首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
For superoxide (O2-) responses of human neutrophils stimulated by FMLP, experiments were designed to assess the requirement of extracellular calcium [( Ca2+]o) for priming of O2- responses by platelet-activating factor (PAF), PMA, or ionomycin. Although priming by PMA did not require [Ca2+]o, there was, as expected, a requirement for [Ca2+]o for the optimal priming effects of PAF and ionomycin. The ED50 value for [Ca2+]o in the priming function of PAF was 105 microM. The [Ca2+]o-dependent priming with ionomycin was bimodal with two ED50 values for [Ca2+]o of 90 microM and 3.2 mM. Optimal priming by PAF required at least 4-min exposure of cells to [Ca2+]o. Cells primed by PAF exhibited faster initial rates of O2-production after addition of FMLP, but the duration of O2- production was not prolonged. Whereas PAF-primed responses to FMLP are usually associated with increases in intracellular calcium [( Ca2+]i) after addition of FMLP, two conditions were found in which O2- responses to FMLP in PAF-primed cells occurred in the absence of any detectable increase in [Ca2+]i. When cells were loaded with the calcium chelator, bis-(O-aminophenoxy)-ethane-H,N,N',N'-tetraacetic acid, and then primed with PAF, normal amounts of inositol 1,4,5-trisphosphate were formed, but no increase in [Ca2+]i occurred after addition of FMLP even though the cells exhibited a fully primed O2- response; in Ca2(+)-depleted and ionomycin-permeabilized cells that were primed with PAF and then stimulated with FMLP, O2- was generated in amounts comparable to reference control (primed) cells, but there was suppressed production of inositol 1,4,5-trisphosphate and no increase in [Ca2+]i after addition of FMLP to PAF-primed cells. These data confirm the requirement of [Ca2+]o for optimal priming of neutrophils by PAF and ionomycin (but not cells primed by PMA) and indicate that, under certain conditions, generation of O2- in response to FMLP in PAF-primed neutrophils can occur independent of any increase in [Ca2+]i.  相似文献   

2.
Signal transduction events have been evaluated in human neutrophils stimulated with immune complexes consisting of polyclonal rabbit antibody complexed with BSA. Immune complexes induced dose-related O2- responses, but very small increases in intracellular calcium ([Ca2+]i) levels were observed, in contrast to FMLP-stimulated cells. Measurements employing [45Ca2+] demonstrated that calcium influx and efflux in cells stimulated with immune complexes was substantially less than fluxes found in FMLP-stimulated cells. With respect to inositol 1,4,5-trisphosphate (Ins(1,4,5)P3) formation under conditions in which the O2- responses to immune complexes or FMLP were similar, the Ins(1,4,5)P3 response to immune complexes was much smaller (by 65%) as compared to that induced by FMLP. Although pertussis toxin-treated cells showed a greatly diminished O2- response (by 89%) to FMLP, the response to immune complexes was largely resistant (only 26% reduction) to the inhibitory effects of this toxin. Antibodies to Fc gamma R indicated that engagement of Fc gamma RII and Fc gamma RIII, but not Fc gamma RI, receptors was related to the O2- response of neutrophils to immune complexes. O2- formation occurred in neutrophils incubated with Staphylococcus aureus cell walls bearing antibodies to Fc gamma RII or Fc gamma RIII. These data indicate that, in human neutrophils stimulated with immune complexes, signal transduction events involve engagement of Fc gamma RII and Fc gamma RIII. The O2- response is largely pertussis-toxin insensitive, is not associated with a significant increase in levels of [Ca2+]i, and is associated with relatively little formation of Ins(1,4,5)P3. This is in contrast to cells stimulated with FMLP in which O2- responses are largely pertussis toxin-sensitive and associated with large increases in [Ca2+]i as well as formation of Ins(1,4,5)P3. Signal transduction events involving Fc gamma R appear to be quite different from those events related to engagement of FMLP receptors.  相似文献   

