首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Mechanisms and functions of DNA mismatch repair   总被引:19,自引:1,他引:19  
Li GM 《Cell research》2008,18(1):85-98
DNA mismatch repair (MMR) is a highly conserved biological pathway that plays a key role in maintaining genomic stability. The specificity of MMR is primarily for base-base mismatches and insertion/deletion mispairs generated during DNA replication and recombination. MMR also suppresses homeologous recombination and was recently shown to play a role in DNA damage signaling in eukaryotic cells. Escherichia coli MutS and MutL and their eukaryotic homologs, MutSα and MutLα, respectively, are key players in MMR-associated genome maintenance. Many other protein components that participate in various DNA metabolic pathways, such as PCNA and RPA, are also essential for MMR. Defects in MMR are associated with genome-wide instability, predisposition to certain types of cancer including hereditary non-polyposis colorectal cancer, resistance to certain chemotherapeutic agents, and abnormalities in meiosis and sterility in mammalian systems.  相似文献   

2.
3.
DNA mismatch repair (MMR) is a critical genome-stabilization system. However, the molecular mechanism of MMR in human cells remains obscure because many of the components have not yet been identified. Using a functional in vitro reconstitution system, this study identified three HeLa cell fractions essential for in vitro MMR. These fractions divide human MMR into two distinct stages: mismatch-provoked excision and repair synthesis. In vitro dissection of the MMR reaction and crucial intermediates elucidated biochemical functions of individual fractions in human MMR and identified hitherto unknown functions of human replication protein A (hRPA) in MMR. Thus, one fraction carries out nick-directed and mismatch-dependent excision; the second carries out DNA repair synthesis and DNA ligation; and the third provides hRPA, which plays multiple roles in human MMR by protecting the template DNA strand from degradation, enhancing repair excision, and facilitating repair synthesis. It is anticipated that further analysis of these fractions will identify additional MMR components and enable the complete reconstitution of the human MMR pathway with purified proteins.  相似文献   

4.
Human exonuclease 1 (hEXO1) is implicated in DNA metabolism, including replication, recombination and repair, substantiated by its interactions with PCNA, DNA helicases BLM and WRN, and several DNA mismatch repair (MMR) proteins. We investigated the sub-nuclear localization of hEXO1 during S-phase progression and in response to laser-induced DNA double strand breaks (DSBs). We show that hEXO1 and PCNA co-localize in replication foci. This apparent interaction is sustained throughout S-phase. We also demonstrate that hEXO1 is rapidly recruited to DNA DSBs. We have identified a PCNA interacting protein (PIP-box) region on hEXO1 located in its COOH-terminal ((788)QIKLNELW(795)). This motif is essential for PCNA binding and co-localization during S-phase. Recruitment of hEXO1 to DNA DSB sites is dependent on the MMR protein hMLH1. We show that two distinct hMLH1 interaction regions of hEXO1 (residues 390-490 and 787-846) are required to direct the protein to the DNA damage site. Our results reveal that protein domains in hEXO1 in conjunction with specific protein interactions control bi-directional routing of hEXO1 between on-going DNA replication and repair processes in living cells.  相似文献   

5.
The cellular single-stranded DNA (ssDNA)-binding protein replication protein A (RPA) becomes phosphorylated periodically during the normal cell cycle and also in response to DNA damage. In Saccharomyces cerevisiae, RPA phosphorylation requires the checkpoint protein Mec1, a protein kinase homologous in structure and function to human ATR. We confirm here that immunocomplexes containing a tagged version of Mec1 catalyze phosphorylation of purified RPA, likely reflecting an RPA kinase activity intrinsic to Mec1. A significant stimulation of this activity is observed upon the addition of covalently closed ssDNA derived from the bacteriophage M13. This stimulation is not observed with mutant RPA deficient for DNA binding, indicating that DNA-bound RPA is a preferred substrate. Stimulation is also observed upon the addition of linear ssDNA homopolymers or hydrolyzed M13 ssDNA. In contrast to circular ssDNA, these DNA cofactors stimulate both wild type and mutant RPA phosphorylation. This finding suggests that linear ssDNA can also stimulate Mec1-mediated RPA phosphorylation by activating Mec1 or an associated protein. Although the Mec1-interacting protein Ddc2 is required for RPA phosphorylation in vivo, it is required for neither basal nor ssDNA-stimulated RPA phosphorylation in vitro. Therefore, activation of Mec1-mediated RPA phosphorylation by either circular or linear ssDNA does not operate through Ddc2. Our results provide insight into the mechanisms that function in vivo to specifically induce RPA phosphorylation upon initiation of DNA replication, repair, or recombination.  相似文献   

