problems globally. This knowledge can be applied to the rational development of novel therapies and vaccines for these important mycobacterial diseases.  相似文献   

16.
The identification of Mycobacterium tuberculosis genes specifically expressed during infection is a key step in understanding mycobacterial pathogenesis. Such genes most likely encode products required for survival within the host and for progressive infection. Recent advances in mycobacterial genetics have permitted the development of new techniques and the adaptation of existing methods to analyse mycobacterial in vivo gene expression and virulence. This has revealed a subset of M. tuberculosis genes that are differentially expressed during infection and has demonstrated that a number of components contribute to the virulence of the organism. This information is expected to provide new strategies to prevent tuberculosis infection, new targets for antimicrobial therapy and new insights into the infectious process.  相似文献   

17.
T Garbe  C Jones  I Charles  G Dougan    D Young 《Journal of bacteriology》1990,172(12):6774-6782
The aroA gene from Mycobacterium tuberculosis has been cloned by complementation of an aroA mutant of Escherichia coli after lysogenization with a recombinant DNA library in the lambda gt11 vector. Detailed characterization of the M. tuberculosis aroA gene by nucleotide sequencing and by immunochemical analysis of the expressed product indicates that it encodes a 5-enolpyruvylshikimate-3-phosphate synthase that is structurally related to analogous enzymes from other bacterial, fungal, and plant sources. The potential use of the cloned gene in construction of genetically defined mutant strains of M. tuberculosis by gene replacement is proposed as a novel approach to the rational attenuation of mycobacterial pathogens and the possible development of new antimycobacterial vaccines.  相似文献   

18.
Nucleoid‐associated proteins (NAPs) play important roles in the global organization of bacterial chromosomes. However, potential NAPs and their functions are barely characterized in mycobacteria. In this study, NapM, an alkaline protein, functions as a new NAP. NapM is conserved in all of the sequenced mycobacterial genomes, and can recognize DNA in a length‐dependent but sequence‐independent manner. It prefers AT‐rich DNA and binds to the major groove. NapM possesses a clear DNA‐bridging function, and can protect DNA from DNase I digestion. NapM globally regulates the expression of more than 150 genes and the resistance of Mycobacterium smegmatis to two anti‐tuberculosis drugs, namely, rifampicin and ethambutol. An ABC transporter operon was found to be specifically responsible for the napM‐dependent ethambutol resistance of M. smegmatis. NapM also presents a similar regulation of anti‐tuberculosis drug resistance in M. tuberculosis. These results suggest that NapM is a new member of the mycobacterial NAP family. Our findings expand the range of identified NAPs and improve the understanding on the relationship between NAPs with antibiotic resistance in mycobacteria.  相似文献   

19.
In tuberculosis, it is often important to establish the source of infection and to determine whether disease is due to a new strain of Mycobacterium tuberculosis or to relapse. To cope with the resurgence of tuberculosis and atypical mycobacterioses in AIDS patients, on the one hand, and to overcome the limitations of classical bacteriological procedures on the other, the development of rapid, sensitive, and reliable diagnostic and epidemiologic tools is highly desirable. Molecular typing methods are often based on repeated genes such as those for rRNA. Ribotyping is of limited use with pathogenic mycobacteria. as the slow-growers possess a single rRNA operon, while the fast-growers have two. This problem has been overcome by the discovery and study of repeated DNA elements in mycobacterial genomes, as these provide an alternative pathway for diagnostic and epidemiological investigations.  相似文献   

20.
Aims: The anti‐tubercular drugs are less effective because of the emergence of multi‐drug resistant (MDR) and extensively drug resistant (XDR) strains of M. tuberculosis, so plants being an alternative source of anti‐microbial compounds. The aim of this study was to investigate anti‐tuberculosis potential of the plants using Mycobacterium smegmatis as a rapid screening model for detection of anti‐mycobacterial activity and further to evaluate the active plants for anti‐tuberculosis activity against M. tuberculosis using radiometric BACTEC assay. Methods and Results: The 15 plants were screened for anti‐mycobacterial activity against M. smegmatis by the disk diffusion assay. The ethanolic extracts of Mallotus philippensis, Vitex negundo, Colebrookea oppositifolia, Rumex hastatus, Mimosa pudica, Kalanchoe integra and Flacourtia ramontchii were active against M. smegmatis in primary screening. The anti‐tuberculosis potential was identified in the leaves extracts of Mallotus philippensis by radiometric BACTEC assay. The ethanolic extract of M. philippensis showed anti‐tuberculosis activity against virulent and avirulent strains of M. tuberculosis H37Rv and M. tuberculosis H37Ra with minimum inhibitory concentration 0·25 and 0·125 mg ml?1, respectively. The inhibition in growth index values of M. tuberculosis was observed in the presence of ethyl acetate fraction at a minimum concentration of 0·05 mg ml?1. Conclusion: We found that BACTEC radiometric assay is a valuable method for detection of anti‐tuberculosis activity of the plant extracts. The results indicate that ethanolic extract and ethyl acetate fraction of M. philippensis exhibited significant anti‐mycobacterial activity against M. tuberculosis. Significance and Impact of the Study: These findings provide scientific evidence to support the traditional medicinal uses of M. philippensis and indicate a promising potential of this plant for the development of anti‐tuberculosis agent.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号