首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
It has been suggested that locally produced insulin-like growth factor binding protein 4 (IGFBP4) inhibits ovarian follicular growth and ovulation by interfering with IGF action. According to this hypothesis, IGFBP4-expressing follicles should demonstrate atresia, whereas healthy dominant follicles should be devoid of IGFBP4. Alternatively, according to this view, there could be constitutive expression of the inhibitory IGFBP4 but selective expression of an IGFBP4 protease in dominant follicles, allowing the follicle to mature and ovulate because of degradation of the binding protein. To examine these views concerning the role of IGFBP4 in primate follicular selection, we analyzed cellular patterns of IGFs 1 and 2, IGFBP4, and the IGFBP4 protease (pregnancy-associated plasma protein A [PAPP-A]) mRNA expression in ovaries from late follicular phase rhesus monkeys using in situ hybridization. The IGF1 mRNA was not detected, but the IGF2 mRNA was abundant in theca interna and externa of all antral follicles and was present in the granulosa of large preovulatory and ovulatory follicles. The IGFBP4 mRNA was selectively expressed by LH receptor (LHR) mRNA-positive theca interna cells of healthy antral follicles (defined by aromatase and gonadotropin receptor expression) and by LHR-expressing granulosa cells found only in large preovulatory and ovulatory follicles (defined by size and aromatase expression). The PAPP-A mRNA was abundant in granulosa cells of most follicles without obvious relation to IGFBP4 expression. Ovarian IGFBP4 mRNA levels were markedly increased after treatment with the LH analog, hCG, whereas IGF2 and PAPP-A mRNAs were not significantly altered. In summary, IGFBP4 expression appears to be associated with follicular selection, not with atresia, in the monkey ovary. The IGFBP4 is consistently expressed in healthy theca interna and in luteinized granulosa cells, likely under LH regulation. The IGFBP4 protease, PAPP-A, is widely expressed without apparent selectivity for IGFBP4-expressing follicles or for dominant follicles. These observations suggest that IGFBP4 or an IGFBP4 proteolytic product may be involved with LH-induced steroidogenesis and/or luteinization rather than with inhibition of follicular growth.  相似文献   

2.
The components of the insulin-like growth factor (IGF) system appear to be involved in the regulation of ovarian follicular growth and atresia in sheep. However, previous studies have only investigated a select few components of the system. The aim of the present study was to investigate the expression of mRNA encoding all of the components of the sheep IGF system among follicles of varying size and health status throughout the oestrous cycle using sheep-specific ribonucleotide probes and in situ hybridisation. For all IGF components, gene expression was unaffected by stage of oestrous cycle. IGF-I mRNA expression in all classes of follicle was generally low throughout the oestrous cycle, while IGFBP-1 mRNA expression could not be demonstrated at all. In contrast, there was relatively intense follicular expression of mRNAs encoding all remaining IGF system components. For IGF-II, both IGF receptors and IGFBP-2, -3, -4, -5, and -6, gene expression decreased as follicles increased in diameter (P < 0.01). IGF-II, type I IGF-R and IGFBP-2, -3, -4, and -6 mRNA expression significantly decreased as follicles progressed from healthy to atretic status (P < 0.01), whereas gene expression for type II IGF-R and IGFBP-5 was greater in atretic follicles (P < 0.01). This study demonstrates the spatial patterns of follicular gene expression for all of the IGF system components in cycling sheep for the first time. These results further highlight the potential functional role of IGF-II, in contrast to IGF-I, in the autocrine and/or paracrine regulation of follicle growth in sheep.  相似文献   

