首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Oakley GG  Patrick SM  Yao J  Carty MP  Turchi JJ  Dixon K 《Biochemistry》2003,42(11):3255-3264
The heterotrimeric DNA-binding protein, replication protein A (RPA), consists of 70-, 34-, and 14-kDa subunits and is involved in maintaining genomic stability by playing key roles in DNA replication, repair, and recombination. RPA participates in these processes through its interaction with other proteins and its strong affinity for single-stranded DNA (ssDNA). RPA-p34 is phosphorylated in a cell-cycle-dependent fashion primarily at Ser-29 and Ser-23, which are consensus sites for Cdc2 cyclin-dependent kinase. By systematically examining RPA-p34 phosphorylation throughout the cell cycle, we have found there are distinct phosphorylated forms of RPA-p34 in different cell-cycle stages. We have isolated and purified a unique phosphorylated form of RPA that is specifically associated with the mitotic phase of the cell cycle. The mitotic form of RPA (m-hRPA) shows no difference in ssDNA binding activity as compared with recombinant RPA (r-hRPA), yet binds less efficiently to double-stranded DNA (dsDNA). These data suggest that mitotic phosphorylation of RPA-p34 inhibits the destabilization of dsDNA by RPA complex, thereby decreasing the binding affinity for dsDNA. The m-hRPA also exhibits altered interactions with certain DNA replication and repair proteins. Using highly purified proteins, m-hRPA exhibited decreased binding to ATM, DNA pol alpha, and DNA-PK as compared to unphosphorylated recombinant RPA (r-hRPA). Dephosphorylation of m-hRPA was able to restore the interaction with each of these proteins. Interestingly, the interaction of RPA with XPA was not altered by RPA phosphorylation. These data suggest that phosphorylation of RPA-p34 plays an important role in regulating RPA functions in DNA metabolism by altering specific protein-protein interactions.  相似文献   

2.
Patrick SM  Oakley GG  Dixon K  Turchi JJ 《Biochemistry》2005,44(23):8438-8448
Replication protein A (RPA) is a heterotrimeric protein consisting of 70-, 34-, and 14- kDa subunits that is required for many DNA metabolic processes including DNA replication and DNA repair. Using a purified hyperphosphorylated form of RPA protein prepared in vitro, we have addressed the effects of hyperphosphorylation on steady-state and pre-steady-state DNA binding activity, the ability to support DNA repair and replication reactions, and the effect on the interaction with partner proteins. Equilibrium DNA binding activity measured by fluorescence polarization reveals no difference in ssDNA binding to pyrimidine-rich DNA sequences. However, RPA hyperphosphorylation results in a decreased affinity for purine-rich ssDNA and duplex DNA substrates. Pre-steady-state kinetic analysis is consistent with the equilibrium DNA binding and demonstrates a contribution from both the k(on) and k(off) to achieve these differences. The hyperphosphorylated form of RPA retains damage-specific DNA binding, and, importantly, the affinity of hyperphosphorylated RPA for damaged duplex DNA is 3-fold greater than the affinity of unmodified RPA for undamaged duplex DNA. The ability of hyperphosphorylated RPA to support DNA repair showed minor differences in the ability to support nucleotide excision repair (NER). Interestingly, under reaction conditions in which RPA is maintained in a hyperphosphorylated form, we also observed inhibition of in vitro DNA replication. Analyses of protein-protein interactions bear out the effects of hyperphosphorylated RPA on DNA metabolic pathways. Specifically, phosphorylation of RPA disrupts the interaction with DNA polymerase alpha but has no significant effect on the interaction with XPA. These results demonstrate that the effects of DNA damage induced hyperphosphorylation of RPA on DNA replication and DNA repair are mediated through alterations in DNA binding activity and protein-protein interactions.  相似文献   