3.
TNF-alpha enhances polymorphonuclear responses to many stimuli, including chemotactic peptide FMLP. It also promotes expression of FMLP receptors and thus may prime polymorphonuclear neutrophils to this and other agonists by up-regulating signal recognition molecules. However, we find that the cytokine's actions on FMLP receptors lagged priming of FMLP-induced degranulation. Moreover, TNF-alpha enhanced degranulation responses to leukotriene B4 and platelet-activating factor but paradoxically down-regulated leukotriene B4 receptors and only transiently up-regulated platelet-activating factor receptors. Hence, TNF-alpha has pleiotropic effects on receptor expression; these effects diverge from priming; and a large part of the primed state must reflect enhancement of post-receptor events.  相似文献   

4.
LPS priming of the neutrophil results in enhanced release of superoxide upon subsequent stimulation, but the mechanism of this effect remains obscure. The recent recognition that neutrophils synthesize and retain platelet-activating factor within the cell led us to hypothesize that enhanced synthesis of platelet-activating factor in the LPS-primed cell might account for the observed effects of lipopolysaccharide. Using human neutrophils isolated on plasma-Percoll gradients, we found that incubation with 100 ng/ml LPS for 60 min resulted in a small but significant increase in intracellular platelet-activating factor assessed after lipid extraction, TLC, and bioassay. The further stimulation of primed neutrophils with FMLP resulted in a marked increase in neutrophil platelet-activating factor compared with non-LPS-treated controls. The priming effect of LPS was time dependent (30 to 60 min), dose dependent, and inhibited at 0 degree C and did not require protein synthesis. Platelet-activating factor so generated was not released but rather retained within the neutrophil, and the molecular species of platelet-activating factor produced was predominantly 1-O-hexadecyl-2-acetyl-sn-3-phosphorylcholine. Platelet-activating factor production in LPS-treated neutrophils was also enhanced by PMA, suggesting that receptor-mediated events could not account exclusively for the enhancement. Considering the ability of nanomolar concentrations of exogenously added platelet-activating factor to prime the neutrophil for enhanced release of superoxide, the rapid intracellular accumulation of platelet-activating factor that accompanies stimulation of an LPS-primed cell by FMLP may modulate the secretory events that accompany such stimulation.  相似文献   

5.
Although it is evident that the chemotactic peptide FMLP activates O2-formation in neutrophils via the phosphoinositidase-mediated second messenger system, it is less clear how endogenous priming agents such as ATP and platelet activating factor potentiate FMLP action. In our study, we have examined the possible effects of the stable ATP analog adenosine 5'-O-[3-thiotriphosphate] (ATP gamma S) on cellular levels of inositol 1,4,5-trisphosphate, [Ca2+]i and diglyceride (DG), in resting and in FMLP-stimulated neutrophils. Although all three measures were increased in the presence of FMLP, only the increase in DG was enhanced by pretreatment (priming) with ATP gamma S. We also measured the accumulation of the phosphoinositide cycle intermediate cytidine 5'-diphosphate (CDP)-DG to assess possible effects of priming on phosphoinositide resynthesis. The addition of FMLP to [3H]cytidine-prelabeled neutrophils elicited an increase in the accumulation of [3H]CDP-DG that was maximally enhanced in cells that were pretreated with cytochalasin B. The stimulated accumulation of [3H]CDP-DG was completely reversed by the addition of myo-inositol. Treatment of [3H]cytidine-prelabeled neutrophils with ATP gamma S (10-100 microM) resulted in a dose-dependent synergistic increase in FMLP-stimulated [3H]CDP-DG accumulation, whereas ATP gamma S alone had no effect. The observed increases in DG and in [3H]CDP-DG, in contrast to inositol 1,4,5-trisphosphate and [Ca2+]i responses, correlates well with the ATP gamma S-priming of FMLP-induced O2-formation. A similar potentiation of FMLP-induced stimulation of CDP-DG formation was also observed with platelet-activating factor. It is proposed that the priming of FMLP responses in neutrophils proceeds via a mechanism that selectively enhances DG production through a mechanism that is independent of FMLP-induced breakdown of phosphatidylinositol bisphosphate.  相似文献   

