首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Fixation of 14CO2 by synchronized cultures of Ankistrodesmus braunii was highest for young growing cells, low for mature cells, and lowest for dividing cells. The amount of 14C excreted during photosynthesis followed the same trend. Cells at the end of the growing phase, after 10 hours of a 16-hour light phase, excreted nearly 35% of the total 14C fixed as one product, glycolate. Dividing cells from the dark phase, when tested in the light, excreted only 4% as much glycolate-14C as the young growing cells. Dividing cells also excreted as much mesotartrate as glycolate and also some isocitrate lactone and an unidentified acid. None of these excreted acids were found inside the cells in significant amounts. Methods for isolation and identification of the excreted acids are present. With 14C-labeled algae, it was shown that the excretion of glycolate was light-dependent and inhibited by 1,1-dimethyl-3-(p-chlorophenyl) urea. The excretion of labeled mesotartrate, isocitrate lactone, and an unknown acid, but not glycolate, also occurred in the dark. The excreted mesotartrate was predominantly carboxyl-labeled even after long periods of 14CO2 fixation. Since glycolate is known to be uniformly labeled, glycolate could not be the precursor of the carboxyl-labeled mesotartrate. The reason for the specific excretion of glycolate, mesotartrate, and isocitrate lactone is not known, but the metabolism of all three acids by the algae may be limited and each can form dilactides or lactones by dehydration. In this context isocitrate lactone was excreted rather than the free acid.  相似文献   

2.
Summary Both Scenedesmus and Chlorella excreted comparable quantities of glycolate. Glycolate formation was dependent upon light and oxygen, but occured in the absence of added CO2 or NaHCO3 for net photosynthesis. In an environment of 3000 ft. c. light and an atmosphere of oxygen, about 35 g glycolate were excreted per hour per milliliter 1% (v/v) algae without NaHCO3 or CO2. Upon addition of NaHCO3 the rate increased to about 55 g. Glycolate formation in the light in the absence of CO2 may result from photometabolism of algal polysaccharides.Glycolate excretion by Scenedesmus occurred at all pH values between 6.5 and 9.5 and was not related to utilization of bicarbonate. Scenedesmus obliquus excreted glycolate when existing in plates of four or eight cells, but not when present as small individual cells.At pH 9 14C fixation by Scenedesmus was faster than fixation by Chlorella. There was no significant difference in products of 14C fixation formed by Scenedesmus at pH values between 6.5 and 9.5.For unknown reasons -hydroxy-2-pyridinemethanesulfonate stimulated CO2 fixation by Scenedesmus by at least 100%. This sulfonate had no effect on glycolate excretion nor upon the distribution of 14C among the products of 14CO2 fixation by Scenedesmus.Supported in part by NSF Grant GB-4154 and published with the approval of the Director of the Michigan Agricultural Experiment Station as journal article No. 3946. The research was initiated during the period when N. E. Tolbert was supported in part by a National Institutes of Health Senior Fellowship at the Biochemisches Institut, Universität, Freiburg/Br., Germany.  相似文献   

3.
Aminooxyacetate (1 millimolar) did not inhibit photosynthetic 14CO2 fixation by Chlamydomonas reinhardtii Dangeard, (−) strain (N.90) but greatly stimulated the biosynthesis and excretion of glycolate. Similar results were obtained from cells grown with 5% CO2 or low CO2 (air). After 2 minutes with air-grown cells, [14C]glycolate increased from 0.3% of the total 14C fixed by the control to 11.7% in the presence of aminooxyacetate and after 10 minutes from 3.8% to 41.1%. Ammonium nitrate (0.2 millimolar) in the media blocked the aminooxyacetate stimulation of glycolate excretion. Chromatographic analyses of the labeled products in the cells and supernatant media indicated that aminooxyacetate also completely inhibited the labeling of alanine while some pyruvate accumulated and was excreted. A high percentage (35%) of initial 14CO2 fixation was into C4 acids. Initial products of 14CO2 fixation included phosphate esters as well as malate, aspartate, and glutamate in treated or untreated cells. Lactate was also a major early product of photosynthesis, and its labeling was reduced by aminooxyacetate. Inasmuch as lactate was not excreted, glycolate excretion seemed to be specific. When photosynthesis was inhibited by 3-(3,4-dichlorophenyl)-1,1-dimethylurea, labeled organic and amino acids but not phosphate esters were lost from the cells. Aminooxyacetate did not inhibit the enzymes associated with glycolate synthesis from ribulose bisphosphate.  相似文献   

