首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The influence of oxygen on glycerol production by an osmophilic yeast, Candida magnoliae I(2)B, was studied in a bioreactor. Oxygen transfer rates (OTRs) and volumetric oxygen transfer coefficients (k(L)a) were determined at different aeration and agitation rates. Cell growth as well as glycerol production was strongly affected by oxygen supply. Improvement in OTRs resulted in increased cell growth and glycerol yield. However, at high OTRs, there was a reduction in glucose uptake rate, indicating Pasteur Effect, and glycerol accumulation was also reduced at k(L)a of 253 h(-1). The availability of oxygen per unit of cell mass was found to be the most important factor that controlled cell growth, glucose uptake, and glycerol yield. The overall productivity and yield of glycerol could be related with k(L)a. The biosynthesis of glycerol was found to both growth- and non-growth-associated, although glycerol was mainly produced in post-exponential phase.  相似文献   

2.
A study of mass transfer in yeast in a pulsed baffled bioreactor   总被引:1,自引:0,他引:1  
We report experimental data of mass transfer of oxygen into yeast resuspension in a pulsed baffled bioreactor. The bioreactor consists of a 50-mm-diameter column with the presence of a series of either wall (orifice) or central (disc) baffles or a mixture of both where fluid oscillation can also be supermposed during the experiments. Air bubbles are sparged into the bottom of the pulsed baffled bioreactor, and the kinetics of liquid oxygen concentration in the yeast solution is followed using a dissolved oxygen probe with a fast response time of 3 s together with the dynamic gassing-out technique. Among the three different baffle geometries investigated, the orifice baffles gave the highest and sharpest increase in the oxygen transfer rate, and the trends in the k(L)a measurements are consistent with the fluid mechanics observed within both the systems and previous work. In addition, we have also compared the k(L)a values with those obtained in a stirred tank; an 11% increase in the K(L)a is reported. (c) 1995 John Wiley & Sons, Inc.  相似文献   

3.
Oxygen transfer in broths of plant cells at high density   总被引:2,自引:0,他引:2  
The rheological properties of the culture broths of some plant cells (Cudrania tricuspidata, Vinca rosea, and Agrostemma githago) at high density (10-18 g dry wt/L) were measured, and oxygen transfer in the broths in various bioreactors was investigated. The rheological properties of the broths were dependent on the size, specific gravity, and concentration of the cell aggregates contained in the broths. The broths were non-Newtonian and pseudoplastic fluids. The flow behavior index n was fairly constant (0.53) and the consistency index K varied in proportion to the sixth-to-seventh power of the cell mass concentration M. The apparent viscosity mu(a) of the broths was in proportion to the 6.5th power of M. The oxygen transfer in the broths was discussed on the basis of the results obtained for suspensions of granulated agars (agar concentration, 5.8%) in water, which were similar to the broths in rheological properties. The volumetric oxygen transfer coefficient k(L)a in the broths was dependent on mu(a)(k(L)a proportional, variant mu(a) (-m)) and decreased greatly at a certain apparent viscosity, mu(ac). The values of m and mu(ac) were closely related to the aeration-agitation mechanisms of the bioreactors. The values of mu(ac) in aeration-agitation type bioreactors was larger than that in aeration-type bioreactors, whereas for m, the reverse was true.  相似文献   

4.
Oxygen transfer rates were determined in a bubble aerated animal cell bioreactor. It was found that the oxygen transfer rates increased in the following order: large bubbles ( approximately 5 mm diameter) < intermediate bubbles ( approximately 1 mm diameter) < micron-sized bubbles ( approximately 100 mum diameter). Under certain conditions, the micron-sized bubbles were capable of achieving oxygen transfer rate up to 100 h(-1), a 10-20-fold higher transfer rate than the large bubbles. The effects of medium composition on oxygen transfer rates were different for the three ranges of bubbles studied. For the large bubbles, oxygen transfer rates decreased with increasing medium complexity. The lowest oxygen transfer rate was found in new-born calf serum (NBCS) and/or Pluronic F-68 supplemented media. For the intermediate and micron-sized bubbles, supplementation with NBCS into the culture media resulted in decreased oxygen transfer rate. However, further supplementation with Pluronic F-68 enhanced oxygen transfer rate greatly for both types of bubbles. The highest oxygen transfer rate was found for micron-sized bubbles in Pluronic F-68 supplemented media containing antifoam agent and NBCS.  相似文献   