3.
In recent years, it has become apparent that components of the insulin-like growth factor (IGF) system are involved in the regulation of ovarian follicular development in sheep. The majority of previous studies have concentrated on investigating only a select few components and not the whole system. The aim of the present study was to use five seasonally anoestrous ewes to investigate the expression of mRNA encoding all 10 components of the sheep IGF system among various-sized follicles within the ovary, using sheep-specific ribonucleotide probes and in situ hybridisation. IGF-I mRNA expression was low and did not vary with follicle size. IGF-II mRNA expression was significantly higher (P < 0.05) in small follicles compared to large follicles. Both IGF receptors had significantly higher (P < 0.05) levels of mRNA expression in small follicles, with the type I receptor being expressed to a slightly greater extent than the type II receptor. IGFBP-2, -3, -4 and -5 gene expression followed a similar pattern to IGF-II and the IGF receptors, whereby expression decreased with increasing follicle size. Similar to IGF-I, IGFBP-6 mRNA expression showed little variation with follicle size. IGFBP-1 mRNA expression was observed at low and constant levels, albeit in small and medium-sized follicles only. These data demonstrate that all of the components of the IGF system are produced in the ovine follicle, and for some of the components, their gene expression varied with stage of follicle development. This study further emphasises the importance of IGF-II as the major IGF in the autocrine and paracrine regulation of follicle development in sheep.  相似文献   

4.
The expression patterns of steroidogenic enzymes in ovarian antral follicles at various stages of growth in a follicular wave have not been reported for sheep. Ovaries were collected from ewes (n=4-5 per group) when the largest follicle(s) of the first wave of the cycle, as determined by ultrasonography, reached (i) 3 mm, (ii) 4 mm, (iii) > or =5 mm in diameter or when there was a single (iv) preovulatory follicle in the last wave of the cycle, 12h after estrus detection. The expression pattern of steroidogenic enzymes was quantified using immunohistochemistry and grey-scale densitometry. The expression of CYP19 in the granulosa and 3beta-HSD and CYP17 in the theca increased (P<0.01) progressively from 3 to > or =5 mm follicles in the first wave of the cycle and was lower (P<0.01) in the preovulatory follicle compared to > or =5 mm follicles. However, the expression of 3beta-HSD in the granulosa increased (P<0.05) from 3 to > or =5 mm follicles and was maintained (P<0.05) at a high level in the preovulatory follicles. The amount of CYP19 in the granulosa of the growing follicles correlated positively (r=0.5; P<0.03) with the concurrent serum estradiol concentrations. We concluded that the expression pattern of steroidogenic enzymes in theca and granulosa of follicles growing in each wave in the ewe, paralleled with serum estradiol concentrations, with the exception that concentrations of 3beta-HSD in granulosa increased continuously from follicles 3mm in diameter to the preovulatory follicle.  相似文献   

5.
Little is known regarding the role of insulin-like growth factor 2 (IGF2) and the regulation of the IGF2 receptor (IGF2R) during follicular development. Granulosa cells were collected from small (1-5 mm) and large (8-22 mm) bovine follicles and were treated with IGF2 for 1-2 days in serum-free medium, and steroid production, cell proliferation, specific (125)I-IGF2 binding, and gene expression were quantified. IGF2 increased both estradiol and progesterone production by granulosa cells, and cells from large follicles were more responsive to the effects of IGF2 than those from small follicles. Abundance of aromatase (CYP19A1) mRNA was stimulated by IGF2 and IGF1. The effective dose (ED(50)) of IGF2 stimulating 50% of the maximal estradiol production was 63 ng/ml for small follicles and 12 ng/ml for large follicles, and these values were not affected by FSH. The ED(50) of IGF2 for progesterone production was 20 ng/ml for both small and large follicles. IGF2 also increased proliferation of granulosa cells by 2- to 3-fold, as determined by increased cell numbers and (3)H-thymidine incorporation into DNA. Treatment with IGF1R antibodies reduced the stimulatory effect of IGF2 and IGF1 on estradiol production and cell proliferation. Specific receptors for (125)I-IGF2 existed in granulosa cells, and 2-day treatment with estradiol, FSH, or cortisol had no significant effect on specific (125)I-IGF2 binding. Also, FSH treatment of small- and large-follicle granulosa cells had no effect on IGF2R mRNA levels, whereas IGF1 decreased IGF2R mRNA and specific (125)I-IGF2 binding. Granulosa cell IGF2R mRNA abundance was 3-fold greater in small than in large follicles. These findings support the hypothesis that both IGF2 and its receptor may play a role in granulosa cell function during follicular development. In particular, increased free IGF1 in developing follicles may decrease synthesis of IGF2R, thereby allowing for more IGF2 to be bioavailable (free) for induction of steroidogenesis and mitogenesis via the IGF1R.  相似文献   

