首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The mechanism of doxorubicin-induced Ca2+ release from skeletal and cardiac muscle sarcoplasmic reticulum (SR) was studied by examining the effects of azumolene (a water soluble dantrolene analog) on doxorubicin-mediated Ca2+ release and ryanodine binding. Doxorubicin induced a rapid Ca2+ release from both skeletal and cardiac SR in a similar concentration range (EC50 = 5-10 microM). Maximal doxorubicin-induced Ca2+ release was seen at 2 and 0.2 microM Ca2+ for skeletal and cardiac SR, respectively. Addition of 400 microM azumolene caused approx. 30% inhibition of doxorubicin-induced Ca2+ release from both skeletal and cardiac SR; skeletal SR had significantly higher sensitivity to azumolene than cardiac SR. In the presence of Ca2+, doxorubicin increased [3H]ryanodine binding to both skeletal and cardiac SR; whereas in the absence of Ca2+, doxorubicin led to significant ryanodine binding to skeletal SR, but not to cardiac SR. In both types of SR, doxorubicin-activated, but not Ca2+ activated ryanodine binding was inhibited by azumolene. Azumolene sensitivity for inhibition of doxorubicin-activated ryanodine binding was much higher in skeletal SR than cardiac SR, consistent with the results for effects of azumolene on Ca2+ release. Our results are consistent with the possibility that azumolene inhibits doxorubicin binding by direct competition for the drug receptor(s).  相似文献   

2.
The dihydropyridine receptor is associated with the L-type Ca2+ channel in the cell membrane. In this study we have examined the effects of group-specific modification on dihydropyridine binding in heart sarcolemmal membranes isolated from the rabbit. Specifically, dithiothreitol and glutathione were employed to assess the possible role of disulfide (-SS-) bonds in the binding of [3H]dihydropyridines. NEM, PCMS and iodoacetamide were employed to examine the effect of blocking free sulfhydryl groups (-SH) on the binding of [3H]dihydropyridines to their receptor in heart sarcolemma. Glutathione inhibited [3H]PN200-110 binding to sarcolemmal membranes 100%, with an IC50 value of 50 microM, while DTT inhibited maximally by 75% with an IC50 value in the millimolar range. Alkylation of free sulfhydryl groups by NEM or iodoacetamide inhibited binding of [3H]PN200-110 binding in cardiac sarcolemma approx. 40-60%. Blocking of free sulfhydryl groups by PCMS completely inhibited [3H]PN200-110 binding to their receptor in sarcolemmal membranes in a dose-dependent manner with an IC50 value of 20 microM. These results suggest the involvement of disulfide bonds and free sulfhydryl groups in DHP binding to the L-type Ca2+ channel in heart muscle. We also examined the effect of membrane phosphorylation on the specific binding of the dihydropyridine [3H]nitrendipine to its receptor. Phosphorylation was studied in cardiac sarcolemmal as well as skeletal muscle transverse-tubule membranes. Phosphorylation due to endogenous protein kinase and cAMP-dependent protein kinase was without effect on [3H]nitrendipine binding in both cardiac sarcolemmal and skeletal muscle membranes. Addition of exogenous calmodulin under conditions known to promote Ca2+/calmodulin-dependent phosphorylation increased [3H]nitrendipine binding 20% with no alteration in KD in both types of membrane preparation. These results suggest a role for calmodylin in dihydropyridine binding to L-type Ca2+ channels.  相似文献   

3.
The radioligand dihydropyridine [methyl-3H]PN 200-110 binds to contracting myotubes in culture derived from chick embryo pectoralis muscle. [methyl-3H]PN 200-110 binds specifically to high-affinity sites, with nonspecific binding only between 15 and 30% of the total binding. A Scatchard plot of the specific binding revealed a single high-affinity binding site with a KD (dissociation constant) of 0.5 nM +/- 0.2 nM and Bmax (number of binding sites) of 100 fmol/10(6) nuclei. We employed this sensitive assay to probe the appearance of high-affinity [methyl-3H]PN 200-110 binding sites during myogenesis. The time course of appearance of high-affinity binding sites lags behind that of fusion. Low-calcium media prevented the differentiation of myoblasts and blocked the appearance of high-affinity sites. Chelation of intracellular calcium before or after fusion of myoblasts with the calcium indicator Quin 2 prevented the appearance of dihydropyridine binding sites. These findings are consistent with the view that the expression of dihydropyridine receptors is modulated by the intracellular calcium.  相似文献   