4.
A. Yokota  S. Kitaoka 《Planta》1987,170(2):181-189
The rate of glycolate excretion in Euglena gracilis Z and some microalgae grown at the atmospheric level of CO2 was determined using amino-oxyacetate (AOA). The extracellular O2 concentration was kept at 240 M by bubbling the incubation medium with air. Glycolate, the main excretion product, was excreted by Euglena at 6 mol·h-1·(mg chlorophyll (Chl))-1. Excretion depended on the presence of AOA, and was saturated at 1 mM AOA. A substituted oxime formed from glyoxylate and AOA was also excreted. Bicarbonate added at 0.1 mM did not prevent the excretion of glycolate. The excretion of glycolate increased with higher O2 concentrations in the medium, and was competitively inhibited by much higher concentrations of bicarbonate. Aminooxyacetate also caused excretion of glycolate from the green algae, Chlorella pyrenoidosa, Scenedesmus obliquus and Chlamydomonas reinhardtii grown on air, at the rates of 2–7 mol·h-1·(mg Chl)-1 in the presence of 0.2–0.6 mM dissolved inorganic carbon, but the cyanobacterium, Anacystis nidulans, grown in the same way did not excrete glycolate. The efficiency of the CO2-concentrating mechanism to suppress glycolate formation is discussed on the basis of the magnitude of glycolate formation in these low-CO2-grown cells.Abbreviations AOA aminooxyacetate - Chl chlorophyll - DIC dissolved inorganic carbon - HPLC high-pressure liquid chromatography - Rubisco ribulose-1,5-bisphosphate carboxylase/oxygenase This is the 16th paper in a series on the metabolism of glycolate in Euglena gracilis. The 15th paper is Yokota et al. (1985c)  相似文献   

5.
G. R. Findenegg 《Planta》1977,135(1):33-38
Excretion and absorption of glycolate by young cells of Scenedesmus obliquus (Turp.) Krüger strain D3 grown synchronously with 2% CO2 was compared after no pretreatment with air (CO2-adapted) or after a 2 h adaptation to normal air (0.03% CO2) (air-adapted). At 21% O2, excretion occurred only from CO2-adapted cells at high pH (pH 8.0). Under conditions where no excretion occurred, external glycolate (0.2 mM) was taken up by both air-and CO2-adapted cells at a much faster rate at pH 5 than at pH 8. The uptake was accompanied by an apparent stoichiometric uptake of H+. CO2-adapted algae exhibited high uptake rates that were even higher in the dark than in the light. Air-adapted algae showed high uptake rates in the light but only minimal uptake in the dark. The uptake rate was decreased to about 1/3 with 5% CO2, except with CO2-adapted cells in the light, in which a slight stimulation occurred. Cl- ions inhibited glycolate uptake by air-adapted cells in the light; conversely, light-stimulated Cl- uptake of these cells was inhibited by glycolate. A hypothesis is discussed according to which the internal pH regulates the uptake and release of Cl-, HCO 3 - , and glycolate.Abbreviations DCMU 3-(3,4 dichlorophenyl)-1, 1-dimethyl urea - FCCP carbonyl cyanide p-trifluoro-methoxyphenylhydrazone - HEPES 2-(4-(2-hydroxyethyl)-piperazinyl) ethanesulfonic acid - HPMS -hydroxypyridinemethanesulfonate - MES 2-morpholinoethanesulfonic acid - PCV packed cell volume  相似文献   