3.
Replication protein A (RPA) is the major eukaryotic single stranded DNA binding protein that plays a central role in DNA replication, repair and recombination. Like many DNA repair proteins RPA is heavily phosphorylated (specifically on its 32 kDa subunit) in response to DNA damage. Phosphorylation of many repair proteins has been shown to be important for their recruitment to DNA damage-induced intra-nuclear foci. Further, phosphorylation of H2AX (gamma-H2AX) has been shown to be important for either the recruitment or stable retention of DNA repair proteins to these intra-nuclear foci. We address here the relationship between DNA damage-induced hyper-phosphorylation of RPA and its intra-nuclear focalization, and whether gamma-H2AX is required for RPA's presence at these foci. Using GFP-conjugated RPA, we demonstrate the formation of extraction-resistant RPA foci induced by DNA damage or stalled replication forks. The strong DNA damage-induced RPA foci appear after phosphorylated histone H2AX and Chk1, but earlier than the appearance of hyper-phosphorylated RPA. We demonstrate that while the functions of phosphoinositol-3-kinase-related protein kinases are essential for DNA damage-induced H2AX phosphorylation and RPA hyper-phosphorylation, they are dispensable for the induction of extraction-resistant RPA and RPA foci. Furthermore, in mouse cells genetically devoid of H2AX, DNA damage-induced extraction-resistant RPA appears with the same kinetics as in normal mouse cells. These results demonstrate that neither RPA hyper-phosphorylation nor H2AX are required for the formation in RPA intra-nuclear foci in response to DNA damage/replicational stress and are consistent with a role for RPA as a DNA damage sensor involved in the initial recognition of damaged DNA or blocked replication forks.  相似文献   

4.
Patrick SM  Tillison K  Horn JM 《Biochemistry》2008,47(38):10188-10196
Replication protein A (RPA) is a heterotrimeric protein that is required for DNA replication and most DNA repair pathways. RPA has previously been shown to play a role in recognizing and binding damaged DNA during nucleotide excision repair (NER). RPA has also been suggested to play a role in psoralen DNA interstrand cross-link (ICL) repair, but a clear biochemical activity has yet to be identified in the ICL DNA repair pathways. Using HeLa cell extracts and DNA affinity chromatography, we demonstrate that RPA is preferentially retained on a cisplatin interstrand cross-link (ICL) DNA column compared with undamaged DNA. The retention of RPA on cisplatin intrastrand and ICL containing DNA affinity columns is comparable. In vitro electrophoretic mobility shift assays (EMSAs) using synthetic DNA substrates and purified RPA demonstrate higher affinity for cisplatin ICL DNA binding compared with undamaged DNA. The enhanced binding of RPA to the cisplatin ICL is dependent on the DNA length. As the DNA flanking the cisplatin ICL is increased from 7 to 21 bases, preferential RPA binding is observed. Fluorescence anisotropy reveals greater than 200-fold higher affinity to a cisplatin ICL containing 42-mer DNA compared with an undamaged DNA and a 3-4-fold higher affinity when compared with a cisplatin intrastrand damaged DNA. As the DNA length and stringency of the binding reaction increase, greater preferential binding of RPA to cisplatin ICL DNA is observed. These data are consistent with a role for RPA in the initial recognition and initiation of cisplatin ICL DNA repair.  相似文献   

5.
Replication protein A (RPA), the trimeric single-stranded DNA-binding protein complex of eukaryotic cells, is important to DNA replication and repair. Phosphorylation of the p34 subunit of RPA is modulated by the cell cycle, occurring during S and G2 but not during G1. The function of phosphorylated p34 remains unknown. We show that RPA p34 phosphorylation is significantly induced by ionizing radiation. The phosphorylated form, p36, is similar if not identical to the phosphorylated S/G2 form. gamma-Irradiation-induced phosphorylation occurs without new protein synthesis and in cells in G1. Mutation of cdc2-type protein kinase phosphorylation sites in p34 eliminates the ionizing radiation response. The gamma-irradiation-induced phosphorylation of RPA p34 is delayed in cells from ataxia telangiectasia, a human inherited disease conferring DNA repair defects and early-onset tumorigenesis. UV-induced phosphorylation of RPA p34 occurs less rapidly than gamma-irradiation-induced phosphorylation but is kinetically similar between ataxia telangiectasia and normal cells. This is the first time that modification of a repair protein, RPA, has been linked with a DNA damage response and suggests that phosphorylation may play a role in regulating DNA repair pathways.  相似文献   

