首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Vibrio cholerae is known to persist in aquatic environments under nutrient-limiting conditions. To analyze the possible involvement of the alternative sigma factor encoded by rpoS, which is shown to be important for survival during nutrient deprivation in several other bacterial species, a V. cholerae rpoS homolog was cloned by functional complementation of an Escherichia coli mutant by using a wild-type genomic library. Sequence analysis of the complementing clone revealed an 1.008-bp open reading frame which is predicted to encode a 336-amino-acid protein with 71 to 63% overall identity to other reported rpoS gene products. To determine the functional role of rpoS in V. cholerae, we inactivated rpoS by homologous recombination. V. cholerae strains lacking rpoS are impaired in the ability to survive diverse environmental stresses, including exposure to hydrogen peroxide, hyperosmolarity, and carbon starvation. These results suggest that rpoS may be required for the persistence of V. cholerae in aquatic habitats. In addition, the rpoS mutation led to reduced production or secretion of hemagglutinin/protease. However, rpoS is not critical for in vivo survival, as determined by an infant mouse intestinal competition assay.  相似文献   

2.
The protein RpoS is responsible for mediating cell survival during the stationary phase by conferring cell resistance to various stressors and has been linked to biofilm formation. In this study, the role of the rpoS gene in Escherichia coli O157:H7 biofilm formation and survival in water was investigated. Confocal scanning laser microscopy of biofilms established on coverslips revealed a nutrient-dependent role of rpoS in biofilm formation, where the biofilm biomass volume of the rpoS mutant was 2.4- to 7.5-fold the size of its rpoS+ wild-type counterpart in minimal growth medium. The enhanced biofilm formation of the rpoS mutant did not, however, translate to increased survival in sterile double-distilled water (ddH2O), filter-sterilized lake water, or unfiltered lake water. The rpoS mutant had an overall reduction of 3.10 and 5.30 log10 in sterile ddH2O and filter-sterilized lake water, respectively, while only minor reductions of 0.53 and 0.61 log10 in viable counts were observed for the wild-type form in the two media over a 13-day period, respectively. However, the survival rates of the detached biofilm-derived rpoS+ and rpoS mutant cells were comparable. Under the competitive stress conditions of unfiltered lake water, the advantage conferred by the presence of rpoS was lost, and both the wild-type and knockout forms displayed similar declines in viable counts. These results suggest that rpoS does have an influence on both biofilm formation and survival of E. coli O157:H7 and that the advantage conferred by rpoS is contingent on the environmental conditions.  相似文献   

3.
Impact of rpoS Deletion on Escherichia coli Biofilms   总被引:6,自引:0,他引:6       下载免费PDF全文
Slow growth has been hypothesized to be an essential aspect of bacterial physiology within biofilms. In order to test this hypothesis, we employed two strains of Escherichia coli, ZK126 (ΔlacZ rpoS+) and its isogenic ΔrpoS derivative, ZK1000. These strains were grown at two rates (0.033 and 0.0083 h−1) in a glucose-limited chemostat which was coupled either to a modified Robbins device containing plugs of silicone rubber urinary catheter material or to a glass flow cell. The presence or absence of rpoS did not significantly affect planktonic growth of E. coli. In contrast, biofilm cell density in the rpoS mutant strain (ZK1000), as measured by determining the number of CFU per square centimeter, was reduced by 50% (P < 0.05). Deletion of rpoS caused differences in biofilm cell arrangement, as seen by scanning confocal laser microscopy. In reporter gene experiments, similar levels of rpoS expression were seen in chemostat-grown planktonic and biofilm populations at a growth rate of 0.033 h−1. Overall, these studies suggest that rpoS is important for biofilm physiology.  相似文献   

4.
5.
The stationary-phase-inducible sigma factor, σS (RpoS), is the master regulator of the general stress response in Salmonella and is required for virulence in mice. rpoS mutants can frequently be isolated from highly passaged laboratory strains of Salmonella. We examined the rpoS status of 116 human clinical isolates of Salmonella, including 41 Salmonella enterica serotype Typhi strains isolated from blood, 38 S. enterica serotype Typhimurium strains isolated from blood, and 37 Salmonella serotype Typhimurium strains isolated from feces. We examined the abilities of these strains to produce the σS protein, to express RpoS-dependent catalase activity, and to resist to oxidative stress in the stationary phase of growth. We also carried out complementation experiments with a cloned wild-type rpoS gene. Our results showed that 15 of the 41 Salmonella serotype Typhi isolates were defective in RpoS. We sequenced the rpoS allele of 12 strains. This led to identification of small insertions, deletions, and point mutations resulting in premature stop codons or affecting regions 1 and 2 of σS, showing that the rpoS mutations are not clonal. Thus, mutant rpoS alleles can be found in freshly isolated clinical strains of Salmonella serotype Typhi, and they may affect virulence properties. Interestingly however, no rpoS mutants were found among the 75 Salmonella serotype Typhimurium isolates. Strains that differed in catalase activity and resistance to hydrogen peroxide were found, but the differences were not linked to the rpoS status. This suggests that Salmonella serotype Typhimurium rpoS mutants are counterselected because rpoS plays a role in the pathogenesis of Salmonella serotype Typhimurium in humans or in the transmission cycle of the disease.  相似文献   