6.
After interaction with so-called priming agents, the respiratory burst in human granulocytes does not become activated, but is enhanced upon subsequent stimulation with the chemoattractant FMLP. Investigating the mechanism of the priming reaction, we found that a transient rise in the cytosolic free calcium concentration [( Ca2+]i) suffices to irreversibly prime human granulocytes. Thus, platelet-activating factor (PAF) induced a transient increase in [Ca2+]i and primed the cells to an enhanced respiratory burst upon subsequent interaction with FMLP. Artificially, the transient rise in [Ca2+]i was mimicked by addition and subsequent removal of the Ca2+ ionophore ionomycin; this treatment too, primed the respiratory burst of the granulocytes. The priming induced by ionomycin was completely abolished when [Ca2+]i changes were buffered during exposure of the cells to the ionophore. The priming induced by PAF was only partially inhibited under [Ca2+]i-buffering conditions during priming, indicating that multiple pathways exist in the priming of granulocytes by PAF.  相似文献   

7.
Guinea-pig alveolar macrophages were harvested by bronchoalveolar lavage and purified by differential adhesion. They were labeled with 14C-Arachidonic acid and then exposed to platelet-activating factor or to the calcium ionophore A23187. The activity of cellular phospholipase A2 was considered as the release of free 14C-Arachidonic acid in the cell supernatant. The pretreatment of guinea-pig alveolar macrophages with two lipocortin-like proteins (36 kDa and 40 kDa) purified from mice lung induced a significant inhibition of their phospholipase A2 activity upon platelet-activating factor and calcium ionophore stimulation. These results indicate that lipocortin-like proteins can modulate the phospholipase A2 activity of isolated cells in vitro.  相似文献   

8.
Alveolar macrophages are the primary phagocytic cell of lung, but are also capable of a variety of other functions, which include initiating or modulating inflammatory and immune responses through the production of soluble mediators. One such group of mediators is the eicosanoids. Further, recent data indicate that alveolar macrophages are not functionally homogeneous, but are heterogeneous with several subpopulations that differ both morphologically and functionally. Considering the apparent importance of prostaglandin synthesis and release in inflammatory and immune responses, the current study was undertaken to determine whether alveolar macrophage subpopulations differ in their ability to synthesize and release prostaglandin (PG) E, PGI2, and thromboxane A2 after stimulation by calcium ionophore A23187, zymosan, or aggregated IgG. Alveolar macrophages were harvested by bronchoalveolar lavage and were separated into 18 density-defined fractions. Density-defined alveolar macrophages (DD-AM) showed marked heterogeneity in prostaglandin synthesis and release. Maximal PGE synthesis and release was seen as a single peak after calcium ionophore A23187 and zymosan stimulation. In contrast, two peaks in PGE synthesis were seen after aggregated IgG stimulation. PGI2 synthesis was seen as a single peak generated by different DD-AM after calcium ionophore A23187 and zymosan. In contrast, aggregated IgG stimulation of subpopulations exhibited uniform synthesis and release of PGI2. Thromboxane A2 synthesis and release was maximal from a broad range of various DD-AM after calcium ionophore A23187, zymosan, and aggregated IgG stimulation. The results demonstrate that DD-AM are heterogeneous in ability to synthesize and release prostaglandins which is dependent on the stimuli. Therefore, specific subpopulations of alveolar macrophages may be central to the control of the pulmonary inflammatory response through specific eicosanoid synthesis and release.  相似文献   