6.
G. Döhler  R. Koch 《Planta》1972,105(4):352-359
Summary The algae were grown under normal air conditions in a low light intensity (400 lux) and measured in the normal CO2-concentration (0.03 Vol. %). After an illumination period we observed a CO2 gush which is dependent on the temperature and wavelength used during the measurements. At +20°C a CO2 gush occurs only in the blue and far red regions. At +35°C, on the other hand, a CO2 outburst appears over the whole spectrum. The magnitude of the CO2 gush varies with the wavelength used during the light period. On this basis we have measured an action spectrum of photorespiration which is identical with the action spectrum of photosynthetic CO2 uptake.Only at a low temperature (+20°C) and illumination with red light (550 to 651 nm; 10-s einsteins/cm2·sec) did we find a light induced release of glycolate; in blue (432 and 473 nm; 10-s einsteins/cm2·sec) and far red light (681 and 703 nm; 10-8 einsteins/cm2·sec) no glycolate excretion occurred. But after addition of -hydroxy-2-pyridylmethane sulfonate (10-3M) glycolate was excreted during illumination with all used wavelengths. The magnitude of glycolate production was nearly the same in all cases. No glycolate excretion occurred at +35°C in the whole region of the spectrum. Here, too, the addition of -HPMS forced release of glycolate in all wavelengths, indicating that glycolate biosynthesis was occurring.The results are discussed with reference to the physiological behaviour of the algae and activation of photorespiration in blue light. The obtained action spectrum of photorespiration is explained on the basis of a close relationship to photosynthesis.  相似文献   

7.
The claim that Chlorella sp. (CCAP 211/8p), sometimes referred to as C. fusca, Shihira and Krauss, does not excrete glycolate has been reexamined. Chlorella sp. grown on 5% CO2in air, excreted glycolate when incubated in light in 10 mM bicarbonate. Excretion ceased 30–60 min after transfer of the cells to air and no excretion could be detected with air-grown cells or with cells grown on 5% CO2in media buffered at pH 8.0. Incubation with 10 mM isonicotinyl hydrazide, a glycolate pathway inhibitor, caused excretion in air-grown cells and stimulated excretion in CO2-grown cells indicating that both the rate of glycolate synthesis and metabolism is higher in CO2grown cells than in air-grown cells. Enhanced glycolate synthesis and excretion in CO2-grown cells is correlated with law photosynthetic rate in 10 mM bicarbonate, and the photosynthetic rate of these cells doubles over a period of 2–2.5 h after initial transfer from high CO2to bicarbonate. This correlation of photosynthetic induction with cessation of glycolate excretion is similar to that reported in a bluegreen alga and thought to occur in other green algae. These results indicate that glycolate excretion and its regulation in this species of Chlorella is not different from that in other algae.  相似文献   

8.
Thiobacillus neapolitanus grown in minerals medium in a thiosulfate-limited chemostat excreted 15% of all the carbon dioxide fixed as 14C-organic compounds at a dilution rate (D) of 0.03 h-1. At D=0.36 h-1 this excretion was 8.5%. Up to a D of 0.2h-1 glycolate was the major excretion product. Glycolate excretion was maximal at a pO2 of 100% air saturation (a.s.) and not detectable at a pO2 of 5% (a.s.). Increasing the pCO2 of the gassing mixture to 5% (v/v), at a pO2 of 50% a.s. resulted in a lowering of the glycolate excretion from 3.5% of the total CO2 fixed to 1.8%. These results indicate that glycolate excretion in T. neapolitanus is due to oxygenase activity of D-ribulose-1,5-bisphosphate carboxylase. HPMS (2-pyridylhydroxymethanesulfonate), an inhibitor of glycolate metabolism, did not stimulate the glycolate production in T. neapolitanus. Glycolate excretion was not observed in thiosulfate-limited chemostat cultures of the obligately chemolithotrophic Thiomicrospira pelophila or in thiosulfate- or formate-grown cultures of the facultatively chemolithotrophic Thiobacillus A2.Abbreviation HPMS 2-pyridylhydroxymethanesulfonate  相似文献   