6.
The RNA polymerase associated with RpoS transcribes many genes related to stationary phase and stress survival in Escherichia coli. The DNA sequence of rpoS exhibits a high degree of polymorphism. A C to T transition at position 99 of the rpoS ORF, which results in a premature amber stop codon often found in E. coli strains. The rpoSam mutant expresses a truncated and partially functional RpoS protein. Here, we present new evidence regarding rpoS polymorphism in common laboratory E. coli strains. One out of the six tested strains carries the rpoSam allele, but expressed a full-length RpoS protein owing to the presence of an amber supressor mutation. The rpoSam allele was transferred to a non-suppressor background and tested for RpoS level, stress resistance and for the expression of RpoS and sigma70-dependent genes. Overall, the rpoSam strain displayed an intermediate phenotype regarding stress resistance and the expression of σS-dependent genes when compared to the wild-type rpoS + strain and to the rpoS null mutant. Surprisingly, overexpression of rpoSam had a differential effect on the expression of the σ70-dependent genes phoA and lacZ that, respectively, encode the enzymes alkaline phosphatase and β-galactosidase. The former was enhanced while the latter was inhibited by high levels of RpoSam.  相似文献   

7.
8.
The rpoS gene codes for an alternative RNA polymerase sigma factor, which acts as a general regulator of the stress response. Inactivating alleles of rpoS in collections of natural Escherichia coli isolates have been observed at very variable frequencies, from less than 1% to more than 70% of strains. rpoS is easily inactivated in nutrient-deprived environments such as stab storage, which makes it difficult to determine the true frequency of rpoS inactivation in nature. We studied the evolutionary history of rpoS and compared it to the phylogenetic history of bacteria in two collections of 82 human commensal and extraintestinal E. coli strains. These strains were representative of the phylogenetic diversity of the species and differed only by their storage conditions. In both collections, the phylogenetic histories of rpoS and of the strains were congruent, indicating that horizontal gene transfer had not occurred at the rpoS locus, and rpoS was under strong purifying selection, with a ratio of the nonsynonymous mutation rate (Ka) to the synonymous substitution rate (Ks) substantially smaller than 1. Stab storage was associated with a high frequency of inactivating alleles, whereas almost no amino acid sequence variation was observed in RpoS in the collection studied directly after isolation of the strains from the host. Furthermore, the accumulation of variations in rpoS was typical of source-sink dynamics. In conclusion, rpoS is rarely inactivated in natural E. coli isolates within their mammalian hosts, probably because such strains rapidly become evolutionary dead ends. Our data should encourage bacteriologists to freeze isolates immediately and to avoid the use of stab storage.  相似文献   

9.
Adherence of pathogenic Escherichia coli and Salmonella spp. to host cells is in part mediated by curli fimbriae which, along with other virulence determinants, are positively regulated by RpoS. Interested in the role and regulation of curli (SEF17) fimbriae of Salmonella enteritidis in poultry infection, we tested the virulence of naturally occurring S. enteritidis PT4 strains 27655R and 27655S which displayed constitutive and null expression of curli (SEF17) fimbriae, respectively, in a chick invasion assay and analysed their rpoS alleles. Both strains were shown to be equally invasive and as invasive as a wild-type phage type 4 strain and an isogenic derivative defective for the elaboration of curli. We showed that the rpoS allele of 27655S was intact even though this strain was non-curliated and we confirmed that a S. enteritidis rpoS::strr null mutant was unable to express curli, as anticipated. Strain 27655R, constitutively curliated, possessed a frameshift mutation at position 697 of the rpoS coding sequence which resulted in a truncated product and remained curliated even when transduced to rpoS::strr. Additionally, rpoS mutants are known to be cold-sensitive, a phenotype confirmed for strain 27655R. Collectively, these data indicated that curliation was not a significant factor for pathogenesis of S. enteritidis in this model and that curliation of strains 27655R and 27655S was independent of RpoS. Significantly, strain 27655R possessed a defective rpoS allele and remained virulent. Here was evidence that supported the concept that different naturally occurring rpoS alleles may generate varying virulence phenotypic traits.  相似文献   