5.
Enzymatic oxidation of lactose to lactobionic acid (LBA) by a carbohydrate oxidase from Microdochium nivale was studied in a pilot-scale batch reactor of 600 L working volume using a rotary jet head (RJH) for mixing and mass transfer (Nordkvist et al., 2003, Chem Eng Sci 58:3877-3890). Both lactose and whey permeate were used as substrate, air was used as oxygen source, and catalase was added to eliminate the byproduct hydrogen peroxide. More than 98% conversion to LBA was achieved. Neither enzyme deactivation nor enzyme inhibition was observed under the experimental conditions. The dissolved oxygen tension (DOT) was constant throughout the tank for a given set of operating conditions, indicating that liquid mixing was sufficiently good to avoid oxygen gradients in the tank. However, at a given oxygen tension measured in the tank, the specific rate of reaction found in the RJH system was somewhat higher than previously obtained in a 1 L mechanically stirred tank reactor (Nordkvist et al., 2007, in this issue, pp. 694-707). This can be ascribed to a higher pressure in the recirculation loop which is part of the RJH system. Compared to mechanically stirred systems, high values of the volumetric mass transfer coefficient, k(L)a, were obtained when lactose was used as substrate, especially at low values of the specific power input and the superficial gas velocity. k(L)a was lower for experiments with whey permeate than with lactose due to addition of antifoam. The importance of mass transfer and of the saturation concentration of oxygen on the volumetric rate of reaction was demonstrated by simulations.  相似文献   

6.
Oxygenation is an important parameter involved in the design and operation of mixing-sparging bioreactors and it can be analyzed by means of the oxygen mass transfer coefficient (k(L)a). The operational conditions of a stirred, submerged aerated 2-L bioreactor have been optimized by studying the influence of a second liquid phase with higher oxygen affinity (perfluorodecalin or olive oil) in the k(L)a. Using k(L)a measurements, the influence of the following parameters on the oxygen transfer rate was evaluated: the volume of working medium, the type of impellers and their position, the organic phase concentration, the aqueous phase composition, and the concentration of inactive biomass. This study shows that the best experimental conditions were achieved with a perfluorodecalin volume fraction of 0.20, mixing using two Rushton turbines with six vertical blades and in the presence of YPD medium as the aqueous phase, with a k(L)a value of 64.6 h(-1). The addition of 20% of perfluorodecalin in these conditions provided a k(L)a enhancement of 25% when pure water was the aqueous phase and a 230% enhancement when YPD medium was used in comparison to their respective controls (no perfluorodecalin). Furthermore it is shown that the presence of olive oil as a second liquid phase is not beneficial to the oxygen transfer rate enhancement, leading to a decrease in the k(L)a values for all the concentrations studied. It was also observed that the magnitude of the enhancement of the k(L)a values by perfluorodecalin depends on the biomass concentration present.  相似文献   

7.
A rotating drum fermentor designed for plant cell suspension cultures was constructed and tested. The oxygen transfer coefficient (k(L)a) and power requirements in the fermentor were determined with the water system under various conditions and the relationship between them in the fermentor was clarified. Also, the relationship between k(L)a and the apparent viscosity in the fermentor was investigated in the cell suspension system. The rotating drum fermentor was found to be superior to the mechanically agitated fermentor in the capacity of oxygen supply under high viscosity and low hydrodynamic stress conditions. This finding was also confirmed by the experiments with plant cell suspension cultures.  相似文献   

8.
Volumetric oxygen transfer rates and power inputs were estimated by a model of the formation of primary gas bubbles at the static sparger (sinter plate) of small-scale bubble columns and a common mass-transfer correlation for bubbles rising in a non-coalescent Newtonian electrolyte solution of low viscosity. Estimations were used to assess the dimensioning and possibilities of small-scale bubble column application with an height/diameter ratio of about 1. Estimations of volumetric oxygen transfer rates (<0.16 s-1) and power inputs (<100 W m-3) with a mean pore diameter of the static sparger of 13 µm were confirmed as function of the superficial air velocity (<0.6 cm s-1) by measurements using an Escherichia coli fermentation medium. Small-scale bubble columns are thus to be classified between shaking flasks and stirred-tank reactors with respect to the oxygen transfer rate, but the maximum volumetric power input is more than one magnitude below the power input in shaking flasks, which is of the same order of magnitude as in stirred-tank reactors. A small-scale bubble columns system was developed for microbial process development, which is characterized by handling in analogy to shaking flasks, high oxygen transfer rates and simultaneous operation of up to 16 small-scale reactors with individual gas supply in an incubation chamber.  相似文献   