6.
Regulation of SV40 DNA replication by phosphorylation of T antigen.   总被引:41,自引:5,他引:41       下载免费PDF全文
The role of phosphorylation in regulating the biochemical properties of SV40 large T antigen has been examined. Treatment of purified T antigen with calf intestinal alkaline phosphatase resulted in the removal of 80% of the 32P label. This partially dephosphorylated T antigen displayed an increase in its ability to support DNA replication in vitro. This increase in replication activity was paralleled by an activation of specific DNA binding to site II, a necessary element within the origin of SV40 DNA replication. In contrast, the ATPase activity of dephosphorylated T antigen remained unchanged. These results demonstrate that DNA replication is regulated by phosphorylation of an origin specific DNA binding protein.  相似文献   

7.
We assayed error-prone double-strand break (DSB) repair in wild-type and isogenic Mlh1-null mouse embryonic fibroblasts containing a stably integrated DSB repair substrate. The substrate contained a thymidine kinase (tk) gene fused to a neomycin-resistance (neo) gene; the tk-neo fusion gene was disrupted in the tk portion by a 22bp oligonucleotide containing the 18 bp recognition site for endonuclease I-SceI. Following DSB-induction by transient expression of I-SceI endonuclease, cells that repaired the DSB by error-prone nonhomologous end-joining (NHEJ) and restored the correct reading frame to the tk-neo fusion gene were recovered by selecting for G418-resistant clones. The number of G418-resistant clones induced by I-SceI expression did not differ significantly between wild-type and Mlh1-deficient cells. While most DSB repair events were consistent with simple NHEJ in both wild-type and Mlh1-deficient cells, complex repair events were more common in wild-type cells. Furthermore, genomic deletions associated with NHEJ events were strikingly larger in wild-type versus Mlh1-deficient cells. Additional experiments revealed that the stable transfection efficiency of Mlh1-null cells is higher than that of wild-type cells. Collectively, our results suggest that Mlh1 modulates error-prone NHEJ by inhibiting the annealing of DNA ends containing noncomplementary base pairs or by promoting the annealing of microhomologies.  相似文献   

8.
Smith JA  Waldman BC  Waldman AS 《Genetics》2005,170(1):355-363
We examined error-prone nonhomologous end joining (NHEJ) in Msh2-deficient and wild-type Chinese hamster ovary cell lines. A DNA substrate containing a thymidine kinase (tk) gene fused to a neomycin-resistance (neo) gene was stably integrated into cells. The fusion gene was rendered nonfunctional due to a 22-bp oligonucleotide insertion, which included the 18-bp I-SceI endonuclease recognition site, within the tk portion of the fusion gene. A double-strand break (DSB) was induced by transiently expressing the I-SceI endonuclease, and deletions or insertions that restored the tk-neo fusion gene's reading frame were recovered by selecting for G418-resistant colonies. Overall, neither the frequency of recovery of G418-resistant colonies nor the sizes of NHEJ-associated deletions were substantially different for the mutant vs. wild-type cell lines. However, we did observe greater usage of terminal microhomology among NHEJ events recovered from wild-type cells as compared to Msh2 mutants. Our results suggest that Msh2 influences error-prone NHEJ repair at the step of pairing of terminal DNA tails. We also report the recovery from both wild-type and Msh2-deficient cells of an unusual class of NHEJ events associated with multiple deletion intervals, and we discuss a possible mechanism for the generation of these "discontinuous deletions."  相似文献   

9.
Duplex DNA is replicated in the 5'-3' direction by coordinated copying of leading and lagging strand templates with somewhat different proteins and mechanics, providing the potential for differences in the fidelity of replication of the two strands. We previously showed that in Saccharomyces cerevisiae, active replication origins establish a strand bias in the rate of base substitutions resulting from replication of unrepaired 8-oxo-guanine (GO) in DNA. Lower mutagenesis was associated with replicating lagging strand templates. Here, we test the hypothesis that this bias is due to more efficient repair of lagging stand mismatches by measuring mutation rates in ogg1 strains with a reporter allele in two orientations at loci on opposite sides of a replication origin on chromosome III. We compare a MMR-proficient strain to strains deleted for the MMR genes MSH2, MSH6, MLH1, or EXOI. Loss of MMR reduces the strand bias by preferentially increasing mutagenesis for lagging strand replication. We conclude that GO-A mismatches generated during lagging strand replication are more efficiently repaired. This is consistent with the hypothesis that 5' ends of Okazaki fragments and PCNA, present at high density during lagging strand replication, are used as strand discrimination signals for mismatch repair in vivo.  相似文献   