6.
The localization of mRNAs for insulin-like growth factors I (IGF-I) and II (IGF-II) and the type 1 IGF receptor (IGF-1R) in bovine follicles and corpora lutea was determined using in situ hybridization on sectioned ovaries collected from nonpregnant, cyclic Holstein cows in either the follicular (n = 3) or luteal (n = 5) phases of the cycle. Concentrations were measured as absorbance units of individual regions or follicles from autoradiographs. There was intense follicular expression of mRNAs encoding IGF-II and IGF-1R. For mRNA encoding IGF-II, expression was significantly higher in smaller follicles (< 5 mm diameter, P < 0.01) and, in this size range, expression was significantly greater in healthy compared with atretic follicles (P < 0.01). For mRNA encoding IGF-1R, there was no effect of size but concentrations were again significantly greater in healthy compared with atretic follicles of < 5 mm. In medium (5-10 mm) and large (> 10 mm) follicles, there was no effect of health for expression of either IGF-II or IGF-1R. mRNA encoding IGF-II was found exclusively in the theca, whereas mRNA encoding IGF-1R was confined to the granulosa layer. IGF-I expression was not detectable in 83% of the 53 follicles examined. In the remaining 17% of follicles, expression was very low and was unrelated to size or state of atresia. mRNAs encoding IGF-I, -II and IGF-1R were all present in the corpus luteum, whereas only those for IGF-II and IGF-1R were found in ovarian stroma. These data indicate that the insulin-like growth factors play a significant role in follicular and luteal development in the bovine ovary. Locally produced IGF-II is probably an important regulator of follicular growth, whereas most of the IGF-I present in follicular fluid is likely to be derived from the circulation.  相似文献   

7.
Post-vitellogenic female rainbow trout (Oncorhynchus mykiss) were assayed in vitro for follicular maturational competence (FMC). Ovarian follicles were stimulated with a range of concentrations of partially purified gonadotropin. The efficient concentration for 50% germinal vesicle breakdown (GVBD) was calculated and used as an indicator of FMC. Before in vitro assay, ovarian tissue was sampled in order to quantify mRNA abundance of specific genes in the ovarian follicle by real-time PCR. In addition, maturation-inducing steroid (MIS, 17, 20 beta-dihydroxy-4-pregnen-3-one) and estradiol (E2) plasma levels were measured by radioimmunoassay. The mRNA expression of several genes such as luteinizing hormone receptor (LH-r), follicular stimulating hormone receptor (FSH-r), insulin-like growth factor 1 (IGF1), insulin-like growth factor 2 (IGF2), insulin-like growth factor receptor 1a (IGF-r1a), and 20 beta-hydroxysteroid dehydrogenase (20 beta-HSD) that are putatively expressed in the preovulatory ovary, was studied in females of varying FMC using real-time PCR. FMC acquisition is characterized by an increase of MIS circulating levels and a concomitant drop of E2 levels. At the ovarian level, no significant variation of LH-r, 20 beta-HSD, IGF1, and IGF-r1a mRNA abundance was observed among females of varying FMC. In contrast, FSH-r and IGF2 mRNA levels were significantly higher in females exhibiting high FMC. In addition, correlation analyses showed that IGF2 and FSH-r, mRNA levels were positively correlated with FMC. These results indicate that FMC acquisition is associated with an increased expression of these gene products that may be useful markers of FMC.  相似文献   