9.
There are many scaling formulas that predict the oxygen mass transfer coefficient as k(L).a = constant.(Hp/V)(alpha)Vs(beta) Exponents alpha and beta frequently are scale dependent themselves. A general formula has been derived from the work of Calderbank,(1) Miller,(2) and Tilton,(3) resulting in k(L).a = C(1) phi + C(2) log (Pm/V) phi where phi equals the gas-holdup fraction and Pm/V equals the effective mechanical power input per unit of volume. This formula is consistent with the formula of Westerterp(4) modified by Miller.(2) Gas holdup can be predicted in several ways. Gas-sparged isothermal expansion power input, used for predicting phi, demonstrates that scaling can be done by using either superficial air velocity or volume per volume per minute for aeration.The importance of mixing in replenishing oxygen at the boundary layers of microorganisms will be assessed and compared with the k(L).a as the oxygen transfer ratelimiting step.  相似文献   

10.
To check for possible mass transfer limitations of oxygen and/or carbon dioxide in kinetic experiments on microbial desulphurization of coal, it is important to properly measure the volumetric mass transfer coefficient (k(L)a) especially at high slurry densities. Volumetric mass transfer coefficients of oxygen, at different solid hold-up values (epsilon(s) = 0 to 0.28) of coal slurries (d(par) < 100 * 10(-6) m), were measured in a lab scale fermentor and in a lab scale pachuca tank, using the dynamic gas-liquid absorption method. It was shown that serious errors could occur due to oxygen adsorption at the coal surface. Using the data of an independently measured adsorption isotherm, the real k(L)a could be calculated from the measured apparent k(L)a. The results show a k(L)a decrease of 40% to 50% at a volumetric solid hold-up of 28%. Estimation of the oxygen and carbon dioxide transfer rates, from the measured mass transfer coefficients, indicates that the stirred fermentor is suitable for kinetic experiments at high slurry densities, whereas the pachuca tank and shake flask are not. (c) 1992 John Wiley & Sons, Inc.  相似文献   

11.
Microtiter plates with integrated optical sensing of dissolved oxygen were developed by immobilization of two fluorophores at the bottom of 96-well polystyrene microtiter plates. The oxygen-sensitive fluorophore responded to dissolved oxygen concentration, whereas the oxygen-insensitive one served as an internal reference. The sensor measured dissolved oxygen accurately in optically well-defined media. Oxygen transfer coefficients, k(L)a, were determined by a dynamic method in a commercial microtiter plate reader with an integrated shaker. For this purpose, the dissolved oxygen was initially depleted by the addition of sodium dithionite and, by oxygen transfer from air, it increased again after complete oxidation of dithionite. k(L)a values in one commercial reader were about 10 to 40 h(-1). k(L)a values were inversely proportional to the filling volume and increased with increasing shaking intensity. Dissolved oxygen was monitored during cultivation of Corynebacterium glutamicum in another reader that allowed much higher shaking intensity. Growth rates determined from optical density measurement were identical to those observed in shaking flasks and in a stirred fermentor. Oxygen uptake rates measured in the stirred fermentor and dissolved oxygen concentrations measured during cultivation in the microtiter plate were used to estimate k(L)a values in a 96-well microtiter plate. The resulting values were about 130 h(-1), which is in the lower range of typical stirred fermentors. The resulting maximum oxygen transfer rate was 26 mM h(-1). Simulations showed that the errors caused by the intermittent measurement method were insignificant under the prevailing conditions.  相似文献   