6.
Replication protein A (RPA) participates in many cellular functions including DNA replication and nucleotide excision repair. A direct interaction between RPA and the xeroderma pigmentosum group A protein (XPA) facilitates the assembly of a preincision complex during the processing of DNA damage by the nucleotide excision repair pathway. We demonstrate here the formation of a ternary RPA, XPA, and duplex cisplatin-damaged DNA complex as is evident by electrophoretic supershift analysis. The RPA-XPA complex displays modest specificity for damaged versus undamaged duplex DNA, and the RPA-XPA complex displays a greater affinity for binding duplex cisplatin-damaged DNA when compared with the RPA or XPA proteins alone, consistent with previous results. Using DNA denaturation assays, we demonstrate that the role of XPA is in the stabilization of the duplex DNA structure via inhibition of the strand separation activity of RPA. Rapid kinetic analysis indicates that the bimolecular k(on) of the RPA-XPA complex is 2.5-fold faster than RPA alone for binding a duplex cisplatin-damaged DNA. The dissociation rate, k(off), of the RPA-XPA complex is slower than that of the RPA protein alone, suggesting that the XPA protein stabilizes the initial binding of RPA to duplex DNA as well as maintaining the integrity of the duplex DNA. Interestingly, XPA has no effect on the k(on) of RPA for a single-stranded 40-mer DNA.  相似文献   

7.
Replication protein A phosphorylation and the cellular response to DNA damage   总被引:12,自引:0,他引:12  
Binz SK  Sheehan AM  Wold MS 《DNA Repair》2004,3(8-9):1015-1024
Defects in cellular DNA metabolism have a direct role in many human disease processes. Impaired responses to DNA damage and basal DNA repair have been implicated as causal factors in diseases with DNA instability like cancer, Fragile X and Huntington's. Replication protein A (RPA) is essential for multiple processes in DNA metabolism including DNA replication, recombination and DNA repair pathways (including nucleotide excision, base excision and double-strand break repair). RPA is a single-stranded DNA-binding protein composed of subunits of 70-, 32- and 14-kDa. RPA binds ssDNA with high affinity and interacts specifically with multiple proteins. Cellular DNA damage causes the N-terminus of the 32-kDa subunit of human RPA to become hyper-phosphorylated. Current data indicates that hyper-phosphorylation causes a change in RPA conformation that down-regulates activity in DNA replication but does not affect DNA repair processes. This suggests that the role of RPA phosphorylation in the cellular response to DNA damage is to help regulate DNA metabolism and promote DNA repair.  相似文献   

8.
The 32 kDa subunit of replication protein A (RPA32) is involved in various DNA repair systems such as nucleotide excision repair, base excision repair, and homologous recombination. In these processes, RPA32 interacts with different binding partners via its C-terminal domain (RPA32C; residues 172–270). It has been reported recently that RPA32C also interacts with TIPIN during the intra-S checkpoint. To determine the significance of the interaction of RPA32C with TIPIN, we have examined the interaction mode using NMR spectroscopy and an in silico modeling approach. Here, we show that TIPIN(185–218), which shares high sequence similarity with XPA(10–43) and UNG2(56–89), is less ordered in the free state and then forms a longer α-helix upon binding to RPA32C. The binding interface between TIPIN(185–218) and RPA32C is similar to those of XPA and UNG2, but its mode of interaction is different. The results suggest that RPA32 is an exchange point for multiple proteins involved in DNA repair, homologous recombination, and checkpoint processes and that it binds to different partners with comparable binding affinity using a single site.  相似文献   

9.
Replication protein A (RPA) is a heterotrimeric protein complex required for a large number of DNA metabolic processes, including DNA replication and repair. An alternative form of RPA (aRPA) has been described in which the RPA2 subunit (the 32-kDa subunit of RPA and product of the RPA2 gene) of canonical RPA is replaced by a homologous subunit, RPA4. The normal function of aRPA is not known; however, previous studies have shown that it does not support DNA replication in vitro or S-phase progression in vivo. In this work, we show that the RPA4 gene is expressed in normal human tissues and that its expression is decreased in cancerous tissues. To determine whether aRPA plays a role in cellular physiology, we investigated its role in DNA repair. aRPA interacted with both Rad52 and Rad51 and stimulated Rad51 strand exchange. We also showed that, by using a reconstituted reaction, aRPA can support the dual incision/excision reaction of nucleotide excision repair. aRPA is less efficient in nucleotide excision repair than canonical RPA, showing reduced interactions with the repair factor XPA and no stimulation of XPF-ERCC1 endonuclease activity. In contrast, aRPA exhibits higher affinity for damaged DNA than canonical RPA, which may explain its ability to substitute for RPA in the excision step of nucleotide excision repair. Our findings provide the first direct evidence for the function of aRPA in human DNA metabolism and support a model for aRPA functioning in chromosome maintenance functions in nonproliferating cells.  相似文献   