8.
Both the viability of hen prehierarchal follicles and subsequent differentiation associated with the selection of a single follicle per day into the preovulatory hierarchy depend on circulating FSH and the expression of FSH receptor (FSH-R) in granulosa cells. The present study addresses mechanisms that mediate both basal expression plus selective up-regulation of FSH-R mRNA in granulosa cells from prehierarchal follicles. Results demonstrate that FSH-R mRNA is both expressed and functional in granulosa cells collected from growing prehierarchal follicles as small as those of 1-2 mm in diameter, as indicated by rapid induction of steroidogenic acute regulatory (StAR) protein expression by FSH in vitro. Real-time polymerase chain reaction determined that relative FSH-R expression within the granulosa layer from individual prehierarchal follicles of 6-8 mm in diameter was similar among the 8-13 follicles within this cohort, with the notable exception that the granulosa layer from a single follicle (presumably the selected follicle) showed elevated expression. Levels of FSH-R mRNA expression were enhanced by both recombinant human (rh) transforming growth factor (TGF) beta1 and, to a lesser extent, rh-activin A after 20 h of culture. This stimulatory effect was effectively blocked by mitogen-activated protein (MAP) kinase signaling induced by TGF alpha treatment. Finally, inhibition of MAP kinase signaling, using the selective inhibitor U0126, promoted FSH-R expression and further enhanced TGF beta1-induced FSH-R expression in vitro. Collectively, results suggest that premature granulosa cell differentiation normally is suppressed by tonic MAP kinase signaling. At the time of follicle selection, a release from inhibitory MAP kinase signaling is proposed to occur, which enables the full potentiation of FSH-R expression mediated by intrafollicular factors.  相似文献   

9.
Steroidogenesis is a major function of the developing follicle. However, little is known about the stage of onset of steroid regulatory proteins during follicular development in sheep. In this study, several steroidogenic enzymes were studied by immunohistochemistry and/or in situ hybridization; cytochrome P450 side chain cleavage (P450(scc)), cytochrome P450 17alpha-hydroxylase (17alphaOH), 3beta-hydroxysteroid dehydrogenase (3beta-HSD), cytochrome P450 aromatase (P450(arom)), steroidogenic factor 1 (SF-1), steroidogenic acute regulatory protein (StAR), and LH receptor (LH-R). To define the stages of follicular growth, ovarian maps were drawn from serial sections of ovine ovaries, and follicles were located and classified at specific stages of growth based on morphological criteria. In this way, the precise onset of gene expression with respect to stages of follicular growth for all these proteins could be observed. The key findings were that ovine oocytes express StAR mRNA at all stages of follicular development and that granulosa cells in follicle types 1-3 express 3beta-HSD and SF-1. Furthermore, the onset of expression in theca cells of StAR, P450(scc), 17alphaOH, 3beta-HSD, and LH-R occurred in large type 4 follicles just before antrum formation. This finding suggests that although the theca interna forms from the type 2 stage, it does not become steroidogenically active until later in development. These studies also confirm that granulosa cells of large type 5 follicles express SF-1, StAR, P450(scc), LH-R, and P450(arom) genes. These findings raise new questions regarding the roles of steroidogenic regulatory factors in early follicular development.  相似文献   