12.
A new type of bubble aeration column called a hollow fiber membrane (HFM) aeration column was proposed, which was featured in the use of hollow fiber membranes and gave a high bubble density in the column. The value of k(L)a was increased by modifying the membrane surface for making the pore size smaller. The Sauter mean diameter of bubbles (D(vs)) was 2.0 +/- 0.1 mm in the range of the superficial gas velocity from 0.02 m s(-1) to 0.065 m s(-1), while that obtained for the bubbles near the membrane was 811 mum at the superficial gas velocity of 4.0 x 10(-4) m s(-1). The difference was ascribed to the effect of coalescence of bubbles. The value of K(L)a increased in proportion to the superficial gas velocity up to 0.02 m s(-1), and was almost constant above 0.03 m s(-1). The maximum value of k(L)a, 2.5 s(-1), was higher than those of the other aeration columns reported previously. The pneumatic power consumption per unit liquid volume (P(v)) for obtaining the same k(L)a was the smallest in the HFM aeration columns. P(v), for obtaining the same interfacial area of bubbles per liquid volume, was also lower than those for other types of aeration columns. It was suggested from the measurement of bubble diameter that the larger interfacial area generated in the HFM aeration column ascribes to the larger gas holdup than the smaller D(vs). (c) 1992 John Wiley & Sons, Inc.  相似文献   

13.
Pseudomonas oleovorans is able to accumulate poly(3-hydroxyalkanoates) (PHAs) under conditions of excess n-alkanes, which serve as sole energy and carbon source, and limitation of an essential nutrient such as ammonium. In this study we aimed at an efficient production of these PHAs by growing P. oleovorans to high cell densities in fed-batch cultures.To examine the efficiency of our reactor system, P. oleovorans was first grown in batch cultures using n-octane as growth substrate and ammonia water for pH regulation to prevent ammonium limiting conditions. When cell growth ceased due to oxygen limiting conditions, a maximum cell density of 27 g .L(-1) dry weight was obtained. When the growth temperature was decreased from the optimal temperature of 30 degrees -18 degrees C, cell growth continued to a final cell density of 35 g . L(-1) due to a lower oxygen demand of the cells at this lower incubation temperature.To quantify mass transfer rates in our reactor system, the volumetric oxygen transfer coefficient (k(L)a) was determined during growth of P. oleovorans on n-octane. Since the stirrer speed and airflow were increased during growth of the organism, the k(L)a also increased, reaching a constant value of 0.49 s(-1) at maximum airflow and stirrer speed of 2 L . min(-1) and 2500 rpm, respectively. This k(L)a value suggests that oxygen transfer is very efficient in our stirred tank reactor.Using these conditions of high oxygen transfer rates, PHA production by P. oleovorans in fed-batch cultures was studied. The cells were first grown batchwise to a density of 6 g . L(-1), after which a nutrient feed, consisting of (NH(4))(2)SO(4) and MgSO(4), was started. The limiting nutrient ammonium was added at a constant rate of 0.23 g NH(4) (+) per hour, and when after 38 h the feed was stopped, a biomass concentration of 37.1 g . L(-1) was obtained. The Cellular PHA content was 33% (w/w), which is equal to a final PHA yield of 12.1 g . L(-1) and an overall PHA productivity of 0.25 g PHA produced per liter medium per hour. (c) 1993 John Wiley & Sons, Inc.  相似文献   

14.
Limitations of oxygen transfer in fermentation can be solved using auxiliary liquids immiscible in the aqueous phase. The liquids (called oxygen-vectors) used in this study were hydrocarbon (n-dodecane) and perfluorocarbon (forane F66E) in which oxygen is highly soluble (54.9 mg/L in n-dodecane and 118 mg/L in forane F66E at 35 degrees C in contact with air at atmospheric pressure). It has been demonstrated that the use of n-dodecane emulsion in a culture of Aerobacter aerogenes enabled a 3. 5-fold increase of the volumetric oxygen transfer coefficient(k(L)a) calculated on a per-liter aqueous phase basis. The droplet size of the vector played a crucial role in the phenomena. When a static contact between gas bubble and vector droplet was established in water, the vector covered the bubble, in agreement with positive values of the spreading coefficient for these fluids. The determination of the oxygen transfer coefficients (k(L)) in a reactor with a definite interfacial area enabled the main resistance to be located in the boundary layer of the waterside either for a gas-water or a vector-water interface. Because oxygen consumption by weakly hydrophobic cells can only occur in the aqueous phase, the oxygen transfer is achieved according to the following pathway: gas-vector-water-cell. Finally, a mechanism for oxygen transfer within this four-phased system is proposed.  相似文献   