4.
Bovine adrenal medulla plasma membranes were purified by a differential centrifugation procedure using sucrose and Urografin discontinuous density gradients; the membranes were enriched 10-12-fold in acetylcholinesterase activity and [3H]ouabain binding sites. Specific (+)-[3H]PN200-110 binding to these membranes amounted to 90% of total binding and was saturable and of high affinity (KD = 41 pM; Bmax = 119 fmol/mg of protein) with a Hill coefficient close to 1, a result suggesting the presence of a single, homogeneous population of dihydropyridine receptors. The association and dissociation rate constants were, respectively, 7.5 X 108 M-1 min-1 and 0.023 min-1. Unlabeled (+)-PN200-110 displaced (+)-[3H]PN200-110 binding with a potency 100-fold higher than (-)-PN200-110 (IC50,0.5 and 45nM, respectively). Although the two enantiomers of BAY K 8644 completely displaced (+)-[3H]PN200-110 binding, they exhibited no stereoselectivity (IC50, 69 and 83 nM,respectively). Whereas ( +/- )-nitrendipine very potently displaced (+)-[3H]PN200-110 binding (IC50 = 1.3 nM) verapamil and cinnarizine displaced the binding by only 30 and 40% at 1 microM, and diltiazem increased it by 20% at 10 microM. [3H]Ouabain bound to plasma membranes with a KD of 34 nM and a Bmax of 9.75 pmol/mg of protein, a figure 80-fold higher than the Bmax for (+)-PN200-110. [3H]Ouabain also bound to intact chromaffin cells with a Bmax of 244 fmol/10(6) cells.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

5.
At micromolar concentrations, ryanodine interacts with the dihydropyridine receptor of rabbit skeletal muscle transverse tubules. Ryanodine displaces specifically bound [3H]PN200-110 with an apparent inhibition constant of approx. 95 microM and inhibits dihydropyridine-sensitive calcium channels in the same preparation with an IC50 of approx. 45 microM. These concentrations of ryanodine are approximately three orders of magnitude higher than those required to saturate binding of the alkaloid to the ryanodine receptor of sarcoplasmic reticulum and to open the calcium release channel of sarcoplasmic reticulum (i.e. 20 nM (1988) J. Gen. Physiol. 92, 1-26). Thus at sufficiently high dose, ryanodine may affect SR as well as plasma membrane Ca permeabilities.  相似文献   

6.
Purified calcium channels have three allosterically coupled drug receptors   总被引:4,自引:0,他引:4  
(-)-[3H]Desmethoxyverapamil and (+)-[3H]PN 200-110 were employed to characterize phenylalkylamine-selective and 1,4-dihydropyridine-selective receptors on purified Ca2+ channels from guinea-pig skeletal muscle t-tubules. In contrast to the membrane-bound Ca2+ channel, d-cis-diltiazem (EC50 = 4.5 +/- 1.7 microM) markedly stimulated the binding of (+)-[3H]PN 200-110 to the purified ionic pore. In the presence of 100 microM d-cis-diltiazem (which binds to the benzothiazepine-selective receptors) the Bmax for (+)-[3H]PN 200-110 increased from 497 +/- 81 to 1557 +/- 43 pmol per mg protein, whereas the Kd decreased from 8.8 +/- 1.7 to 4.7 +/- 1.8 nM at 25 degrees C. P-cis-Diltiazem was inactive. (-)-Desmethoxyverapamil, which is a negative heterotropic allosteric inhibitor of (+)-[3H]IN 200-110 binding to membrane-bound channels, stimulated 1,4-dihydropyridine binding to the isolated channel. (-)-[3H]Desmethoxyverapamil binding was stimulated by antagonistic 1,4-dihydropyridines [(+)-PN 200-110 greater than (-)(R)-202-791 greater than (+)(4R)-Bay K 8644] whereas the agonistic enantiomers (+)(S)-202-791 and (-)(4S)-Bay K 8644 were inhibitory and (-)-PN 200-110 was inactive. The results indicate that three distinct drug-receptor sites exist on the purified Ca2+ channel, two of which are shown by direct labelling to be reciprocally allosterically coupled.  相似文献   