9.
When photosynthesis of the blue-green alga Anacystis nidulans was measured as 14CO2-fixation, the inhibitory effect of DCMU at low concentrations was greatest when mainly Photosystem 1 (PS 1) (excitation at 446 or 687 nm) was operative. At concentrations above 10-6M the inhibition on 14CO2-fixation was greatest when mainly Photosystem 2 (PS 2) was operative (excitation at 619). During excitation of PS 1, the excretion of glycolate was stimulated at low concentrations of DCMU (5 × 10-8M and lower), while higher concentrations inhibited excretion. All concentrations of DCMU inhibited glycolate excretion when mainly PS 2 was excited. The curves showing the relative effect of DCMU on the two photosystems, measured as PS 1/PS 2, had opposite shapes for 14CO2-fixation and glycolate excretion. An increase in 14CO2-fixation coincided with a decrease in glycolate excretion and vice versa. It appears that the increased rate of photosynthesis when mainly PS 1 was operative relative to that when mainly PS 2 was excited, increases the consumption of glycolate in an oxidation process associated with the excitation of PS 1, resulting in less excretion of glycolate to the medium. The influence of DCMU inhibition on labelled amino acid pools connected to the glycolate pathway (glycine-serine) is quite similar to that for 14CO2-fixation. At concentrations below 10-6M DCMU, inhibition of 14CO2- incorporation into the amino acids was greatest when PS 1 was excited, while at the higher concentrations tested, inhibition was greater when PS 2 was excited. We conclude that the metabolism of glycine and serine is closely connected to the rate of photosynthesis.  相似文献   

10.
Glycolate was excreted from the 5% CO2-grown cells of Euglena gracilis Z when placed in an atmosphere of 100% O2 under illumination at 20,000 lux. The amount of excreted glycolate reached 30% of the dry weight of the cells during incubation for 12 hours. The content of paramylon, the reserve polysaccharide of E. gracilis, was decreased during the glycolate excretion, and of the depleted paramylon carbon, two-thirds was excreted to the outside of cells and the remaining metabolized to other compounds, both as glycolate. The paramylon carbon entered Calvin cycle probably as triose phosphate or 3-phosphoglycerate, but not as CO2 after the complete oxidation through the tricarboxylic acid cycle. The glycolate pathway was partially operative and the activity of the pathway was much less than the rate of the synthesis of glycolate in the cells under 100% O2 and 20,000 lux; this led the cells to excrete glycolate outside the cells. Exogenous glycolate was metabolized only to CO2 but not to glycine and serine. The physiologic role of the glycolate metabolism and excretion under such conditions is discussed.  相似文献   

11.
R. K. Ingle  Brian Colman 《Planta》1976,128(3):217-223
Summary The rate of glycolate excretion by Coccochloris peniocystis Kütz. cells incubated under conditions of low bicarbonate concentration and high light intensity was linear for only the initial 15 min of incubation and no additional glycolate accumulated in the medium after 20 min. Excretion was maximal in cells grown on 5% CO2 in air when transferred to an incubation medium containing no added bicarbonate. The inhibitor INH (isonicotinyl hydrazide) had no measurable effect on the amount of glycolate released whereas HPMS (-hydroxy-2-pyridyl methanesulfonate) stimulated excretion 3-fold. Cells transferred to air from growth on 5% CO2 in air increased in carbonic anhydrase activity, while a decrease occurred in the cells' ability to excrete glycolate. Cells grown on air and switched to 5% CO2 in air showed an increase in their ability to excrete glycolate with a concomitant decrease in carbonic anhydrase activity. Diamox, a specific inhibitor of carbonic anhydrase, was found to stimulate excretion with both airgrown and 5% CO2-grown cells which had been off 5% CO2 for approximately 30 min. The rate of carbon fixation by 5% CO2-grown cells put on air was found to rise over a 110 min period, corresponding to both the induction period of carbonic anhydrase and the period of decline in the ability of the cells to excrete glycolic acid. These results suggest that the absence of carbonic anhydrase in 5% CO2-grown cells causes a stimulation of glycolate excretion when these cells are transferred to a low bicarbonate medium, because of an increased rate of glycolate formation due to the oxidation of ribulose diphosphate by molecular oxygen at low internal CO2 concentrations.Abbreviations INH isonicotinyl bydrazide - HPMS -hydroxy-2-pyridyl methanesulfonate  相似文献   