9.
We have previously shown that the biologically important reactive oxygen metabolite hydrogen peroxide (H2O2) stimulates arachidonic acid (AA) release and thromboxane A2 synthesis in the rat alveolar macrophage. We have now investigated the effects of H2O2 on alveolar macrophage 5-lipoxygenase metabolism. H2O2 failed to stimulate detectable synthesis of leukotriene B4, leukotriene C4, or 5-hydroxyeicosatetraenoic acid (5-HETE) as determined by reverse-phase high performance liquid chromatography (RP-HPLC) and sensitive radioimmunoassays (RIAs). This was not explained by oxidative degradation of leukotrienes by H2O2 at the concentrations used. Moreover, RIA and RP-HPLC analyses demonstrated that H2O2 dose-dependently inhibited synthesis of leukotriene B4, leukotriene C4, and 5-HETE induced by the agonists A23187 (10 microM) and zymosan (100 micrograms/ml), over the same concentration range at which it augmented synthesis of the cyclooxygenase products thromboxane A2 and 12-hydroxy-5,8,10-heptadecatrienoic acid. Four lines of evidence suggested that H2O2 inhibited alveolar macrophage leukotriene and 5-HETE synthesis by depleting cellular ATP, a cofactor for 5-lipoxygenase. 1) H2O2 depleted ATP in A23187- and zymosan-stimulated alveolar macrophages with a dose dependence very similar to that for inhibition of agonist-induced leukotriene synthesis. 2) The time courses of ATP depletion and inhibition of leukotriene B4 synthesis by H2O2 were compatible with a rate-limiting effect of ATP on leukotriene synthesis in H2O2-exposed cultures. 3) Treatment of alveolar macrophages with the electron transport inhibitor antimycin A prior to A23187 stimulation depleted ATP and inhibited leukotriene B4 and C4 synthesis to equivalent degrees, while thromboxane A2 production was spared. 4) Incubation with the ATP precursors inosine plus phosphate attenuated both ATP depletion and inhibition of leukotriene B4 and C4 synthesis in alveolar macrophages stimulated with A23187 in the presence of H2O2. Our results show that H2O2 has the capacity to act both as an agonist for macrophage AA metabolism, and as a selective inhibitor of the 5-lipoxygenase pathway, probably as a result of its ability to deplete ATP. Depletion of cellular energy stores by oxidants generated during inflammation in vivo may be a means by which the inflammatory response is self-limited.  相似文献   

10.
Alveolar macrophages obtained by lung lavage from rats were incubated with monoclonal mouse anti-DNP IgE and specific antigen (DNP-HSA) and were found to release a slow reacting substance (SRS), which was characterized by high performance liquid chromatography as leukotriene C4 (LTC)4. Alveolar macrophages incubated with 1 microM A23187 (calcium ionophore) released similar amounts of SRS (6.0 +/- 2.2 and 5.7 +/- 3.7 X 10(-10) mol of LTC4 per 5 X 10(6) alveolar macrophages, respectively). The optimal conditions and mechanism of LTC release by IgE and antigen were examined. LTC4 release was maximal when freshly retrieved alveolar macrophages were incubated for 20 min with 10 micrograms/ml IgE and then for 20 min with 100 ng/ml antigen or for 20 min with IgE and antigen that had been preincubated together for 30 min at room temperature. In addition, LTC4 release was maximal when cells were challenged with IgE and antigen in a protein-free balanced salt solution and when the cells were tumbled to prevent adherence. Dose response experiments revealed that macrophages released LTC4 when stimulated with as little as 10 ng IgE and 100 ng DNP-HSA. Alveolar macrophages did not release LTC when challenged with IgE or DNP-HSA alone. Activation of LTC4 release by IgE and antigen was rapid in onset (2.5 to 5 min), and washing to remove fluid phase IgE and antigen revealed that once activated, alveolar macrophages were capable of prolonged and continuous release of LTC4. Peritoneal lavage cells stimulated with IgE and antigen did not release SRS but could release SRS when incubated with A23187 (5.7 +/- 1.3 X 10(-10) mol LTC4/5 X 10(6) macrophages). A large variability existed between individual rats in the ability of their alveolar macrophages to be activated by IgE and antigen to release LTC4. DNP-HSA labeled with 125I was used to show formation of immune complexes of IgE and antigen when IgE and antigen were incubated together before macrophage challenge. IgE immune complexes containing as little as 2 ng of antigen elicited the release of LTC4 from alveolar macrophages. These data indicate that rat alveolar macrophages release primarily LTC4 when challenged with IgE immune complexes, and that the alveolar macrophage may differ in this respect from peritoneal macrophages that do not release detectable quantities of LTC4 when challenged under identical conditions.  相似文献   