15.
The dynamic pressure method (DPM) is used for measurement of k(L)a in a 1-m(3) pilot scale fermentor in coalescing (distilled water) and noncoalescing (0.3 M Na(2)SO(4) aqueous solution) batches. The method consists in recording oxygen concentration in a batch after a small pressure change (20 kPa) in the fermentor. The upward pressure change is brought about by temporary closing and subsequent throttling of outlet gas stream and the downward change by full reopening of the gas outlet. Absorption of pure oxygen yields the same k(L)a values as absorption of air. In noncoalescing batch, the downward k(L)a values are always higher than the upward values owing to spontaneous nucleation of bubbles. The experiments performed in a stirred cell confirm this behavior. Thus, only upward pressure change should be used for measurement. The correlation of k(L)a data measured in small (18-L) and large (1000-L) vessels based on power dissipated and superficial gas velocity are in a good agreement. Unlike the DPM, the classical dynamic methods yield, under the same conditions, excessively low values of k(L)a (the dynamic startup method) or fail to produce data at all (the dynamic method with interchange of air for N(2)). (c) 1994 John Wiley & Sons, Inc.  相似文献   

16.
AIMS: To evaluate the contribution of oxygen transfer and consumption in a sulfoxidizing system to increase the elemental sulfur yield from thiosulfate oxidation. METHODS AND RESULTS: A 10 l thiosulfate oxidizing bioreactor with suspended cells operating under microaerophilic conditions and a separated aerator with a variable volume of 0.8--1.7 l were operated with a consortium containing mainly Thiobacillus sp. that oxidizes several sulfide species to elemental sulfur and sulfate. From the gas-liquid oxygen balance, the k(L)a was estimated under different operation conditions. A k(L)a of around 200 h(-1) favoured elemental sulfur production and can serve as scale-up criterion. It was further shown that more than 50% of the oxygen fed to the system was consumed in the aerator. CONCLUSIONS: The performance of the sulfoxidizing system can be improved by controlling oxygen transfer. SIGNIFICANCE AND IMPACT OF THE STUDY: The proposed method for the k(L)a determination was based on the oxygen balance, which incorporates the oxygen concentrations measured in the liquid in steady state, reducing the interference of the response time in the traditional non-steady state methods. This approach can be used to optimize reactors where microaerophilic conditions are desirable.  相似文献   

17.
Miniature parallel bioreactors are becoming increasingly important as tools to facilitate rapid bioprocess design. Once the most promising strain and culture conditions have been identified a suitable scale-up basis needs to be established in order that the cell growth rates and product yields achieved in small scale optimization studies are maintained at larger scales. Recently we have reported on the design of a miniature stirred bioreactor system capable of parallel operation [Gill et al. (2008); Biochem Eng J 39:164-176]. In order to enable the predictive scale-up of miniature bioreactor results the current study describes a more detailed investigation of the bioreactor mixing and oxygen mass transfer characteristics and the creation of predictive engineering correlations useful for scale-up studies. A Power number of 3.5 for the miniature turbine impeller was first established based on experimental ungassed power consumption measurements. The variation of the measured gassed to ungassed power ratio, P(g)/P(ug), was then shown to be adequately predicted by existing correlations proposed by Cui et al. [Cui et al. (1996); Chem Eng Sci 51:2631-2636] and Mockel et al. [Mockel et al. (1990); Acta Biotechnol 10:215-224]. A correlation relating the measured oxygen mass transfer coefficient, k(L)a, to the gassed power per unit volume and superficial gas velocity was also established for the miniature bioreactor. Based on these correlations a series of scale-up studies at matched k(L)a (0.06-0.11 s(-1)) and P(g)/V (657-2,960 W m(-3)) were performed for the batch growth of Escherichia coli TOP10 pQR239 using glycerol as a carbon source. Constant k(L)a was shown to be the most reliable basis for predictive scale-up of miniature bioreactor results to conventional laboratory scale. This gave good agreement in both cell growth and oxygen utilization kinetics over the range of k(L)a values investigated. The work described here thus gives further insight into the performance of the miniature bioreactor design and will aid its use as a tool for rapid fermentation process development.  相似文献   