12.
Glycolate Metabolism and Excretion by Chlamydomonas reinhardtii   总被引:1,自引:1,他引:0  
The flux of glycolate through the C2 pathway in Chlamydomonas reinhardtii was estimated after inhibition of the pathway with aminooxyacetate (AOA) or aminoacetonitrile (AAN) by measurement of the accumulation of glycolate and glycine. Cells grown photoautotrophically in air excreted little glycolate except in the presence of 2 mm AOA when they excreted 5 micromoles glycolate per hour per milligram clorophyll. Cells grown on high CO2 (1-5%) when transferred to air produced three times as much glycolate, with half of the glycolate metabolized and half excreted. The lower amount of glycolate produced by the air-grown cells reflects the presence of a CO2 concentrating mechanism which raises the internal CO2 level and decreases the ribulose-1,5-bisP oxygenase reaction for glycolate production. Despite the presence of the CO2 concentrating mechanism, there was still a significant amount of glycolate produced and metabolized by air-grown Chlamydomonas. The capacity of these cells to metabolize between 5 and 10 micromoles of glycolate per hour per milligram chlorophyll was confirmed by measuring the biphasic uptake of added labeled glycolate. The initial rapid (<10 seconds) phase represented uptake of glycolate; the slow phase represented the metabolism of glycolate. The rates of glycolate metabolism were in agreement with those determined using the C2-cycle inhibitors during CO2 fixation.  相似文献   

13.
Glycolate and ammonia excretion plus oxygen exchanges were measured in the light in l-methionine-dl-sulfoximine treated air-grown Chlamydomonas reinhardii. At saturating CO2 (between 600 and 700 microliters per liter CO2) neither glycolate nor ammonia were excreted, whereas at the CO2 compensation concentration (<10 microliters per liter CO2) treated algae excreted both glycolate and ammonia at rates of 37 and 59 nanomoles per minute per milligram chlorophyll, respectively. From the excretion values we calculate the amount of O2 consumed through the glycolate pathway. The calculated value was not significantly different from the component of O2 uptake sensitive to CO2 obtained from the difference between O2 uptake of the CO2 compensation point and at saturating CO2. This component was about 40% of stationary O2 uptake measured at the CO2 compensation point. From these data we conclude that glyoxylate decarboxylation in air-grown Chlamydomonas represents a minor pathway of metabolism even in conditions where amino donors are deficient and that processes other than glycolate pathway are responsible for the O2 uptake insensitive to CO2.  相似文献   

14.
Mutant strains of the facultative autotrophic bacterium Alcaligenes eutrophus blocked in glycollate utilization were isolated and characterized. One of the strains, AE161, which lacked glycollate oxidoreductase activity, excreted up to 1.2mol glycollate/mg cell protein per hour during autotrophic growth. This mutant strain was used to study the efficiency of CO2 fixation in terms of how much of the fixed carbon was excreted as glycollate under different conditions. Glycollate excretion was not detected during heterotrophic growth. Only 1% of the total CO2 fixed was excreted as glycollate in an atmosphere of 4% CO2 plus 20% O2. The rate of glycollate excretion showed a large increase and CO2 fixation decreased as the CO2 concentration was lowered. Almost half (40–50%) of the total CO2 fixed was excreted as glycollate in an atmosphere of 0.07% CO2 plus 20% O2.Abbreviations HPMS 2-pyridyl-hydroxymethane sulphonic acid - RuBP ribulose 1,5-bisphosphate To whom offprint requests are to be sent  相似文献   