7.
The dihydropyridine receptor was purified from rabbit skeletal muscle microsomes in the presence of [3H]nitrendipine plus diltiazem or [3H](+)PN 200-110 to an apparent density of 1.5-2 nmol binding sites/mg protein. Sodium dodecyl sulfate gel electrophoresis in the absence of reducing agents yielded three peptide bands of 142, 56 and 30 kDa in a relative ratio of 11:1:1.3, whereas in the presence of 40 mM dithiothreitol bands of 142, 122, 56, 31, 26 and 22 kDa were obtained in a relative ratio of 5.5:2.2:1:0.9:14:0.09. This gel pattern was observed regardless of whether the receptor was purified as a complex with nitrendipine plus diltiazem or with (+)PN 200-110. cAMP-dependent protein kinase phosphorylated preferentially the 142-kDa band up to a stoichiometry of 0.82 +/- 0.07 (15) mol phosphate/mol peptide. The 56-kDa band was phosphorylated only in substoichiometric amounts. [3H]PN 200-110 bound at 4 degrees C to one site with apparent Kd and Bmax values of 9.3 +/- 1.7 nM and 2.2 +/- 0.3 (3) nmol/mg protein, respectively. The binding was stereospecific and was not observed in the presence of 1 mM EGTA. Desmethoxyverapamil interfered with the binding of [3H]PN 200-110 in an apparent allosteric manner. (-)Desmethoxyverapamil inhibited the binding of [3H]PN 200-110 at 37 degrees C and stimulated it at 18 degrees C. In agreement with these results, (-)desmethoxyverapamil increased the dissociation rate of [3H]PN 200-110 from 0.29 min-1 to 0.38 min-1 at 37 degrees C and decreased it threefold from 0.046 min-1 to 0.017 min-1 at 18 degrees C. The (+)isomer of desmethoxyverapamil inhibited PN 200-110 binding at all temperatures tested. d-cis-Diltiazem stimulated the binding of [3H]PN 200-110 at 37 degrees C with an apparent EC50 of 1.4 microM and decreased the dissociation rate from 0.29 min-1 to 0.11 min-1. The stimulatory effect of d-cis-diltiazem was temperature-dependent and was seen only at temperatures above 18 degrees C. These results suggest that the purified dihydropyridine receptor retains the basic properties of the membrane-bound receptor and contains separate sites for at least dihydropyridines and phenylalkylamines.  相似文献   

8.
S M Dunn  C Bladen 《Biochemistry》1991,30(23):5716-5721
Detailed kinetic studies of the binding of the calcium channel antagonist (+)-[3H]PN200-110 to membrane preparations from rabbit skeletal muscle have demonstrated that, in addition to the high-affinity sites (Kd = 0.30 +/- 0.05 nM) that are readily measured in equilibrium and kinetic experiments, there are also dihydropyridine binding sites with much lower affinities. These sites were detected by the ability of micromolar concentrations of several dihydropyridines to accelerate the rate of dissociation of (+)-[3H]-PN200-110 from its high-affinity sites. The observed increase in rate was dependent on the concentration of competing ligand, and half-maximal effects occurred at approximately 10 microM for the agonist (+/-)-Bay K8644 and for the antagonists nifedipine, (+/-)-nitrendipine, and (+)-PN200-110. The low-affinity sites appear to be stereospecific since (-)-PN200-110 (1-200 microM) did not affect the dissociation rate. The possible involvement of guanine nucleotide binding proteins in dihydropyridine binding has been investigated by studying the effects of guanosine 5'-O-(3-thiotriphosphate) (GTP gamma S) and guanosine 5'-O-(2-thiodiphosphate) (GDP beta S) on binding parameters. At a concentration of 10 microM, neither GTP gamma S nor GDP beta S significantly affected the binding of dihydropyridines to their high-affinity sites. GTP gamma S did, however, increase the ability of (+/-)-Bay K8644, but not of (+/-)-nitrendipine, to accelerate the rate of dissociation of tightly bound (+)-[3H]PN200-110. GDP beta S did not affect the dose dependence of either the agonist or the antagonist.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