10.
Calcitonin (CALCA), a hormone primarily known for its role in calcium homeostasis, has recently been linked to reproduction, specifically as a marker for embryo implantation in the uterus. Although CALCA expression has been documented in several tissues, there has been no report of production of CALCA in the ovary of any vertebrate species. We hypothesized that the Calca gene is expressed in the chicken ovary, and its expression will be altered by follicular maturation or gonadal steroid administration. Using RT-PCR, we detected Calca mRNA and the calcitonin receptor (Calcr) mRNA in the granulosa and theca layers of preovulatory and prehierarchial follicles. Both CALCA and Calca mRNA were localized in granulosa and thecal cells by confocal microscopy. Using quantitative PCR analysis, F1 follicle granulosa layer was found to contain significantly greater Calca mRNA and Calcr mRNA levels compared with those of any other preovulatory or prehierarchial follicle. The granulosa layer contained relatively greater Calca and Calcr mRNA levels compared with the thecal layer in both prehierarchial and preovulatory follicles. Progesterone (P(4)) treatment of sexually immature chickens resulted in a significantly greater abundance of ovarian Calca mRNA, whereas estradiol (E(2)) or P(4) + E(2) treatment significantly reduced ovarian Calca mRNA quantity. Treatment of prehierarchial follicular granulosa cells in vitro with CALCA significantly decreased FSH-stimulated cellular viability. Collectively, our results indicate that follicular maturation and gonadal steroids influence Calca and Calcr gene expression in the chicken ovary. We conclude that ovarian CALCA is possibly involved in regulating follicular maturation in the chicken ovary.  相似文献   

11.
12.
13.
Peroxisome proliferator-activated receptor (PPARgamma) is a nuclear receptor that is activated by fatty acids and derivatives and the antidiabetic glitazones, which plays a role in the control of lipid and glucose homeostasis. In the present work, we tested the hypothesis that PPARgamma plays a role in reproductive tissues by studying its expression and function in the hypothalamo-pituitary-ovary axis in the sheep. PPARgamma 1 and PPARgamma 2 proteins and mRNAs were detected in whole ovine pituitary and ovary but not in hypothalamic extracts. In situ hybridization on ovarian section localized PPARgamma mRNA in the granulosa layer of follicles. Interestingly, PPARgamma expression was higher in small antral (1-3 mm diameter) than in preovulatory follicles (>5 mm diameter) (P < 0.001) and was not correlated with healthy status. To assess the biological activity of ovarian PPARgamma, ovine granulosa cells were transfected with a reporter construct driven by PPARgamma-responsive elements. Addition of rosiglitazone, a PPARgamma ligand, stimulated reporter gene expression, showing that endogenous PPARgamma is functional in ovine granulosa cells in vitro. Moreover, rosiglitazone inhibited granulosa cell proliferation (P < 0.05) and increased the secretion of progesterone in vitro (P < 0.05). This stimulation effect was stronger in granulosa cells from small than from large follicles. In contrast, rosiglitazone had no effect on LH, FSH, prolactin and growth hormone secretion by ovine pituitary cells in vitro. Overall, these data suggest that PPARgamma ligands might stimulate follicular differentiation in vivo likely through a direct action on granulosa cells rather than by modulating pituitary hormone secretion.  相似文献   

14.
Proteinases and their inhibitors control follicular connective tissue remodeling associated with follicular rupture. We examined the regulation and cellular localization of plasminogen activator inhibitor type-1 (PAI-1) and tissue inhibitor of metalloproteinase type-1 (TIMP-1) mRNAs by in situ hybridization. [35S]UTP-labeled RNA probes were hybridized to ovarian sections of eCG-primed immature rats treated with hCG. Before hCG stimulation of ovulation, very low expression of PAI-1 mRNA was observed in theca cells. After hCG administration, expression of PAI-1 mRNA was increased in theca cells of most antral follicles, whereas expression in granulosa cells was limited to preovulatory follicles and only to areas where the basal membrane was dissociated. Before hCG treatment, low expression of TIMP-1 mRNA was observed in theca cells, but not in granulosa cells. After hCG treatment, TIMP-1 mRNA was greatly stimulated in theca cells irrespective of follicle size, while the expression in granulosa cells was limited to large antral follicles. The present study demonstrates cell-specific expression of PAI-1 and TIMP-1 mRNAs in the LH/hCG-stimulated ovary, thus confirming the localized control of preovulatory proteolysis by coexpression of both enzymes and their respective inhibitors.  相似文献   