11.
Macrophage migration inhibitory factor (MIF), a putative cytokine involved in inflammatory and immune responses, was identified in rat peritoneal macrophages by Western blot analysis and its secretion into culture medium by enzyme-linked immunosorbent assay. To clarify the possibility of vitamin E as an immune modulator, we investigated the effect of vitamin E on MIF production in macrophages in response to calcium ionophore A23187 and lipopolysaccharide (LPS). Intraperitoneal injections of vitamin E (5 mg per rat) for 6 successive days resulted in a significant increase of alpha-tocopherol content in peritoneal macrophages. Alpha-tocopherol content of macrophages in vitamin E-treated rats was 478.3 +/- 90.7 ng/10(6) cells, whereas in control rats it was 1.5 +/- 0.5 ng/10(6) cells. For the control macrophages, total MIF content of the medium (2.5 x 10(6) cells/18 ml) without stimulation was 40.7 +/- 3.6 ng after 14 h culture, whereas stimulation with calcium ionophore A23187 (400 nM) and LPS (5.0 microg/ml) induced the elevation of MIF content to 65.9 +/- 7.5 ng and 74.3 +/- 10.4 ng, respectively (p < 0.05, n = 3). On the other hand, vitamin E-enriched macrophages without stimulation showed less MIF content (14.0 +/- 4.2 ng) than the control (p < 0.05, n = 3). Similarly, the increase of MIF of vitamin E-treated macrophages was significantly suppressed after stimulation with calcium ionophore A23187 or LPS, compared with the control macrophages (p < 0.01, n = 3). From analysis of intracellular MIF content by Western blot, we found no alteration of intracellular MIF content of vitamin E-macrophages, in contrast to the decreased content of control stimulated-macrophages, showing that vitamin E suppressed MIF secretion into the culture medium. Taken together, these results indicate that vitamin E may contribute to the regulation of inflammatory and immune responses through regulation of MIF secretion, possibly by modulating macrophage-membrane architecture.  相似文献   

12.
Meconium aspiration syndrome (MAS) frequently results in inactivation of surfactant, persistent pulmonary hypertension (PPHN) and respiratory failure among newborn infants. Inflammation and inflammatory mediators play an important role in MAS. Since alveolar macrophages are thought to be very important cells in the pathogenesis of various inflammatory diseases, we evaluated whether meconium could stimulate rat alveolar macrophages to generate platelet-activating factor (PAF) and tumor necrosis factor (TNF)-alpha in vitro. We also examined the response to A23187 (calcium ionophore), 1-0-Hexadecyl-2-acetyl-sn-glycero-3-phosphocholine (synthetic PAF) and dexamethasone on meconium-induced release of PAF and TNF-alpha. PAF and TNF-alpha concentrations from supernatant fluid were measured after high-performance liquid chromatography purification by specific radioimmunoassay, and TNF-alpha concentrations were determined by using an enzyme-linked immunosorbent assay. Our results showed that alveolar macrophages exposed to meconium could enhance PAF and TNF-alpha production in a dose (0.1, 1, 5 and 10%, P<0.01)-dependent way. In the presence of A23187, the capability of meconium to stimulate PAF production was further enhanced in the supernatant fluids. Furthermore, treatment with synthetic PAF significantly increased the generation of TNF-alpha in response to meconium. On the other hand, dexamethasone effectively inhibited both PAF and TNF-alpha production stimulated by 5% meconium (P<0.01, P<0.01; respectively). We suggest that alveolar macrophages and PAF, TNF-alpha play an important role in the pathogenesis of lung injury and severe complications in MAS. Furthermore, the protective effect of glucocorticoids in MAS could be due, at least in part, to a suppression of PAF and TNF-alpha generation.  相似文献   