10.
The interaction of nucleotide excision repair factors--xeroderma pigmentosum complementation group C protein in complex with human homolog of yeast Rad23 protein (XPC-HR23B), replication protein A (RPA), and xeroderma pigmentosum complementation group A protein (XPA)--with 48-mer DNA duplexes imitating damaged DNA structures was investigated. All studied proteins demonstrated low specificity in binding to damaged DNA compared with undamaged DNA duplexes. RPA stimulates formation of XPC-HR23B complex with DNA, and when XPA and XPC-HR23B are simultaneously present in the reaction mixture a synergistic effect in binding of these proteins to DNA is observed. RPA crosslinks to DNA bearing photoreactive 5I-dUMP residue on one strand and fluorescein-substituted dUMP analog as a lesion in the opposite strand of DNA duplex and also stimulates cross-linking with XPC-HR23B. Therefore, RPA might be one of the main regulation factors at various stages of nucleotide excision repair. The data are in agreement with the cooperative binding model of nucleotide excision repair factors participating in pre-incision complex formation with DNA duplexes bearing damages.  相似文献   

11.
Replication protein A (RPA) is a single-stranded DNA (ssDNA) binding protein involved in various processes, including nucleotide excision repair and DNA replication. The 32 kDa subunit of RPA (RPA32) is phosphorylated in response to various DNA-damaging agents, and two protein kinases, ataxia-telangiectasia mutated (ATM) and the DNA-dependent protein kinase (DNA-PK) have been implicated in DNA damage-induced phosphorylation of RPA32. However, the relative roles of ATM and DNA-PK in the site-specific DNA damage-induced phosphorylation of RPA32 have not been reported. Here we generated a phosphospecific antibody that recognizes Thr21-phosphorylated RPA32. We show that both DNA-PK and ATM phosphorylate RPA32 on Thr21 in vitro. Ionizing radiation (IR)-induced phosphorylation of RPA32 on Thr21 was defective in ATM-deficient cells, while camptothecin (CPT)-induced phosphorylation of RPA32 on Thr21 was defective in cells lacking functional DNA-PK. Neither ATM nor DNA-PK was required for etoposide (ETOP)-induced RPA32 Thr21 phosphorylation. However, two inhibitors of the ATM- and Rad3-related (ATR) protein kinase activity prevented ETOP-induced Thr21 phosphorylation. Inhibition of DNA replication prevented both the IR- and CPT-induced phosphorylation of Thr21, whereas ETOP-induced Thr21 phosphorylation did not require active DNA replication. Thus, the regulation of RPA32 Thr21 phosphorylation by multiple DNA damage response protein kinases suggests that Thr21 phosphorylation of RPA32 is a crucial step within the DNA damage response.  相似文献   

12.
Lao Y  Gomes XV  Ren Y  Taylor JS  Wold MS 《Biochemistry》2000,39(5):850-859
Human replication protein A (RPA) is a heterotrimeric single-stranded DNA-binding protein (subunits of 70, 32, and 14 kDa) that is required for cellular DNA metabolism. RPA has been reported to interact specifically with damaged double-stranded DNA and to participate in multiple steps of nucleotide excision repair (NER) including the damage recognition step. We have examined the mechanism of RPA binding to both single-stranded and double-stranded DNA (ssDNA and dsDNA, respectively) containing damage. We show that the affinity of RPA for damaged dsDNA correlated with disruption of the double helix by the damaged bases and required RPAs ssDNA-binding activity. We conclude that RPA is recognizing single-stranded character caused by the damaged nucleotides. We also show that RPA binds specifically to damaged ssDNA. The specificity of binding varies with the type of damage with RPA having up to a 60-fold preference for a pyrimidine(6-4)pyrimidone photoproduct. We show that this specific binding was absolutely dependent on the zinc-finger domain in the C-terminus of the 70-kDa subunit. The affinity of RPA for damaged ssDNA was 5 orders of magnitude higher than that of the damage recognition protein XPA (xeroderma pigmentosum group A protein). These findings suggest that RPA probably binds to both damaged and undamaged strands in the NER excision complex. RPA binding may be important for efficient excision of damaged DNA in NER.  相似文献   