9.
Transverse tubule membrane vesicles contain dihydropyridine receptor of rabbit skeletal muscle in an insideout orientation. Digitonin-solubilized, purified dihydropyridine receptor is embedded in digitonin vesicles in an outside-out orientation. Ca2+ selectively stimulates binding of the Ca2+-channel antagonist [3H]PN200-110 to dihydropyridine receptor in the outside-out but not the inside-out orientation. The dissociation constant for binding Ca2+ to the extracellular Ca2+-specific binding site of dihydropyridine receptor is 2-3 microM. The data demonstrate that binding Ca2+ to the extracellular high-affinity Ca2+-binding site is required for binding dihydropyridines to dihydropyridine receptor. This binding is inhibited, however, by 1-10 mM concentrations of any divalent cation tested (Ba2+, Mn2+, Mg2+). Also, Ca2+ selectively stimulates binding of the Ca2+-channel agonist [3H]BayK8644 to dihydropyridine receptor in the inside-out orientation. The titration of this Ca2+ dependence indicates that the dissociation constant for binding Ca2+ to the intracellular Ca2+-specific binding site of dihydropyridine receptor is in the millimolar range. Thus, binding Ca2+-channel agonist or antagonist to dihydropyridine receptor is modulated by binding Ca2+ to different sites of the receptor. Measurements of dissociation rate constants for binding [3H]PN200-110 to dihydropyridine receptor in the presence of diltiazem, verapamil and/or Ca2+ indicate that Ca2+, like diltiazem or verapamil, is an allosteric effector of this receptor.  相似文献   

10.
Tetrabutyl-2(2-phenoxyethyl)-1,3-propylidene diphosphonate (SR-7037) completely displaced dihydropyridine [( 3H]PN200-110), phenylalkylamine [( 3H]D888), and benzothiazepine [( 3H]diltiazem) ligands from brain L-type calcium channels. Half-maximal inhibition of [3H]PN200-110 binding occurred at 19 nM with a Hill coefficient of 0.96. SR-7037 primarily decreased the affinity for [3H]PN200-110 with a small, but significantly, effect on the maximal binding capacity. Kinetic studies showed that this was due to an increased radioligand dissociation rate from 0.04 min-1 to 0.43 min-1 in the presence of the diphosphonate. Displacement of [3H]D888 by SR-7037 was biphasic with respective IC50 of 44 and 8400 nM. Likewise, unlabeled (-)-D888 identified two sites with IC50 values of 0.9 and 27 nM. Both SR-7037 (1000 nM) and D888 (200 nM) accelerated radioligand dissociation about 2-fold. [3H]Diltiazem binding was inhibited by SR-7037 with an IC50 value of 29 nM. The inhibition of dihydropyridine binding by SR-7037 is enhanced by most divalent cations at millimolar concentrations with the following potency: Mn2+ greater than Mg2+ greater than Ca2+ greater than Co2+. Barium has the opposite effect. The half-maximal effect of calcium occurred at 6 microM free ion. Specific binding of [3H]D888 was antagonized in the presence of 1 mM CaCl2. It is concluded that SR-7037 has allosteric interactions with the dihydropyridine receptor of the L-type calcium channel. The differential effect of Ca2+ on the potency of D888 and diltiazem relative to that of SR-7037 indicates that the three drugs may bind to nonequivalent sites. These results support specific calcium channel inhibition, possibly at a novel site, as the primary mechanism of the diphosphonate's pharmacological actions.  相似文献   