15.
Cyclic GMP (cGMP)-dependent protein kinase II (Prkg2, cGK II) was identified as a potential target of the progesterone receptor (Nr3c3) in the mouse ovary based on microarray analyses. To document this further, the expression patterns of cGK II and other components of the cGMP signaling pathway were analyzed during follicular development and ovulation using the pregnant mare serum gonadotropin (PMSG)-human chorionic gonadotropin (hCG)-primed immature mice. Levels of cGK II mRNA were low in ovaries of immature mice, increased 4-fold in response to pregnant mare serum gonadotropin and 5-fold more within 12 h after hCG, the time of ovulation. In situ hybridization localized cGK II mRNA to granulosa cells and cumulus oocyte complexes of periovulatory follicles. In progesterone receptor (PR) null mice, cGK II mRNA was reduced significantly at 12 h after hCG in contrast to heterozygous littermates. In primary granulosa cell cultures, cGK II mRNA was induced by phorbol 12-myristate 13-acetate enhanced by adenoviral expression of PR-A and blocked by RU486 and trilostane. PR-A in the absence of phorbol 12-myristate 13-acetate was insufficient to induce cGK II. Expression of cGK I (Prkg1) was restricted to the residual tissue and not regulated by hormones. Guanylate cyclase-A (Npr1; GC-A) mRNA expression increased 6-fold by 4 h after hCG treatment in contrast to pregnant mare serum gonadotropin alone and was localized to granulosa cells of preovulatory follicles. Collectively, these data show for the first time that cGK II (not cGK I) and GC-A are selectively induced in granulosa cells of preovulatory follicles by LH- and PR-dependent mechanisms, thereby providing a pathway for cGMP function during ovulation.  相似文献   

16.
Ovarian growth and development are critically dependent upon the influence of endogenous estrogens, and both are highly regulated during the reproductive cycle. The observation that estrogen-receptor-alpha-deficient mice still exhibit follicular growth and development, together with other evidence, suggests that responsiveness of the ovary to estradiol occurs predominantly through the second estrogen receptor, ERbeta. We characterized the physiological regulation of ERbeta expression in ovarian follicles during the follicular phase of sheep that were synchronized for estrus during the breeding season with intravaginal progesterone implants (controlled internal drug release [CIDR] device; InterAg, Hamilton, New Zealand). Ovaries were removed at times corresponding to the early (EF) and late follicular phases (LF) of the ovine estrous cycle (12 h [n = 5] and 32 h [n = 5] after CIDR device removal, respectively). Sections of ovary were then hybridized with a cRNA probe corresponding to the 5' region of ovine ERbeta. ERbeta mRNA expression within the granulosa layer of different size follicles (size classes: < or =3 mm, 3.1-4.0 mm, 4.1-5.0 mm, >5 mm) was quantified. ERbeta mRNA expression varied both with follicle size (P < 0.01) and with cycle stage (P < 0.01). In EF ewes, the highest levels of ERbeta mRNA expression were found in follicles < or = 3 mm in size. ERbeta mRNA expression declined progressively thereafter among the different size classes with lowest levels expressed in >5-mm follicles. By contrast, expression of ERbeta mRNA in the 3.1- to 4.0-mm follicles of LF group was significantly higher than in the < or =3-mm size follicles and declined thereafter progressively to the >5-mm size levels as in the EF group. Furthermore, expression of ERbeta mRNA in < or =3-mm size follicles of LF group was significantly lower than the corresponding size class in the EF group. Lower expression of ERbeta mRNA in >5-mm follicle is suggestive of a down-regulation by the local estrogen milieu.  相似文献   

