首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
D J Weber  A K Meeker  A S Mildvan 《Biochemistry》1991,30(25):6103-6114
The mechanism of the phosphodiesterase reaction catalyzed by staphylococcal nuclease is believed to involve concerted general acid-base catalysis by Arg-87 and Glu-43. The mutual interactions of Arg-87 and Glu-43 were investigated by comparing kinetic and thermodynamic properties of the single mutant enzymes E43S (Glu-43 to Ser) and R87G (Arg-87 to Gly) with those of the double mutant, E43S + R87G, in which both the basic and acidic functions have been inactivated. Denaturation studies with guanidinium chloride, CD, and 600-MHz 1D and 2D proton NMR spectra, indicate all enzyme forms to be predominantly folded in absence of the denaturant and reveal small antagonistic effects of the E43S and R87G mutations on the stability and structure of the wild-type enzyme. The free energies of binding of the divalent cation activator Ca2+, the inhibitor Mn2+, and the substrate analogue 3',5'-pdTp show simple additive effects of the two mutations in the double mutant, indicating that Arg-87 and Glu-43 act independently to facilitate the binding of divalent cations and of 3',5'-pdTP by the wild-type enzyme. The free energies of binding of the substrate, 5'-pdTdA, both in binary E-S and in active ternary E-Ca(2+)-S complexes, show synergistic effects of the two mutations, suggesting that Arg-87 and Glu-43 interact anticooperatively in binding the substrate, possibly straining the substrate by 1.6 kcal/mol in the wild-type enzyme. The large free energy barriers to Vmax introduced by the R87G mutation (delta G1 = 6.5 kcal/mol) and by the E43S mutation (delta G2 = 5.0 kcal/mol) are partially additive in the double mutant (delta G1+2 = 8.1 kcal/mol). These partially additive effects on Vmax are most simply explained by a cooperative component to transition state binding by Arg-87 and Glu-43 of -3.4 kcal/mol. The combination of anticooperative, cooperative, and noncooperative effects of Arg-87 and Glu-43 together lower the kinetic barrier to catalysis by 8.1 kcal/mol.  相似文献   

2.
Ubiquitylation is a universal mechanism for controlling cellular functions. A large family of ubiquitin E3 ligases (E3) mediates Ubiquitin (Ub) modification. To facilitate Ub transfer, RING E3 ligases bind both the substrate and ubiquitin E2 conjugating enzyme (E2) linked to Ub via a thioester bond to form a catalytic complex. The mechanism of Ub transfer catalyzed by RING E3 remains elusive. By employing a combined computational approach including molecular modeling, molecular dynamics (MD) simulations, and quantum mechanics/molecular mechanics (QM/MM) calculations, we characterized this catalytic mechanism in detail. The three-dimensional model of dimeric RING E3 ligase RNF4 RING, E2 ligase UbcH5A, Ub and the substrate SUMO2 shows close contact between the substrate and Ub transfer catalytic center. Deprotonation of the substrate lysine by D117 on UbcH5A occurs with almost no energy barrier as calculated by MD and QM/MM calculations. Then, the side chain of the activated lysine gets close to the thioester bond via a conformation change. The Ub transfer pathway begins with a nucleophilic addition that forms an oxyanion intermediate of a 4.23 kcal/mol energy barrier followed by nucleophilic elimination, resulting in a Ub modified substrate by a 5.65 kcal/mol energy barrier. These results provide insight into the mechanism of RING-catalyzed Ub transfer guiding the discovery of Ub system inhibitors.  相似文献   

3.
Silinski P  Fitzgerald MC 《Biochemistry》2003,42(21):6620-6630
Here we describe the total chemical synthesis and biophysical characterization of two backbone-modified, ester bond-containing analogues of the homohexameric enzyme 4-oxalocrotonate tautomerase (4OT). The amide-to-ester bond mutations in the two analogues in this study, (OI2)4OT and (OI7)4OT, were designed to effectively delete specific backbone-backbone hydrogen bonds in the beta-sheet region of the native 4OT hexamer. The (OI2)4OT and (OI7)4OT analogues each contained one ester bond per monomer that effectively deleted 12 backbone-backbone hydrogen bonds per hexamer. The structural properties of each analogue were characterized by size-exclusion chromatography (SEC), far-UV CD spectroscopy, and catalytic activity measurements, and they were found to be very similar to the structural properties of the wild-type enzyme. The results of equilibrium unfolding studies revealed that the (OI2)4OT and (OI7)4OT analogues were stabilized by 47.7 +/- 2.5 and 45.0 +/- 2.5 kcal/mol, respectively, under standard state conditions (1 M hexamer) as compared to a value of 69.6 +/- 3.3 kcal/mol for the wild-type control. Our results suggest that the two different, but structurally similar, backbone-backbone hydrogen bonds deleted in (OI2)4OT and (OI7)4OT make nearly equivalent contributions to the thermodynamic stability of the 4OT hexamer.  相似文献   