11.
Calcium channel blockers bind with high affinity to sites on the voltage-sensitive Ca2+ channel. Radioligand binding studies with various Ca2+ channel blockers have facilitated identification and characterization of binding sites on the channel structure. In the present study we evaluated the relationship between the binding sites for the Ca2+ channel blockers on the voltage-sensitive Ca2+ channel from rabbit heart sarcolemma and rabbit skeletal muscle transverse tubules. [3H]PN200-110 binds with high affinity to a single population of sites on the voltage-sensitive Ca2+ channel in both rabbit heart sarcolemma and skeletal muscle transverse tubules. [3H]PN200-110 binding was not affected by added Ca2+ whereas EGTA and EDTA noncompetitively inhibited binding in both types of membrane preparations. EDTA was a more potent inhibitor of [3H]PN200-110 binding than EGTA. Diltiazem stimulates the binding of [3H]PN200-110 in a temperature-sensitive manner. Verapamil inhibited binding of [3H]PN200-110 to both types of membrane preparations in a negative manner, although this effect was of a complex nature in skeletal muscle transverse tubules. The negative effect of verapamil on [3H]PN200-110 binding in cardiac muscle was completely reversed by Ca2+. On the other hand, Ca2+ was without effect on the negative cooperativity seen between verapamil and [3H]PN200-110 binding in skeletal muscle transverse tubules. Since Ca2+ did not affect [3H]PN200-110 binding to membranes, we would like to suggest that Ca2+ is modulating the negative effect of verapamil on [3H]PN200-110 binding through a distinct Ca2+ binding site.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

12.
Characterization of DHP binding protein in crayfish striated muscle   总被引:1,自引:0,他引:1  
The dihydropyridine calcium channel blocker, [3H]PN 200-110, binds specifically also to crayfish muscle membranes, though with a binding capacity smaller than that measured with rabbit or human skeletal muscle membranes. [3H]PN 200-110 binding proteins from the crayfish T-tubules were solubilized and purified on WGA Sepharose or extracted from gel. The purified protein has a molecular mass of approximately 190 kDa under nonreducing conditions and was able to transport calcium after reconstitution. Polyclonal antibodies against crayfish T-tubules enriched with purified DHP-binding protein were shown to bind to DHP-binding protein from both the crayfish and the rabbit skeletal muscle, although not with the same intensity. Electron microscopy showed the presence of ovoid particles. Our results suggest that a voltage-dependent calcium channel may be present in crayfish skeletal muscle, which is homological with the L-type calcium channel in rabbit skeletal muscle.  相似文献   

13.
The dihydropyridine binding sites associated with rat neocortical synaptosomes and microvessels were compared using an in vitro [3H]PN 200-110 [(+)-[methyl-3H]-isopropyl 4-(2,1,3-benzoxadiazol-4-yl)-1,4-dihydro-2,6-dimethyl-5- methoxycarbonylpyridine-3-carboxylate] binding assay. Saturation experiments yielded similar KD values (approximately 70 pM) and Bmax values (approximately 400 fmol/mg of protein) for the two membrane preparations. Interaction experiments with [3H]PN 200-110 and various calcium-modulating substances provided further evidence for the practically identical nature of the synaptosomal and microvascular dihydropyridine binding sites. These findings predict that lipophilic dihydropyridines, simultaneously occupying the two central binding sites, have the dual effect of altering neuronal function and local blood flow.  相似文献   

14.
The rabbit skeletal muscle T-tubule membranes preparation is the richest source of organic Ca2+ blocker receptor associated with the voltage-dependent Ca2+ channel. Solubilization by 3-[(3-cholamidopropyl)dimethyl-ammonio]-1-propane sulfonate (CHAPS) in the presence of glycerol leads to a 52% recovery of active receptors as determined by (+)[3H]PN 200-110 binding experiments. The dissociation constant of the (+) [3H]PN 200-110 solubilized-receptor complex was 0.4 +/- 0.2 nM by equilibrium binding and 0.13 nM from the rate constants of association (k1 = 0.116 nM-1 min-1) and dissociation (k-1 = 1.5 10(-2) min-1). The (+) [3H]PN 200-110 receptor has been substantially purified by a combination of filtration of Ultrogel A2 column and lectin affinity chromatography in the presence of trace amount of specifically bound (+) [3H]PN 200-110. The purified material contained polypeptides of apparent molecular weights of 142 000, 32 000 and 33 000. These three components copurified with (+)[3H]PN 200-110 binding activity.  相似文献   