13.
Replication protein A (RPA) plays essential roles in DNA metabolism, including replication, checkpoint, and repair. Recently, we described an in vitro system in which the phosphorylation of human Chk1 kinase by ATR (ataxia telangiectasia mutated and Rad3-related) is dependent on RPA bound to single-stranded DNA. Here, we report that phosphorylation of other ATR targets, p53 and Rad17, has the same requirements and that RPA is also phosphorylated in this system. At high p53 or Rad17 concentrations, RPA phosphorylation is inhibited and, in this system, RPA with phosphomimetic mutations cannot support ATR kinase function, whereas a non-phosphorylatable RPA mutant exhibits full activity. Phosphorylation of these ATR substrates depends on the recruitment of ATR and the substrates by RPA to the RPA-ssDNA complex. Finally, mutant RPAs lacking checkpoint function exhibit essentially normal activity in nucleotide excision repair, revealing RPA separation of function for checkpoint and excision repair.  相似文献   

14.
DNA mismatch repair (MMR) is a critical genome-stabilization system. However, the molecular mechanism of MMR in human cells remains obscure because many of the components have not yet been identified. Using a functional in vitro reconstitution system, this study identified three HeLa cell fractions essential for in vitro MMR. These fractions divide human MMR into two distinct stages: mismatch-provoked excision and repair synthesis. In vitro dissection of the MMR reaction and crucial intermediates elucidated biochemical functions of individual fractions in human MMR and identified hitherto unknown functions of human replication protein A (hRPA) in MMR. Thus, one fraction carries out nick-directed and mismatch-dependent excision; the second carries out DNA repair synthesis and DNA ligation; and the third provides hRPA, which plays multiple roles in human MMR by protecting the template DNA strand from degradation, enhancing repair excision, and facilitating repair synthesis. It is anticipated that further analysis of these fractions will identify additional MMR components and enable the complete reconstitution of the human MMR pathway with purified proteins.  相似文献   

15.
Replication protein A (RPA) is the predominant eukaryotic single-stranded DNA binding protein composed of 70, 34, and 14 kDa subunits. RPA plays central roles in the processes of DNA replication, repair, and recombination, and the p34 subunit of RPA is phosphorylated in a cell-cycle-dependent fashion and is hyperphosphorylated in response to DNA damage. We have developed an in vitro procedure for the preparation of hyperphosphorylated RPA and characterized a series of novel sites of phosphorylation using a combination of in gel tryptic digestion, SDS-PAGE and HPLC, MALDI-TOF MS analysis, 2D gel electrophoresis, and phosphospecific antibodies. We have mapped five phosphorylation sites on the RPA p34 subunit and five sites of phosphorylation on the RPA p70 subunit. No modification of the 14 kDa subunit was observed. Using the procedures developed with in vitro phosphorylated RPA, we confirmed a series of phosphorylation events on RPA from HeLa cells that was hyperphosphorylated in vivo in response to the DNA damaging agents, aphidicolin and hydroxyurea.  相似文献   

16.
In eukaryotes, the single strand DNA (ssDNA)-binding protein, replication protein A (RPA), is essential for DNA replication, repair, and recombination. RPA is composed of the following three subunits: RPA1, RPA2, and RPA3. The RPA1 subunit contains four structurally related domains and is responsible for high affinity ssDNA binding. This study uses a depletion/replacement strategy in human cells to reveal the contributions of each domain to RPA cellular functions. Mutations that substantially decrease ssDNA binding activity do not necessarily disrupt cellular RPA function. Conversely, mutations that only slightly affect ssDNA binding can dramatically affect cellular function. The N terminus of RPA1 is not necessary for DNA replication in the cell; however, this region is important for the cellular response to DNA damage. Highly conserved aromatic residues in the high affinity ssDNA-binding domains are essential for DNA repair and cell cycle progression. Our findings suggest that as long as a threshold of RPA-ssDNA binding activity is met, DNA replication can occur and that an RPA activity separate from ssDNA binding is essential for function in DNA repair.  相似文献   

17.
The cellular single-stranded DNA (ssDNA)-binding protein replication protein A (RPA) becomes phosphorylated periodically during the normal cell cycle and also in response to DNA damage. In Saccharomyces cerevisiae, RPA phosphorylation requires the checkpoint protein Mec1, a protein kinase homologous in structure and function to human ATR. We confirm here that immunocomplexes containing a tagged version of Mec1 catalyze phosphorylation of purified RPA, likely reflecting an RPA kinase activity intrinsic to Mec1. A significant stimulation of this activity is observed upon the addition of covalently closed ssDNA derived from the bacteriophage M13. This stimulation is not observed with mutant RPA deficient for DNA binding, indicating that DNA-bound RPA is a preferred substrate. Stimulation is also observed upon the addition of linear ssDNA homopolymers or hydrolyzed M13 ssDNA. In contrast to circular ssDNA, these DNA cofactors stimulate both wild type and mutant RPA phosphorylation. This finding suggests that linear ssDNA can also stimulate Mec1-mediated RPA phosphorylation by activating Mec1 or an associated protein. Although the Mec1-interacting protein Ddc2 is required for RPA phosphorylation in vivo, it is required for neither basal nor ssDNA-stimulated RPA phosphorylation in vitro. Therefore, activation of Mec1-mediated RPA phosphorylation by either circular or linear ssDNA does not operate through Ddc2. Our results provide insight into the mechanisms that function in vivo to specifically induce RPA phosphorylation upon initiation of DNA replication, repair, or recombination.  相似文献   