4.
A QM/MM analysis of the conformations of crystalline sucrose moieties   总被引:2,自引:0,他引:2  
Both ab initio quantum mechanics (QM) and molecular mechanics (MM) were used to produce a hybrid energy surface for sucrose that simultaneously provides low energies for conformations that are observed in crystal structures and high energies for most unobserved structures. HF/6-31G* QM energies were calculated for an analogue based on tetrahydropyran (THP) and tetrahydrofuran (THF). Remaining contributions to the potential energy of sucrose were calculated with MM. To do this, the MM surface for the analogue was subtracted from the MM surface for the disaccharide, and the QM surface for the analogue was added. Prediction of the distribution of observable geometries was enhanced by reducing the strength of the hydrogen bonding. Reduced hydrogen-bonding strength is probably useful because many crystalline sucrose moieties do not have intramolecular hydrogen bonds between the fructose and glucose residues. Therefore, hydrogen bonding does not play a large role in determining the molecular conformation. On the hybrid energy surface that was constructed with a dielectric constant of 3.5, the average potential energy of 23 sucrose moieties from crystal structures is 1.16 kcal/mol, and the population of observed structures drops off exponentially as the energy increases.  相似文献   

5.
Three arginine residues (Arg-11, Arg-39, Arg-61) are found at the active site of 4-oxalocrotonate tautomerase in the X-ray structure of the affinity-labeled enzyme [Taylor, A. B., Czerwinski, R. M., Johnson, R. M., Jr., Whitman, C. P., and Hackert, M. L. (1998) Biochemistry 37, 14692-14700]. The catalytic roles of these arginines were examined by mutagenesis, kinetic, and heteronuclear NMR studies. With a 1,6-dicarboxylate substrate (2-hydroxymuconate), the R61A mutation showed no kinetic effects, while the R11A mutation decreased k(cat) 88-fold and increased K(m) 8.6-fold, suggesting both binding and catalytic roles for Arg-11. With a 1-monocarboxylate substrate (2-hydroxy-2,4-pentadienoate), no kinetic effects of the R11A mutation were found, indicating that Arg-11 interacts with the 6-carboxylate of the substrate. The stereoselectivity of the R11A-catalyzed protonation at C-5 of the dicarboxylate substrate decreased, while the stereoselectivity of protonation at C-3 of the monocarboxylate substrate increased in comparison with wild-type 4-OT, indicating the importance of Arg-11 in properly orienting the dicarboxylate substrate by interacting with the charged 6-carboxylate group. With 2-hydroxymuconate, the R39A and R39Q mutations decreased k(cat) by 125- and 389-fold and increased K(m) by 1.5- and 2.6-fold, respectively, suggesting a largely catalytic role for Arg-39. The activity of the R11A/R39A double mutant was at least 10(4)-fold lower than that of the wild-type enzyme, indicating approximate additivity of the effects of the two arginine mutants on k(cat). For both R11A and R39Q, 2D (1)H-(15)N HSQC and 3D (1)H-(15)N NOESY-HSQC spectra showed chemical shift changes mainly near the mutated residues, indicating otherwise intact protein structures. The changes in the R39Q mutant were mainly in the beta-hairpin from residues 50 to 57 which covers the active site. HSQC titration of R11A with the substrate analogue cis, cis-muconate yielded a K(d) of 22 mM, 37-fold greater than the K(d) found with wild-type 4-OT (0.6 mM). With the R39Q mutant, cis, cis-muconate showed negative cooperativity in active site binding with two K(d) values, 3.5 and 29 mM. This observation together with the low K(m) of 2-hydroxymuconate (0.47 mM) suggests that only the tight binding sites function catalytically in the R39Q mutant. The (15)Nepsilon resonances of all six Arg residues of 4-OT were assigned, and the assignments of Arg-11, -39, and -61 were confirmed by mutagenesis. The binding of cis,cis-muconate to wild-type 4-OT upshifts Arg-11 Nepsilon (by 0.05 ppm) and downshifts Arg-39 Nepsilon (by 1.19 ppm), indicating differing electronic delocalizations in the guanidinium groups. A mechanism is proposed in which Arg-11 interacts with the 6-carboxylate of the substrate to facilitate both substrate binding and catalysis and Arg-39 interacts with the 1-carboxylate and the 2-keto group of the substrate to promote carbonyl polarization and catalysis, while Pro-1 transfers protons from C-3 to C-5. This mechanism, together with the effects of mutations of catalytic residues on k(cat), provides a quantitative explanation of the 10(7)-fold catalytic power of 4-OT. Despite its presence in the active site in the crystal structure of the affinity-labeled enzyme, Arg-61 does not play a significant role in either substrate binding or catalysis.  相似文献   