15.
Glycolate pathway in green algae   总被引:4,自引:1,他引:3       下载免费PDF全文
By three criteria, the glycolate pathway of metabolism is present in unicellular green algae. Exogenous glycolate-1-14C was assimilated and metabolized to glycine-1-14C and serine-1-14C. During photosynthetic 14CO2 fixation the distributions of 14C in glycolate and glycine were similar enough to suggest a product-precursor relationship. Five enzymes associated with the glycolate pathway were present in algae grown on air. These were P-glycolate phosphatase, glycolate dehydrogenase (glycolate:dichloroindophenol oxidoreductase), l-glutamate:glyoxylate aminotransferase, serine hydroxymethylase, and glycerate dehydrogenase. Properties of glycerate dehydrogenase and the aminotransferase were similar to those from leaf peroxisomes. The specific activity of glycolate dehydrogenase and serine hydroxymethylase in algae was 1/5 to 1/10 that of the other enzymes, and both these enzymes appear ratelimiting for the glycolate pathway.  相似文献   

16.
Photorespiration in Chlorella pyrenoidosa Chick. was assayed by measuring 18O-labeled intermediates of the glycolate pathway. Glycolate, glycine, serine, and excreted glycolate were isolated and analyzed on a gas chromatograph/mass spectrometer to determine isotopic enrichment. Rates of glycolate synthesis were determined from 18O-labeling kinetics of the intermediates, pool sizes, derived rate equations, and nonlinear regression techniques. Glycolate synthesis was higher in high CO2-grown cells than in air-grown cells when both were assayed under the same O2 and CO2 concentrations. Synthesis of glycolate, for both types of cells, was stimulated by high O2 levels and inhibited by high CO2 levels. Glycolate synthesis in 1.5% CO2-grown Chlorella, when exposed to a 0.035% CO2 atmosphere, increased from about 41 to 86 nanomoles per milligram chlorophyll per minute when the O2 concentration was increased from 21% to 40%. Glycolate synthesis in air-grown cells increased from 2 to 6 nanomoles per milligram chlorophyll per minute under the same gas levels. Synthesis was undetectable when either the O2 concentration was lowered to 2% or the CO2 concentration was raised to 1.5%. Glycolate excretion was also sensitive to O2 and CO2 concentrations in 1.5% CO2-grown cells and the glycolate that was excreted was 18O-labeled. Air-grown cells did not excrete glycolate under any experimental condition. Indirect evidence indicated that glycolate may be excreted as a lactone in Chlorella. Photorespiratory 18O-labeling kinetics were determined for Pavlova lutheri, which unlike Chlorella and higher plants did not directly synthesize glycine and serine from glycolate. This alga did excrete a significant proportion of newly synthesized glycolate into the media.  相似文献   

17.
To study the effect of O2 on the photosynthetic and glycolate pathways, maize leaves were exposed to 14CO2 during steady-state photosynthesis in 21 or 1% O2. At the two O2 concentrations after a 14CO2 pulse (4 seconds) followed by a 12CO2 chase, there was a slight difference in CO2 uptake and in the total amount of 14C fixed, but there were marked changes in 14C distribution especially in phosphoglycerate, ribulose bisphosphate, glycine, and serine. The kinetics of 14C incorporation into glycine and serine indicated that the glycolate pathway is inhibited at low O2 concentrations. In 1% O2, labeling of glycine was reduced by 90% and that of serine was reduced by 70%, relative to the control in 21% O2. A similar effect has been observed in C3 plants, except that, in maize leaves, only 5 to 6% of the total 14C fixed under 21% O2 was found in glycolate pathway intermediates after 60 seconds chase. This figure is 20% in C3 plants. Isonicotinyl hydrazide did not completely block the conversion of glycine to serine in 21% O2, and the first carbon atom of serine was preferentially labeled during the first seconds of the chase. These results supported the hypothesis that the labeled serine not only derives from glycine but also could be formed from phosphoglycerate, labeled in the first carbon atom during the first seconds of photosynthesis.  相似文献   