10.
The stationary-phase sigma factor (RpoS) regulates many cellular responses to environmental stress conditions such as heat, acid, and alkali shocks. On the other hand, mutations at the rpoS locus have frequently been detected among pathogenic as well as commensal strains of Escherichia coli. The objective of this study was to perform a functional analysis of the RpoS-mediated stress responses of enterohemorrhagic E. coli strains from food-borne outbreaks. E. coli strains belonging to serotypes O157:H7, O111:H11, and O26:H11 exhibited polymorphisms for two phenotypes widely used to monitor rpoS mutations, heat tolerance and glycogen synthesis, as well as for two others, alkali tolerance and adherence to Caco-2 cells. However, these strains synthesized the oxidative acid resistance system through an rpoS-dependent pathway. During the transition from mildly acidic growth conditions (pH 5.5) to alkaline stress (pH 10.2), cell survival was dependent on rpoS functionality. Some strains were able to overcome negative regulation by RpoS and induced higher β-galactosidase activity without compromising their acid resistance. There were no major differences in the DNA sequences in the rpoS coding regions among the tested strains. The heterogeneity of rpoS-dependent phenotypes observed for stress-related phenotypes was also evident in the Caco-2 cell adherence assay. Wild-type O157:H7 strains with native rpoS were less adherent than rpoS-complemented counterpart strains, suggesting that rpoS functionality is needed. These results show that some pathogenic E. coli strains can maintain their acid tolerance capability while compromising other RpoS-dependent stress responses. Such adaptation processes may have significant impact on a pathogen's survival in food processing environments, as well in the host's stomach and intestine.  相似文献   

11.
Small noncoding RNAs (sRNAs) regulate the response of bacteria to environmental stress in conjunction with the Sm-like RNA binding protein Hfq. DsrA sRNA stimulates translation of the RpoS stress response factor in Escherichia coli by base-pairing with the 5′ leader of the rpoS mRNA and opening a stem–loop that represses translation initiation. We report that rpoS leader sequences upstream of this stem–loop greatly increase the sensitivity of rpoS mRNA to Hfq and DsrA. Native gel mobility shift assays show that Hfq increases the rate of DsrA binding to the full 576 nt rpoS leader as much as 50-fold. By contrast, base-pairing with a 138-nt RNA containing just the repressor stem–loop is accelerated only twofold. Deletion and mutagenesis experiments showed that sensitivity to Hfq requires an upstream AAYAA sequence. Leaders long enough to contain this sequence bind Hfq tightly and form stable ternary complexes with Hfq and DsrA. A model is proposed in which Hfq recruits DsrA to the rpoS mRNA by binding both RNAs, releasing the self-repressing structure in the mRNA. Once base-pairing between DsrA and rpoS mRNA is established, interactions between Hfq and the mRNA may stabilize the RNA complex by removing Hfq from the sRNA.  相似文献   

12.
13.
Acid resistance (AR) is important to survival of Escherichia coli O157:H7 in acidic foods and may play a role during passage through the bovine host. In this study, we examined the role in AR of the rpoS-encoded global stress response regulator ςS and its effect on shedding of E. coli O157:H7 in mice and calves. When assayed for each of the three AR systems identified in E. coli, an rpoS mutant (rpoS::pRR10) of E. coli O157:H7 lacked the glucose-repressed system and possessed reduced levels of both the arginine- and glutamate-dependent AR systems. After administration of the rpoS mutant and the wild-type strain (ATCC 43895) to ICR mice at doses ranging from 101 to 104 CFU, we found the wild-type strain in feces of mice given lower doses (102 versus 103 CFU) and at a greater frequency (80% versus 13%) than the mutant strain. The reduction in passage of the rpoS mutant was due to decreased AR, as administration of the mutant in 0.05 M phosphate buffer facilitated passage and increased the frequency of recovery in feces from 27 to 67% at a dose of 104 CFU. Enumeration of E. coli O157:H7 in feces from calves inoculated with an equal mixture of the wild-type strain and the rpoS mutant demonstrated shedding of the mutant to be 10- to 100-fold lower than wild-type numbers. This difference in shedding between the wild-type strain and the rpoS mutant was statistically significant (P ≤ 0.05). Thus, ςS appears to play a role in E. coli O157:H7 passage in mice and shedding from calves, possibly by inducing expression of the glucose-repressed RpoS-dependent AR determinant and thus increasing resistance to gastrointestinal stress. These findings may provide clues for future efforts aimed at reducing or eliminating this pathogen from cattle herds.  相似文献   