6.
Arginine 127 stabilizes the transition state in carboxypeptidase   总被引:1,自引:0,他引:1  
Crystallographic studies suggest that Arg-127 is a key amino acid in the hydrolysis of peptides and esters by carboxypeptidase A. The guanidinium group of Arg-127 is hypothesized to stabilize the oxyanion of the tetrahedral intermediate formed by the attack of water on the scissile carbonyl bond. We have replaced this amino acid in rat carboxypeptidase A1 with lysine (R127K), methionine (R127M), and alanine (R127A), in order to define the role of Arg-127 in carboxypeptidase catalyzed hydrolysis. The wild-type and mutant enzymes were expressed in yeast and purified. Kinetic studies show that Arg-127 substitution decreases kcat for both ester and amide substrates, whereas Km is relatively unchanged; for R127M and R127A this corresponds to a 6 kcal/mol decrease in transition state stabilization of the rate-limiting step. The binding affinity for the phosphonate transition state analog, Cbz-Phe-Ala(P)-OAla, was decreased by 5.4 kcal/mol, whereas binding affinity for the ground state inhibitor, DL-benzylsuccinic acid, was decreased by only 1.7 kcal/mol for R127M. Electrostatic calculations employing a finite difference solution to the Poisson-Boltzmann equation predict that the positive charge of Arg-127 should stabilize the transition state by 6-8 kcal/mol. Therefore, the experimental and theoretical data suggest that the primary role of Arg-127 is stabilization of the transition state through electrostatic interaction with the oxyanion.  相似文献   

7.
The mechanism of the hydrolysis reaction of guanosine triphosphate (GTP) by the protein complex Ras-GAP (p21(ras) - p120(GAP)) has been modeled by the quantum mechanical-molecular mechanical (QM/MM) and ab initio quantum calculations. Initial geometry configurations have been prompted by atomic coordinates of a structural analog (PDBID:1WQ1). It is shown that the minimum energy reaction path is consistent with an assumption of two-step chemical transformations. At the first stage, a unified motion of Arg789 of GAP, Gln61, Thr35 of Ras, and the lytic water molecule results in a substantial spatial separation of the gamma-phosphate group of GTP from the rest of the molecule (GDP). This phase of hydrolysis process proceeds through the low-barrier transition state TS1. At the second stage, Gln61 abstracts and releases protons within the subsystem including Gln61, the lytic water molecule and the gamma-phosphate group of GTP through the corresponding transition state TS2. Direct quantum calculations show that, in this particular environment, the reaction GTP + H(2)O --> GDP + H(2)PO(4) (-) can proceed with reasonable activation barriers of less than 15 kcal/mol at every stage. This conclusion leads to a better understanding of the anticatalytic effect of cancer-causing mutations of Ras, which has been debated in recent years.  相似文献   

8.
Ser72 at the active site of the Escherichia coli dUTPase has been mutated to an alanine, and the properties of the mutant have been investigated. The serine is absolutely conserved among the monomeric and trimeric dUTPases (including the bifunctional dCTP deaminase:dUTPases), and it has been proposed to promote catalysis by balancing negative charge at the oxygen that bridges the alpha- and beta-phosphorus of the substrate. In all reported complexes of dUTPases with the substrate analogue alpha,beta-imido-dUTP.Mg, the serine beta-OH is indeed hydrogen bonded to the alpha,beta-bridging nitrogen of the analogue. However, in the complex of the Asp90 --> Asn mutant dUTPase with the true substrate dUTP.Mg, the serine beta-OH points in the opposite direction and may form a hydrogen bond to Asn84 at the bottom of the pyrimidine pocket. Here we show that the replacement of the beta-OH by hydrogen reduces k cat from 5.8 to 0.008 s (-1) but also k -1 , the rate of substrate dissociation, from 6.2 to 0.1 s (-1) ( K M = 6 x 10 (-9) M). We conclude that the serine beta-OH exercises both ground state (GS) destabilization and transition state (TS) stabilization, effects not usually linked to a single residue. With experimental support, we argue that the beta-OH destabilizes the GS by imposing conformational constraints on the enzyme and that formation of the TS depends on a rotation of the serine side chain that not only relieves the constraints but brings the beta-OH into a position where it can electrostatically stabilize the TS. This rotation would also allow the beta-OH to promote both deamination and hydrolysis in the bifunctional deaminases. We find that the E. coli dUTPase does not catalyze the hydrolysis of the alpha,beta-imido-dUTP.Mg, suggesting that the analogue provides the hydrogen in the bond to the serine beta-OH.  相似文献   