15.
We describe the rapid incorporation of the CHAPS solubilized dihydropyridine receptor into phospholipid vesicles. A series of sucrose gradient sedimentation experiments demonstrate that the (+)-[3H]PN200-110-labeled dihydropyridine receptor is associated with lipid vesicles following detergent removal by Extracti-gel chromatography. Solubilization of the receptor results in a loss of (+)-[3H]PN200-110 binding affinity relative to that observed in native membranes; the high affinity binding of (+)-[3H]PN200-110 can be restored upon reincorporation of the receptor into phospholipid vesicles. Similarly, the incorporation of the receptor restores its stability to incubation at 37 degrees C relative to that of the detergent solubilized receptor, thereby mimicking the properties of the membrane bound form of the receptor. The dissociation rate of (+)-[3H]PN200-110 from the reconstituted receptor is shown to be allosterically regulated by verapamil and diltiazem, indicating that the binding sites for these calcium antagonists have been inserted along with the dihydropyridine receptor into phospholipid vesicles. The results presented in this report, thus demonstrate the successful reconstitution of the dihydropyridine receptor into phospholipid vesicles by a variety of criteria. The reconstitution method described here is rapid and efficient, and should now facilitate structure-function studies of this receptor and its interrelationships with other regulatory components of the voltage-sensitive calcium channel system.  相似文献   

16.
Photoaffinity labeling of isolated triads and purified dihydropyridine receptor with [3H]azidopine and (+)-[3H]PN200-110 has been used to identify and characterize the dihydropyridine-binding subunit of the 1,4-dihydropyridine receptor of rabbit skeletal muscle. The 1,4-dihydropyridine receptor purified from rabbit skeletal muscle triads contains four protein subunits of 175,000, 170,000, 52,000, and 32,000 Da (Leung, A., Imagawa, T., and Campbell, K. P. (1987) J. Biol. Chem. 262, 7943-7946). Photoaffinity labeling of isolated triads with [3H]azidopine resulted in specific and covalent incorporation of [3H]azidopine into only the 170,000-Da subunit of the dihydropyridine receptor and not into the 175,000-Da glycoprotein subunit of the receptor. The [3H]azidopine-labeled 170,000-Da subunit was separated from the 175,000-Da glycoprotein subunit by sequential elution from a wheat germ agglutinin-Sepharose column with 1% sodium dodecyl sulfate followed by 200 mM N-acetylglucosamine. Photoaffinity labeling of purified dihydropyridine receptor with [3H]azidopine or (+)-[3H]PN200-110 also resulted in the specific and covalent incorporation of either ligand into only the 170,000-Da subunit. Therefore, our results show that the dihydropyridine-binding subunit of the skeletal muscle 1,4-dihydropyridine receptor is the 170,000-Da subunit and not the 175,000-Da glycoprotein subunit.  相似文献   

17.
The binding properties of the 1,4-dihydropyridine calcium channel antagonist, [3H](+)PN 200-110, were studied in rat cerebral cortical and cardiac homogenates (37°C, Krebs phosphate buffer). Specific binding of [3H](+)PN 200-110 was saturable, reversible, and of high affinity (Kd values are 35 and 64 pM for the cerebral cortex and heart, respectively). In parallel studies with [3H](+)PN 200-110, the dissociation constant of [3H]nitrendipine was 10–12 times higher. Substituted dihydropyridine calcium channel antagonists and agonists competitively inhibited specific [3H](+)PN 200-110 binding, but d-cis diltiazem enhanced and verapamil incompletely inhibited [3H](+)PN 200-110 binding in both the cerebral cortex and the heart. The effects of diltiazem and verapamil on [3H](+)PN 200-110 binding were due mainly to alterations in the dissociation constant (Kd), without alterations in the binding density (Bmax). The new [3H](+)PN 200-110 receptor binding assay is remarkable for its low degree of nonspecific binding as compared to [3H]nitrendipine at physiological temperatures. [3H(+)PN 200-110 is a useful ligand for the further analysis of the dihydropyridine binding sites associated with calcium channels.  相似文献   