10.
Herpes simplex virus 1 (HSV-1) is a double-stranded DNA virus that replicates in the nucleus of its human host cell and is known to interact with many cellular DNA repair proteins. In this study, we examined the role of cellular mismatch repair (MMR) proteins in the virus life cycle. Both MSH2 and MLH1 are required for efficient replication of HSV-1 in normal human cells and are localized to viral replication compartments. In addition, a previously reported interaction between MSH6 and ICP8 was confirmed by coimmunoprecipitation and extended to show that UL12 is also present in this complex. We also report for the first time that MLH1 associates with ND10 nuclear bodies and that like other ND10 proteins, MLH1 is recruited to the incoming genome. Knockdown of MLH1 inhibits immediate-early viral gene expression. MSH2, on the other hand, which is generally thought to play a role in mismatch repair at a step prior to that of MLH1, is not recruited to incoming genomes and appears to act at a later step in the viral life cycle. Silencing of MSH2 appears to inhibit early gene expression. Thus, both MLH1 and MSH2 are required but appear to participate in distinct events in the virus life cycle. The observation that MLH1 plays an earlier role in HSV-1 infection than does MSH2 is surprising and may indicate a novel function for MLH1 distinct from its known MSH2-dependent role in mismatch repair.  相似文献   

11.
DNA mismatch repair and cancer   总被引:31,自引:0,他引:31  
Five human DNA mismatch repair genes have been identified that, when mutated, cause susceptibility to hereditary nonpolyposis colorectal cancer (HNPCC). Mutational inactivation of both copies of a DNA mismatch repair gene results in a profound repair defect and progressive accumulation of mutations throughout the genome. Some of the mutations confer selective advantage on the cells, giving rise to cancer. Recent discoveries suggest that apart from postreplication repair, DNA mismatch repair proteins have several other functions that are highly relevant to carcinogenesis. These include DNA damage surveillance, prevention of recombination between nonidentical sequences and participation in meiotic processes (chromosome pairing). A brief overview of these different features of the human DNA mismatch repair system will be provided, with the emphasis in their implications in cancer development.  相似文献   

12.
Replication protein A (RPA), the major eukaryotic single-strand DNA (ssDNA)-binding protein, is essential for replication, repair, recombination, and checkpoint activation. Defects in RPA-associated cellular activities lead to genomic instability, a major factor in the pathogenesis of cancer and other diseases. ssDNA binding activity is primarily mediated by two domains in the 70-kDa subunit of the RPA complex. These ssDNA interactions are mediated by a combination of polar residues and four conserved aromatic residues. Mutation of the aromatic residues causes a modest decrease in binding to long (30-nucleotide) ssDNA fragments but results in checkpoint activation and cell cycle arrest in cells. We have used a combination of biochemical analysis and knockdown replacement studies in cells to determine the contribution of these aromatic residues to RPA function. Cells containing the aromatic residue mutants were able to progress normally through S-phase but were defective in DNA repair. Biochemical characterization revealed that mutation of the aromatic residues severely decreased binding to short ssDNA fragments less than 20 nucleotides long. These data indicate that altered binding of RPA to short ssDNA intermediates causes a defect in DNA repair but not in DNA replication. These studies show that cells require different RPA functions in DNA replication and DNA repair.  相似文献   

13.
Evidence for involvement of HMGB1 protein in human DNA mismatch repair   总被引:9,自引:0,他引:9  
Defects in human DNA mismatch repair predispose to cancer, but many components of the pathway have not been identified. We report here the identification and characterization of a novel component required for mismatch repair in human cells. A 30-kDa protein was purified to homogeneity by virtue of its ability to complement a depleted HeLa extract in repair of mismatched heteroduplexes. The complementing activity was identified as HMGB1 (the high mobility group box 1 protein), a non-histone chromatin protein that facilitates protein-protein interactions and recognizes DNA damage. Evidence is also presented that HMGB1 physically interacts with MutSalpha and is required at a step prior to the excision of mispaired nucleotide in mismatch repair.  相似文献   