17.
Differences in rates of steroid production and secretion will, eventually, determine the developmental rates of ovarian follicles. The major supply of cholesterol, the precursor for steroid and androgen biosynthesis, to ovarian cells is from circulating lipoproteins via membrane receptors from the low density lipoprotein receptor (LDL) superfamily. This occurs by either endocytosis, which has been described for very low density lipoprotein receptors (VLDLr), for LDL receptors (LDLr), and by the selective uptake pathway described for the scavenger receptor class B type 1 receptor (SRB1) and the recently described ovarian receptor, lipoprotein receptor-related protein 8 (LRP8). In this study, the mRNA expression of these four cholesterol receptors in bovine ovarian cells was determined at different stages of follicular development. In small antral follicles, mRNA expression of the endocytosis receptors was higher than in large antral follicles. Expression of LRP8 mRNA increased linearly with follicular size together with an increase in LDL, VLDL, and cholesterol concentrations in the follicular fluid. SRB1 mRNA expression tended to increase with follicular diameter. Because different mRNA expression patterns were found for the two types of receptor, this may imply different regulation of cholesterol supply at different stages of follicular development. Accumulation of LDL and VLDL particles in the follicular fluid of large antral follicles may enhance cholesterol availability for the intense steroidogenic activity that is essential at these stages.  相似文献   

18.
In a previous study, the ERbeta cDNA protein-coding region was utilised to clone bovine ERbeta. The objectives in this study were to examine (1) ERbeta mRNA expression in ovarian follicles throughout the bovine first follicular wave, and (2) effect of LH infusion into cows on bERbeta mRNA expression during the second follicular wave. In experiment 1, heifers (4-5 per time point) were ovariectomized at 12, 24, 36, 48, 60, 72, 84, 96, 144, or 216 h after emergence of the first follicular wave after oestrus. In experiment 2, saline or LH was pulsed hourly (computer-controlled syringe pump) into cows (n = 31; 5-6 per treatment) at wave emergence for 2 or 4 days: wave 1-saline (W1S), wave 2-saline (W2S), or wave 2-LH (25 microg/h; W2LH). Ovaries were removed on day 2 or day 4 after wave emergence. Follicles, 2-19mm in size, were dissected, frozen, and stored at -80 degrees C for in situ hybridisation with two bERbeta cRNA probes. Expression of bERbeta mRNA was localised in granulosa cells of healthy follicles. In experiment 1, bERbeta mRNA expression did not change with time points of the wave showing no association of bERbeta mRNA expression with follicular selection and dominance. However, bERbeta mRNA expression decreased with increase in size of all follicles. Expression of bERbeta mRNA was greater in very small follicles (2-4 mm) than in large (> or = 9 mm) follicles. In experiment 2, expression of bERbeta mRNA in follicles did not differ either between W1S and W2S or between W2S and W2LH. In summary, bERbeta mRNA expression decreased with increasing follicular size. However, neither stage of the wave (selection or dominance), nor pulsatile infusion of LH influenced bERbeta mRNA expression.  相似文献   

19.
Evidence suggests that the insulin-like growth factor (IGF) system is involved in follicular growth and development in sheep. However, little information exists as to the role that key peripheral factors play in regulating the expression of IGF components within the follicle. The present study investigated the regulatory effects of FSH and LH on gene expression for IGF ligands and receptors in ovine follicles, using bovine follicular fluid (bFF) and gonadotrophin-releasing hormone antagonist (GnRHa) model systems to perturb endogenous gonadotrophin secretion. Gene expression studies were carried out using in-situ hybridisation with sheep-specific ribonucleotide probes. Treatment of ewes with bFF had no effect on IGF-I mRNA levels. However, IGF-II mRNA levels, particularly in small follicles, and follicular type II IGF-R gene expression significantly increased following bFF administration (P<0.001). Conversely, there was a significant (P<0.001) decrease in type I IGF-R mRNA levels after only 12h of bFF treatment, especially in healthy follicles, although this was transient and was followed by a significant (P<0.01) increase in gene expression levels by 60 h of bFF treatment. Treatment of ewes with GnRHa resulted in a significant increase in mRNA levels encoding IGF-I (P<0.001), IGF-II in early atretic and large follicles (P<0.05), and type II IGF-R in healthy and early atretic follicles (P<0.001). In contrast, GnRHa administration decreased type I IGF-R gene expression levels after 60 h of treatment (P<0.001). These data highlight the roles that endogenous FSH and LH play in regulating IGF ligand and receptor gene expression in the sheep follicle.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号