13.
Although a weak direct stimulus of superoxide anion (O2?) production, platelet-activating factor (PAF) markedly enhances responses to chemotactic peptides (such as n-formyl-met-leu-phe, FMLP) and phorbol esters (such as phorbol myristate acetate, PMA) in human neutrophils. The mechanism of priming was explored first through inhibition of steps in the signal transduction pathway at and following PAF receptor occupation. Priming was not altered by pertussis toxin or intracellular calcium chelation, but the PAF receptor antagonist WEB 2086 and the protein kinase C (PKC) inhibitors sphinganine and staurosporine significantly inhibited the primed response. In order to study the regulation of PAF priming, the effect of PAF alone was desensitized by exposure to escalating doses of PAF prior to exposure to the secondary stimuli. The priming effect of PAF was not desensitized under these conditions. The role of PKC in desensitization was also studied. Prior exposure to PAF also desensitized the increase in membrane PKC activity evoked by a single concentration of PAF. However, when the PAF response was desensitized, PKC priming of the response to FMLP or PMA still occurred, suggesting that PKC activity may play a role in the maintenance of the primed state despite PAF desensitization. These data suggest that: (1) PAF priming is receptor- and PKC-mediated but is independent of pertussis toxin-inhibitable G-proteins or intracellular calcium, (2) during migration in vivo, neutrophils may be desensitized to the direct effects of PAF but maintain the capacity for enhanced responses to other stimuli, (3) desensitization of PAF-induced particulate PKC activity also occurs, but PAF primes PKC activity despite PAF desensitization, and (4) distinct mechanisms govern the direct and priming effects of PAF on oxidative metabolism. © 1993 Wiley-Liss, Inc.  相似文献   

14.
In order to examine the possible role of vitamin E on the modulation of macrophages, we investigated the effect of vitamin E on O2- and PGE2 production in macrophages. The production of both PGE2 and O2- in rat peritoneal macrophages was dose-dependently stimulated by the addition of PMA and calcium ionophore A23187. However, the macrophages obtained after intraperitoneal injection of vitamin E for six successive days showed less PGE2 and O2- production when stimulated with PMA or A23187 as compared to those of control macrophages. O2- production in control macrophages stimulated with 139 nM PMA and 1 microM A23187 as 4.2 +/- 0.3 and 3.0 +/- 0.2 nmol/min per 10(6) cells, respectively. On the other hand, O2- production by the macrophages from vitamin E-treated rats was 1.5 +/- 0.4 nmol/min per 10(6) cells when stimulated with the PMA, and was not detectable when stimulated with A23187. As for the production of PGE2, control macrophages produced 2.59 +/- 0.70 ng/30 min per 10(6) cells when stimulated with PMA and 8.96 +/- 3.26 ng/30 min per 10(6) cells with the A23187, whereas PGE2 production by the macrophages from vitamin E-treated rats was reduced to 12-20% of the control. By analyzing alpha-tocopherol content and intracellular concentration of calcium ion [( Ca2+]i) in the macrophages isolated from control and vitamin E-treated rats, vitamin E treatment augmented alpha-tocopherol content (384.7 +/- 76.1 vs. 1.2 +/- 0.4 ng/10(6) cells) and decreased free [Ca2+]i when stimulated with A23187 (652 +/- 14 vs. 1201 +/- 223 nM).  相似文献   