14.
The DNA damage-response regulators ATM (ataxia-telangiectasia-mutated) and ATR (ATM-Rad3-related) are structurally and functionally related protein kinases that exhibit nearly identical substrate specificities in vitro. Current paradigms hold that the relative contributions of ATM and ATR to nuclear substrate phosphorylation are dictated by the type of initiating DNA lesion; ATM-dependent substrate phosphorylation is principally activated by DNA double strand breaks, whereas ATR-dependent substrate phosphorylation is induced by UV light and other forms of DNA replication stress. In this report, we employed the cyclic AMP-response element-binding (CREB) protein to provide evidence for substrate discrimination by ATM and ATR in cellulo. ATM and ATR phosphorylate CREB in vitro, and CREB is phosphorylated on Ser-121 in intact cells in response to ionizing radiation (IR), UV light, and hydroxyurea. The UV light- and hydroxyurea-induced phosphorylation of CREB was delayed in comparison to the canonical ATR substrate CHK1, suggesting potentially different mechanisms of phosphorylation. UV light-induced CREB phosphorylation temporally correlated with ATM autophosphorylation on Ser-1981, and an ATM-specific small interfering RNA suppressed CREB phosphorylation in response to this stimulus. UV light-induced CREB phosphorylation was absent in ATM-deficient cells, confirming that ATM is required for CREB phosphorylation in UV irradiation-damaged cells. Interestingly, RNA interference-mediated suppression of ATR partially inhibited CREB phosphorylation in response to UV light, which correlated with reduced phosphorylation of ATM on Ser-1981. These findings suggest that ATM is the major genotoxin-induced CREB kinase in mammalian cells and that ATR lies upstream of ATM in a UV light-induced signaling pathway.  相似文献   

15.
Mutation of parkin is one of the most prevalent causes of autosomal recessive Parkinson’s disease (PD). Parkin is an E3 ubiquitin ligase that acts on a variety of substrates, resulting in polyubiquitination and degradation by the proteasome or monoubiquitination and regulation of biological activity. However, the cellular functions of parkin that relate to its pathological involvement in PD are not well understood. Here we show that parkin is essential for optimal repair of DNA damage. Parkin-deficient cells exhibit reduced DNA excision repair that can be restored by transfection of wild-type parkin, but not by transfection of a pathological parkin mutant. Parkin also protects against DNA damage-induced cell death, an activity that is largely lost in the pathological mutant. Moreover, parkin interacts with the proliferating cell nuclear antigen (PCNA), a protein that coordinates DNA excision repair. These results suggest that parkin promotes DNA repair and protects against genotoxicity, and implicate DNA damage as a potential pathogenic mechanism in PD.  相似文献   

16.
The process of ubiquitylation is best known for its role in targeting proteins for degradation by the proteasome. However, recent studies of DNA-repair and DNA-damage-response pathways have significantly broadened the scope of the role of ubiquitylation to include non-proteolytic functions of ubiquitin. These pathways involve the monoubiquitylation of key DNA-repair proteins that have regulatory functions in homologous recombination and translesion DNA synthesis, and involve the polyubiquitylation of nucleotide-excision-repair proteins.  相似文献   

17.
18.
19.
Methyl-directed DNA mismatch repair in Escherichia coli   总被引:5,自引:0,他引:5  
Some of the molecular aspects of methyl-directed mismatch repair in E. coli have been characterized. These include: mismatch recognition by mutS protein in which different mispairs are bound with different affinities; the direct involvement of d(GATC) sites; and strand scission by mutH protein at d(GATC) sequences with strand selection based on methylation of the DNA at those sites. In addition, communication over a distance between a mismatch and d(GATC) sites has been implicated. Analysis of mismatch correction in a defined system (Lahue et al., unpublished) should provide a direct means to further molecular aspects of this process.  相似文献   

20.
The multidomain protein Thermus aquaticus MutS and its prokaryotic and eukaryotic homologs recognize DNA replication errors and initiate mismatch repair. MutS actions are fueled by ATP binding and hydrolysis, which modulate its interactions with DNA and other proteins in the mismatch-repair pathway. The DNA binding and ATPase activities are allosterically coupled over a distance of ∼70 Å, and the molecular mechanism of coupling has not been clarified. To address this problem, all-atom molecular dynamics simulations of ∼150 ns including explicit solvent were performed on two key complexes—ATP-bound and ATP-free MutS⋅DNA(+T bulge). We used principal component analysis in fluctuation space to assess ATP ligand-induced changes in MutS structure and dynamics. The molecular dynamics-calculated ensembles of thermally accessible structures showed markedly small differences between the two complexes. However, analysis of the covariance of dynamical fluctuations revealed a number of potentially significant interresidue and interdomain couplings. Moreover, principal component analysis revealed clusters of correlated atomic fluctuations linking the DNA and nucleotide binding sites, especially in the ATP-bound MutS⋅DNA(+T) complex. These results support the idea that allosterism between the nucleotide and DNA binding sites in MutS can occur via ligand-induced changes in motion, i.e., dynamical allosterism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号