18.
The oxygen supply of cell cultures with the aid of free gas bubbles is an efficient process strategy in pharmaceutical production. If the cell-damaging impact of gas bubbles is reduced, direct aeration becomes a practical solution with scale-up potential and comparatively high oxygen transfer rates. In this paper a microsparging aeration system made of porous ceramic was compared with bubble-free membrane aeration. The sparging system was used for the long-term cultivation of mammalian cells in 2- to 100-L scale bioreactors and produced bubble sizes of 100-500 microm in diameter. Using a scale of 2.5 and 30 L, a cell density of 2.6 x 10(6) cells/mL was attained. When a 100-L scale was used, a density of 1.1 x 10(6) cells/mL was achieved, whereas a comparable membrane-aerated system showed a cell density of 2.2 x 10(6) cells/mL. At relatively low agitation rates of less than 70 rpm in the sparged bioreactors, a homogeneous and constant oxygen concentration was kept in the medium. As a result of the different foam-forming tendency caused by the lower gas flow of the ceramic sparger compared to that of the standard aeration systems, we were able to develop an appropriate process control strategy. Furthermore, oxygen transfer measurements for the common stainless steel sparger and the ceramic sparger showed a 3-fold higher oxygen transfer coefficient for the ceramic sparger.  相似文献   

19.
The performance of a penicillin fermentation was assessed in a laboratory-scale bubble column fermentor, with mycelial growth confined to the pore matrix of celite beads. Final cell densities of 29 g/L and penicillin titres of 5.5 g/L were obtained in the confined cell cultures. In comparison, cultures of free mycelial cells grown in the absence of beads experienced dissolved oxygen limitations in the bubble column, giving only 17 g/L final cell concentrations with equally low penicillin titres of 2 g/L. The better performance of the confined cell cultures was attributed to enhanced gas liquid mass transfer rates, with mass transfer coefficients (k(L)a) two to three times higher than those determined in the free cell cultures. Furthermore, the confined cell cultures showed more efficient utilization of power input for mass transfer, providing up to 50% reduction in energy requirements for aeration.  相似文献   

20.
Oxygen limitation is one of the most frequent problems associated with the application of shaking bioreactors. The gas-liquid oxygen transfer properties of shaken 48-well microtiter plates (MTPs) were analyzed at different filling volumes, shaking diameters, and shaking frequencies. On the one hand, an optical method based on sulfite oxidation was used as a chemical model system to determine the maximum oxygen transfer capacity (OTR(max)). On the other hand, the Respiration Activity Monitoring System (RAMOS) was applied for online measurement of the oxygen transfer rate (OTR) during growth of the methylotropic yeast Hansenula polymorpha. A proportionality constant between the OTR(max) of the biological system and the OTR(max) of the chemical system were indicated from these data, offering the possibility to transform the whole set of chemical data to biologically relevant conditions. The results exposed "out of phase" shaking conditions at a shaking diameter of 1 mm, which were confirmed by theoretical consideration with the phase number (Ph). At larger shaking diameters (2-50 mm) the oxygen transfer rate in MTPs shaken at high frequencies reached values of up to 0.28 mol/L/h, corresponding to a volumetric mass transfer coefficient (k(L)a) of 1,600 1/h. The specific mass transfer area (a) increases exponentially with the shaking frequency up to values of 2,400 1/m. On the contrary, the mass transfer coefficient (k(L)) is constant at a level of about 0.15 m/h over a wide range of shaking frequencies and shaking diameters. However, at high shaking frequencies, when the complete liquid volume forms a thin film on the cylindric wall of the well, the mass transfer coefficient (k(L)) increases linearly to values of up to 0.76 m/h. Essentially, the present investigation demonstrates that the 48-well plate outperforms the 96-well MTP and shake flasks at widely used operating conditions with respect to oxygen supply. The 48-well plates emerge, therefore, as an excellent alternative for microbial cultivation and expression studies combining the advantages of both the high-throughput 96-well MTP and the classical shaken Erlenmeyer flask.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号