9.
Epinephrine is a naturally occurring adrenomedullary hormone that transduces environmental stressors into cardiovascular actions. As the only route in the catecholamine biosynthetic pathway, Phenylethanolamine N-methyltransferase (PNMT) catalyzes the synthesis of epinephrine. To elucidate the detailed mechanism of enzymatic catalysis of PNMT, combined quantum-mechanical/molecular-mechanical (QM/MM) calculations were performed. The calculation results reveal that this catalysis contains three elementary steps: the deprotonation of protonated norepinphrine, the methyl transferring step and deprotonation of the methylated norepinphrine. The methyl transferring step was proved to be the rate-determining step undergoing a SN2 mechanism with an energy barrier of 16.4 kcal/mol. During the whole catalysis, two glutamic acids Glu185 and Glu219 were proved to be loaded with different effects according to the calculations results of the mutants. These calculation results can be used to explain the experimental observations and make a good complementarity for the previous QM study.  相似文献   

10.
Epinephrine is a naturally occurring adrenomedullary hormone that transduces environmental stressors into cardiovascular actions. As the only route in the catecholamine biosynthetic pathway, Phenylethanolamine N-methyltransferase (PNMT) catalyzes the synthesis of epinephrine. To elucidate the detailed mechanism of enzymatic catalysis of PNMT, combined quantum-mechanical/molecular-mechanical (QM/MM) calculations were performed. The calculation results reveal that this catalysis contains three elementary steps: the deprotonation of protonated norepinphrine, the methyl transferring step and deprotonation of the methylated norepinphrine. The methyl transferring step was proved to be the rate-determining step undergoing a SN2 mechanism with an energy barrier of 16.4kcal/mol. During the whole catalysis, two glutamic acids Glu185 and Glu219 were proved to be loaded with different effects according to the calculations results of the mutants. These calculation results can be used to explain the experimental observations and make a good complementarity for the previous QM study.  相似文献   

11.
The phosphobase methylation pathway catalyzed by the phosphoethanolamine methyltransferase in Plasmodium falciparum (PfPMT), the malaria parasite, offers an attractive target for anti-parasitic drug development. PfPMT methylates phosphoethanolamine (pEA) to phosphocholine for use in membrane biogenesis. Quantum mechanics and molecular mechanics (QM/MM) calculations tested the proposed reaction mechanism for methylation of pEA involving the previously identified Tyr-19–His-132 dyad, which indicated an energetically unfavorable mechanism. Instead, the QM/MM calculations suggested an alternative mechanism involving Asp-128. The reaction coordinate involves the stepwise transfer of a proton to Asp-128 via a bridging water molecule followed by a typical Sn2-type methyl transfer from S-adenosylmethionine to pEA. Functional analysis of the D128A, D128E, D128Q, and D128N PfPMT mutants shows a loss of activity with pEA but not with the final substrate of the methylation pathway. X-ray crystal structures of the PfPMT-D128A mutant in complex with S-adenosylhomocysteine and either pEA or phosphocholine reveal how mutation of Asp-128 disrupts a hydrogen bond network in the active site. The combined QM/MM, biochemical, and structural studies identify a key role for Asp-128 in the initial step of the phosphobase methylation pathway in Plasmodium and provide molecular insight on the evolution of multiple activities in the active site of the PMT.  相似文献   