18.
The present study was undertaken to characterize the in vivo 1,4-dihydropyridine (DHP) receptor binding of long-acting 1,4-DHP calcium channel antagonists in the mesenteric artery and other tissues of SHR. In vivo specific binding of (+)-[3H]PN 200-110 in the SHR mesenteric artery was significantly (36.6-49.7 %) reduced 1-8 h after oral administration of benidipine (1.84 micromol/kg). A greater reduction in (+)-[3H]PN 200-110 binding in the mesenteric artery was observed at a higher dose (5.53 micromol/kg) of this drug. This dose of benidipine also reduced significantly the in vivo specific (+)-[3H]PN 200-110 binding in the aorta but not in the myocardium and cerebral cortex. Following oral administration of amlodipine (17.6 micromol/kg), a significant (51.7-94.2 %) reduction in (+)-[3H]PN 200-110 binding was seen at 1-18 h in the mesenteric artery and at 1-12 h in the aorta. Only a slight reduction in myocardial and cerebral cortical (+)-[3H]PN 200-110 binding was seen following amlodipine administration. In contrast, oral administration of nifedipine (28.9 micromol/kg) reduced markedly in vivo (+)-[3H]PN 200-110 binding in all the tissues of SHR at 1-6 h, and the degree and time-course of the reduction did not differ significantly among the tissues. The area under the curve (AUC) for the receptor occupancy vs time was calculated from the reduction rate (%) of in vivo specific (+)-[3H]PN 200-110 binding. The ratios of the AUCmesenteric artery to AUCaorta or AUCmesenteric artery to AUCmyocardium after oral administration of benidipine and amlodipine were greater than the corresponding value for nifedipine. The degree and time-course of arterial receptor occupancy by benidipine and amlodipine agreed well with those of their hypotensive effects in the conscious SHR. In conclusion, the present study demonstrates that benidipine and amlodipine may occupy, in a more selective and sustained manner, 1,4-DHP receptors in arterial tissues than in other tissues of SHR, and thus, such receptor binding specificity may be responsible for the long-lasting hypotensive effects of these drugs.  相似文献   

19.
Excitation-contraction coupling (ECC) proteins in the human heart were characterized using human atrial tissues from different age groups. The samples were classified into one infant group (Group A: 0.2-7 years old) and three adult groups (Group B: 21-30; Group C: 41-49; Group D: 60-66). Whole homogenates (WH) of atrial tissues were assayed for ligand binding, 45Ca2+ uptake and content of ECC proteins by Western blotting. Equilibrium [3H]ryanodine binding to characterize the ryanodine receptor (RyR) of the sarcoplasmic reticulum (SR) showed that the maximal [3H]ryanodine binding (Bmax) to RyR was similar in all the age groups, but the dissociation constant (kd) of ryanodine was higher in the infant group than the adult groups. Oxalate-supported 45Ca2+ uptake into the SR, a function of the SR SERCA2a activity, was lower in the infant group than in the adult groups. Similarly, [3H]PN200-110 binding, an index of dihydropyridine receptor (DHPR) density, was lower in the infant group. Expression of calsequestrin and triadin assessed by Western blotting was similar in the infant and adult groups, but junctin expression was considerably higher in the adult groups. These differences in key ECC proteins could underlie the different Ca2+ handling properties and contractility of infant hearts.  相似文献   

20.
Skeletal muscle membranes derived either from the tubular (T) network or from the sarcoplasmic reticulum (SR) were characterized with respect to the binding of the dihydropyridine, [3H]PN200-110, and the alkaloid, [3H]ryanodine; polypeptide composition; and ion channel activity. Conditions for optimizing the binding of these radioligands are discussed. A bilayer pulsing technique is described and is used to examine the channels present in these membranes. Fusion of T-tubule membranes into bilayers revealed the presence of chloride channels and dihydropyridine-sensitive calcium channels with three distinct conductances. The dihydropyridine-sensitive channels were further characterized with respect to their voltage dependence. Pulsing experiments indicated that two different populations of dihydropyridine-sensitive channels existed. Fusion of heavy SR vesicles revealed three different ion channels; the putative calcium release channel, a potassium channel, and a chloride channel. Thus, this fractionation procedure provides T-tubules and SR membranes which, with radioligand binding and single channel recording techniques, provide a useful tool to study the characteristics of skeletal muscle ion channels and their possible role in excitation-contraction coupling.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号