18.
Chemical inhibition of the glycolate pathway in soybean leaf cells   总被引:19,自引:15,他引:4       下载免费PDF全文
Isolated soybean (Glycine max [L.] Merr.) leaf cells were treated with three inhibitors of the glycolate pathway in order to evaluate the potential of such inhibitors for increasing photosynthetic efficiency. Preincubation of cells under acid conditions in α-hydroxypyridinemethanesulfonic acid increased 14CO2 incorporation into glycolate, but severely inhibited photosynthesis. Isonicotinic acid hydrazide (INH) increased the incorporation of 14CO2 into glycine and reduced label in serine, glycerate, and starch. Butyl 2-hydroxy-3-butynoate (BHB) completely and irreversibly inhibited glycolate oxidase and increased the accumulation of 14C into glycolate. Concomitant with glycolate accumulation was the reduction of label in serine, glycerate, and starch, and the elimination of label in glycine. The inhibitors INH and BHB did not eliminate serine synthesis, suggesting that some serine is synthesized by an alternate pathway. The per cent incorporation of 14CO2 into glycolate by BHB-treated cells or glycine by INH-treated cells was determined by the O2/CO2 ratio present during assay. Photosynthesis rate was not affected by INH or BHB in the absence of O2, but these compounds increased the O2 inhibition of photosynthesis. This finding suggests that the function of the photorespiratory pathway is to recycle glycolate carbon back into the Calvin cycle, so if glycolate metabolism is inhibited, Calvin cycle intermediates become depleted and photosynthesis is decreased. Thus, chemicals which inhibit glycolate metabolism do not reduce photorespiration and increase photosynthetic efficiency, but rather exacerbate the problem of photorespiration.  相似文献   

19.
In Chlorella pyrenoidosa which have been photosynthesizing in either 1.5% 14CO2 or 0.05% 14CO2 in air, gassing with 100% O2 results in rapid formation of phosphoglycolate which is apparently converted to glycolate. However, only about one-third to one-half of the rate of glycolate formation can be accounted for by this route. The remaining glycolate formation may be the result of the oxidation of sugar monophosphates. The rates of formation of both glycolate and phosphoglycolate are about four times greater with algae that have been photosynthesizing in 1.5% 14CO2 than with algae which have been photosynthesizing with air, when the algae are then gassed with 100% O2.  相似文献   

20.
Photosynthesis by Synechococcus lividus, the sole oxygenic phototroph inhabiting the surface of the 55°C cyanobacterial mat in Mushroom Spring, Yellowstone National Park, causes superoxic and alkaline conditions which promote glycolate photoexcretion. At O2 concentrations characteristic of the top 2 mm of mat during the day, up to 11.8% of NaH14CO3 fixed in the light was excreted, and glycolate accounted for up to 58% of the excreted photosynthate. Glycolate was neither incorporated nor metabolized by S. lividus, but it was incorporated by filamentous microorganisms in the mat. Incubation of mat samples with NaH14CO3 resulted in labeling of both S. lividus and filaments, but the addition of nonradioactive glycolate increased the level of 14C in the aqueous phase and decreased the extent of labeling of filaments. This suggests that cross-feeding of glycolate from S. lividus to filamentous heterotrophs occurs and that underestimation of the extent of photoexcretion is probable.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号