15.
Superoxide production in alveolar macrophages is stimulated by agonists which act through Ca2+-mediated (concanavalin A) and/or protein kinase C (phorbol ester or diacylglycerol analogues) -mediated events. Simultaneous addition of saturating concentrations of concanavalin A and a protein kinase C activator (either phorbol 12-myristate-13-acetate or 1-oleoyl-2-acetyl-sn-glycerol) caused a supra-additive enhancement of the initial rate of O2-. production. This synergism closely correlated with the known time-course of Ca2+ mobilization induced by concanavalin A; however, it occurred under conditions in which protein kinase C activation is reportedly not Ca2+ dependent. Phorbol ester-induced O2-. production was partially inhibited by the Ca2+ ionophore, A23187. Although phorbol ester-stimulated O2-. production initially was enhanced by concanavalin A, the duration of this O2-. production was reduced in comparison to that induced by phorbol ester alone. These results suggest a dual role for intracellular Ca2+ in both stimulatory and inhibitory regulation of O2-. production.  相似文献   

16.
Phosphatidic acid phosphohydrolase (PPH) activity was determined in human polymorphonuclear leukocytes (PMNs) by measuring the hydrolysis of [32P]phosphatidic acid (PA) added to cell sonicates. Enzyme activity was localized primarily to a soluble fraction. Soluble and particulate activities required magnesium and were inhibited by calcium, N-ethylmaleimide, sphingosine, and propranolol. The activity in unstimulated PMNs was 0.64 +/- 0.11 nmol of PA hydrolyzed.mg protein-1.min-1 in particulate and 4.20 +/- 0.42 in soluble fractions. Stimulation of PMNs with 1 microM f-Met-Leu-Phe (FMLP) for 10 min caused a slight decrease in soluble activity and a small increase in the activity of particulate fractions. Preincubation with 10 microM cytochalasin B for 5 min before FMLP stimulation markedly enhanced both of these changes. The effect of FMLP plus cytochalasin B was rapid (less than 10 s), whereas the calcium ionophore A23187 (1 microM) and phorbol myristate acetate (100 ng/ml) caused slower and smaller changes in enzyme activity. These results indicate that after chemoattractant stimulation; PPH activity decreases in the soluble fraction and increases in the particulate fraction suggesting that PPH may participate in signal transduction in the PMN.  相似文献   

17.
The principal sulfatide of virulentMycobacterium tuberculosis, sulfolipid-I (SL-I), both directly stimulates neutrophil superoxide (O 2 ) release and, at substimulatory concentrations, primes these cells for markedly enhanced oxidative responsiveness to other stimuli. The present study was undertaken to clarify the priming mechanisms by comparing cellular events following priming doses of SL-I with those following priming with N-formyl-methionyl-leucyl-phenylalanine (FMLP). We compared the involvement of the calcium cation (Ca2+), as well as membrane protein kinase C (PKC) activity and the translocation of NADPH oxidase-cytosolic cofactor effected by priming levels of the two agonists. The investigation led to two important conclusions. First, we clearly demonstrate that priming by both SL-I and FMLP results from activation of cellular processes that are not involved in direct oxidative activation. For example, whereas direct induction of O 2 generation by FMLP and SL-I required increases in intracellular Ca2+, an increase in intracellular calcium concentration ([Ca2+]i) above basal levels was not required for priming. Second, we identified key differences in the cellular responses to priming doses of SL-I and FMLP. Whereas increased membrane PKC activity caused by priming doses of FMLP was only partially blocked by chelation of intracellular Ca2+, Ca2+ chelation completely inhibited the increase in membrane PKC activity caused by SL-I. NADPH oxidase-cytosolic factor translocation to plasma membranes was completely blocked by pertussis toxin when priming doses of SL-I were used. This guanine-nucleotide-binding protein inhibitor had no effect on FMLP-dependent translocation of the oxidase cofactors. The comparative approach introduced in this report provides a valuable and novel method to discern the complex interactions of various cellular processes that regulate the state of activation of stimulated cells.  相似文献   