14.
The activity of amino acid-dependent acid resistance systems allows Escherichia coli to survive during prolonged incubation under phosphate (Pi) starvation conditions. We show in this work that rpoS-null mutants incubated in the absence of any amino acid survived during prolonged incubation under aerobic, Pi starvation conditions. Whereas rpoS+ cells incubated with glutamate excreted high levels of acetate, rpoS mutants grew on acetic acid. The characteristic metabolism of rpoS mutants required the activity of Fur (ferric uptake regulator) in order to decrease the synthesis of the small RNA RyhB that might otherwise inhibit the synthesis of iron-rich proteins. We propose that RpoS (σS) and the small RNA RyhB contribute to decrease the synthesis of iron-rich proteins required for the activity of the tricarboxylic acid (TCA) cycle, which redirects the metabolic flux toward the production of acetic acid at the onset of stationary phase in rpoS+ cells. In contrast, Fur activity, which represses ryhB, and the lack of RpoS activity allow a substantial activity of the TCA cycle to continue in stationary phase in rpoS mutants, which decreases the production of acetic acid and, eventually, allows growth on acetic acid and Pi excreted into the medium. These data may help explain the fact that a high frequency of E. coli rpoS mutants is found in nature.  相似文献   

15.
16.
Translation of the sigma factor RpoS is activated by DsrA, RprA and ArcA, three small non-coding sRNAs (sRNA) that expose the ribosome-binding site (RBS) by opening up an inhibitory loop. In the RpoS network, no sRNAs have been found to pair with the RBS, a most common sRNA target site in bacteria. Here, we generate Ribo-0, an artificial sRNA, which represses rpoS translation by pairing with the RBS. Ribo-0 bypasses the RNA chaperon Hfq but requires the RBS to be loosely blocked. Ribo-0 interacts with DsrA and reshapes the RpoS network. Specifically, in the intact RpoS network, DsrA activates rpoS translation by freeing up the RBS. In the modified RpoS network where Ribo-0 is introduced, the DsrA-caused RBS exposure facilitates Ribo-0 binding, thereby strengthening Ribo-0 inhibition. In other words, Ribo-0 changes DsrA from an activator to an accomplice for repressing rpoS translation. This work presents an artificial mechanism of rpoS regulation, reveals mutual effects of native and synthetic players and demonstrates genetic context-dependency of their functions.  相似文献   

17.
18.
19.
The rpoS mRNA, which encodes the master regulator σS of general stress response, requires Hfq-facilitated base pairing with DsrA small RNA for efficient translation at low temperatures. It has recently been proposed that one mechanism underlying Hfq action is to bridge a transient ternary complex by simultaneously binding to rpoS and DsrA. However, no structural evidence of Hfq simultaneously bound to different RNAs has been reported. We detected simultaneous binding of Hfq to rpoS and DsrA fragments. Crystal structures of AU6A•Hfq•A7 and Hfq•A7 complexes were resolved using 1.8- and 1.9-Å resolution, respectively. Ternary complex has been further verified in solution by NMR. In vivo, activation of rpoS translation requires intact Hfq, which is capable of bridging rpoS and DsrA simultaneously into ternary complex. This ternary complex possibly corresponds to a meta-stable transition state in Hfq-facilitated small RNA–mRNA annealing process.  相似文献   

20.
To study the physiological roles of polyamines, we carried out a global microarray analysis on the effect of adding polyamines to an Escherichia coli mutant that lacks polyamines because of deletions in the genes in the polyamine biosynthetic pathway. Previously, we have reported that the earliest response to polyamine addition is the increased expression of the genes for the glutamate-dependent acid resistance system (GDAR). We also presented preliminary evidence for the involvement of rpoS and gadE regulators. In the current study, further confirmation of the regulatory roles of rpoS and gadE is shown by a comparison of genome-wide expression profiling data from a series of microarrays comparing the genes induced by polyamine addition to polyamine-free rpoS+/gadE+ cells with genes induced by polyamine addition to polyamine-free ΔrpoS/gadE+ and rpoS+gadE cells. The results indicate that most of the genes in the E. coli GDAR system that are induced by polyamines require rpoS and gadE. Our data also show that gadE is the main regulator of GDAR and other acid fitness island genes. Both polyamines and rpoS are necessary for the expression of gadE gene from the three promoters of gadE (P1, P2, and P3). The most important effect of polyamine addition is the very rapid increase in the level of RpoS sigma factor. Our current hypothesis is that polyamines increase the level of RpoS protein and that this increased RpoS level is responsible for the stimulation of gadE expression, which in turn induces the GDAR system in E. coli.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号