18.
The HepA-related protein (HARP/SMARCAL1) is an ATP-dependent annealing helicase that is capable of rewinding DNA structures that are stably unwound due to binding of the single-stranded DNA (ssDNA)-binding protein Replication Protein A (RPA). HARP has been implicated in maintaining genome integrity through its role in DNA replication and repair, two processes that generate RPA-coated ssDNA. In addition, mutations in HARP cause a rare disease known as Schimke immuno-osseous dysplasia. In this study, we purified HARP containing complexes with the goal of identifying the predominant factors that stably associate with HARP. We found that HARP preferentially interacts with RPA molecules that are bound to the DNA-dependent protein kinase (DNA-PK). We also found that RPA is phosphorylated by DNA-PK in vitro, while the RPA-HARP complexes are not. Our results suggest that, in addition to its annealing helicase activity, which eliminates the natural binding substrate for RPA, HARP blocks the phosphorylation of RPA by DNA-PK.  相似文献   

19.
《Epigenetics》2013,8(5):693-697
The HepA-related protein (HARP/SMARCAL1) is an ATP-dependent annealing helicase that is capable of rewinding DNA structures that are stably unwound due to binding of the single-stranded DNA (ssDNA)-binding protein Replication Protein A (RPA). HARP has been implicated in maintaining genome integrity through its role in DNA replication and repair, two processes that generate RPA-coated ssDNA. In addition, mutations in HARP cause a rare disease known as Schimke immuno-osseous dysplasia. In this study, we purified HARP containing complexes with the goal of identifying the predominant factors that stably associate with HARP. We found that HARP preferentially interacts with RPA molecules that are bound to the DNA-dependent protein kinase (DNA-PK). We also found that RPA is phosphorylated by DNA-PK in vitro, while the RPA-HARP complexes are not. Our results suggest that, in addition to its annealing helicase activity, which eliminates the natural binding substrate for RPA, HARP blocks the phosphorylation of RPA by DNA-PK.  相似文献   

20.
Liu JS  Kuo SR  Melendy T 《DNA Repair》2006,5(3):369-380
The major eukaryotic single-stranded DNA (ssDNA) binding protein, replication protein A (RPA), is a heterotrimer with subunits of 70, 32 and 14 kDa (RPA70, RPA32 and RPA14). RPA-coated ssDNA has been implicated as one of the triggers for intra-S-phase checkpoint activation. Phosphorylation of RPA occurs in cells with damaged DNA or stalled replication forks. Here we show that human RPA70 and RPA32 can be phosphorylated by purified S-phase checkpoint kinases, ATR and Chk1. While ATR phosphorylates the N-terminus of RPA70, Chk1 preferentially phosphorylates RPA's major ssDNA binding domain. Chk1 phosphorylated RPA70 shows reduced ssDNA binding activity, and binding of RPA to ssDNA blocks Chk1 phosphorylation, suggesting that Chk1 and ssDNA compete for RPA's major ssDNA binding domain. ssDNA stimulates RPA32 phosphorylation by ATR in a length dependent manner. Furthermore, 3'-, but not 5'-, recessed single strand/double strand DNA junctions produce an even stronger stimulatory effect on RPA32 phosphorylation by ATR. This stimulation occurs for both RNA and DNA recessed ends. RPA's DNA binding polarity and its interaction to 3'-primer-template junctions contribute to efficient RPA32 phosphorylation. Progression of DNA polymerase is able to block the accessibility of the 3'-recessed ends and prevent the stimulatory effects of primer-template junctions on RPA phosphorylation by ATR. We propose models for the role of RPA phosphorylation by Chk1 in S-phase checkpoint pathways, and the possible regulation of ATR activity by different nucleic acid structures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号