18.
The effects of some phenothiazines (promethazine, PMZ; chlorpromazine, CPZ; levomepromazine, LVPZ; thioridazine, TRDZ; trifluoperazine, TFPZ) on the activation and viability of rat peritoneal macrophages were investigated. The macrophage activation was estimated by measuring of luminol-dependent chemiluminescence, induced by phorbol-12-myristate-13-acetate (PMA) (a protein kinase C activator) or calcium ionophore A23187. The viability of macrophages was determined using ATP bioluminescence as a criterion of cell viability. It was observed that all drugs, in concentrations higher than 1 mol/L, markedly decreased the chemiluminescent index of PMA-activated or A23187-activated macrophages. The inhibitory effect was dose-dependent. It was better expressed in the case of CPZ, followed by TFPZ and TRDZ, and less expressed in the case of PMZ and LVPZ. The suppression of chemiluminescence of PMA-/A23187-activated macrophages by phenothiazines was not a result of their cytotoxic effect. Moreover, it was found that all drugs dose-dependently enhanced the viability of macrophages, estimated by ATP production. The inhibitory effects of phenothiazines on the chemiluminescence of PMA-/A23187-activated macrophages were greater than their ability to decrease KO2-induced chemiluminescence as a result of interaction with superoxide radicals. It may be supposed that the inhibitory effect of phenothiazines on PMA-/A23187-induced chemiluminescence of macrophages is a result not only of interaction between drugs and superoxide radicals, generated during the "oxidative burst" of activated cells. Presumably the drugs have an immunomodulating effect on rat peritoneal macrophages.  相似文献   

19.
Murine bone marrow-derived macrophages (BMM) undergo DNA synthesis in response to growth factors such as colony stimulating factor-1 (CSF-1) and granulocyte-macrophage CSF (GM-CSF). These macrophages can also be "activated," but without subsequent DNA synthesis, by a number of other agents, including lipopolysaccharide (LPS), concanavalin A, zymosan, formyl-methionyl-leucyl-phenylalanine (FMLP), and the Ca2+ ionophore, A23187. When BMM are treated with a range of stimuli, there is some, although not perfect, correlation between transient elevations in both c-myc mRNA and c-fos mRNA levels and increases in DNA synthesis. However, enhanced DNA synthesis and oncogene expression are readily dissociated from rises in inositol phosphates and, by implication, phospholipase C-mediated hydrolysis of phosphatidyl inositol 4,5-bisphosphate. Superoxide formation in BMM can also be dissociated from the other responses and does not necessarily depend on protein kinase C activation.  相似文献   

20.
Extracellular acidification induces human neutrophil activation   总被引:3,自引:0,他引:3  
In the current work, we evaluated the effect of extracellular acidification on neutrophil physiology. Neutrophils suspended in bicarbonate-buffered RPMI 1640 medium adjusted to acidic pH values (pH 6.5-7.0) underwent: 1) a rapid transient increase in intracellular free calcium concentration levels; 2) an increase in the forward light scattering properties; and 3) the up-regulation of surface expression of CD18. By contrast, extracellular acidosis was unable to induce neither the production of H2O2 nor the release of myeloperoxidase. Acidic extracellular pH also modulated the functional profile of neutrophils in response to conventional agonists such as FMLP, precipiting immune complexes, and opsonized zymosan. It was found that not only calcium mobilization, shape change response, and up-regulation of CD18 expression but also production of H2O2 and release of myeloperoxidase were markedly enhanced in neutrophils stimulated in acidic pH medium. Moreover, extracellular acidosis significantly delayed neutrophil apoptosis and concomitantly extended neutrophil functional lifespan. Extracellular acidification induced an immediate and abrupt fall in the intracellular pH, which persisted over the 240-s analyzed. A similar abrupt drop in the intracellular pH was detected in cells suspended in bicarbonate-supplemented PBS but not in those suspended in bicarbonate-free PBS. A role for intracellular acidification in neutrophil activation is suggested by the fact that only neutrophils suspended in bicarbonate-buffered media (i.e., RPMI 1640 and bicarbonate-supplemented PBS) underwent significant shape changes in response to extracellular acidification. Together, our results support the notion that extracellular acidosis may intensify acute inflammatory responses by inducing neutrophil activation as well as by delaying spontaneous apoptosis and extending neutrophil functional lifespan.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号