12.
Stabilization of an oxyanion transition state is important to catalysis of peptide bond hydrolysis in all proteases. For subtilisin BPN', a bacterial serine protease, structural data suggest that two hydrogen bonds stabilize the tetrahedral-like oxyanion intermediate: one from the main chain NH of Ser221 and another from the side chain NH2 of Asn155. Molecular dynamic studies (Rao, S., N., Singh, U., C. Bush, P. A., and Kollman, P. A. (1987) Nature 328, 551-554) have indicated the gamma-hydroxyl of Thr220 may be a third hydrogen bond donor even though it is 4A away in the static x-ray structure. We have probed the role of Thr220 by replacing it with serine, cysteine, valine, or alanine by site-directed mutagenesis. These substitutions were intended to alter the size and hydrogen bonding ability of residue 220. Removal of the gamma-hydroxyl group reduced the transition state stabilization energy (delta delta GT) by 1.8-2.1 kcal/mol depending upon the substitution. By comparison, removal of the gamma-methyl group in the Thr220 to serine mutation only decreased delta GT by 0.5 kcal/mol. The gamma-hydroxyl of Thr220 is most important for catalysis, not substrate binding, because virtually all of the effects were on kcat and not KM. The role of the Thr220 hydroxyl is functionally independent from the amide NH2 of Asn155 because the free energy effects of double alanine mutants at these two positions are additive. These data indicate that a distal hydrogen bond donor, namely the hydroxyl of Thr220, plays a functionally important role in stabilizing the oxyanion transition state in subtilisin which is independent of Asn155.  相似文献   

13.
Combined quantum-mechanics/molecular-mechanics (QM/MM) methods are making rapid progress both methodologically and with respect to their range of application. Mechanistic studies on enzymes, including contributions towards the understanding of enzyme catalysis, continue to be a major target. They are joined by calculations of pK(a) values, redox properties, ground- and excited-state spectroscopic parameters, and excited-state dynamics. Methodological advances include improved QM/MM schemes, in particular new approaches for an effective treatment of the QM-MM electrostatic interactions, and the incorporation of new efficient and accurate QM methods in QM/MM schemes.  相似文献   

14.
Density functional theory analysis was performed to elucidate the impact of one-electron reduction upon the initial step of adenosylcobalamin-dependent enzymatic catalysis. The transition state (TS) corresponding to the Co–C bond cleavage and subsequent hydrogen abstraction from the substrate was located. The intrinsic reaction coordinate calculations predicted that the reaction consisting of Co–C5′ bond cleavage in [CoIII(corrin)]–Rib (where Rib is ribosyl) and hydrogen-atom abstraction from the CH3–CH2–CHO substrate occurs in a concerted fashion. The computed activation energy barrier of the reaction (15.0 kcal/mol) was lowered by approximately 54.5% in comparison with the reaction involving the positively charged cofactor model (Im–[CoIII(corrin)]–Rib+, where Im is imidazole; energy barrier = 33.0 kcal/mol). The Im base was detached during the TS search in the reaction involving the one-electron-reduced analogue. Thus, to compare the energetics of the two reactions, the axial Im ligand detachment energy for the Im–[CoIII(corrin)]–Rib model was computed [7.6 kcal/mol (gas phase); 4.6 kcal/mol (water)]. Consequently, the effective activation energy barrier for the reaction mediated by the Im-off [CoIII(corrin)]–Rib was estimated to be 22.6 kcal/mol, which implied an overall 31.5% reduction in the energetic demands of the reaction. Considering that the lengthened Co–Naxial bond has been observed in X-ray crystal structure studies of B12-dependent mutases, the catalytic impact induced by one-electron reduction of the cofactor is expected to be higher in the presence of the enzymatic environment.  相似文献   

15.
Ishida T 《Biochemistry》2006,45(17):5413-5420
To elucidate the catalytic advantage of the low-barrier hydrogen bond (LBHB), we analyze the hydrogen bonding network of the catalytic triad (His57-Asp102-Ser195) of serine protease trypsin, one of the best examples of the LBHB reaction mechanism. Especially, we focus on the correlation between the change of the chemical shifts and the structural rearrangement of the active site in the acylation process. To clarify LBHB, we evaluate the two complementary properties. First, we calculate the NMR chemical shifts of the imidazole ring of His57 by the gauge-including atomic orbital (GIAO) approach within the ab initio QM/MM framework. Second, the free energy profile of the proton transfer from His57 to Asp102 in the tetrahedral intermediate is obtained by ab initio QM/MM calculations combined with molecular dynamics free energy perturbation (MD-FEP) simulations. The present analyses reveal that the calculated shifts reasonably reproduce the observed values for (1)H chemical shift of H(epsilon)(1) and H(delta)(1) in His57. The (15)N and (13)C chemical shifts are also consistent with the experiments. It is also shown that the proton between His57 and Asp102 is localized at the His57 side. This largely downfield chemical shift is originated from the strong electrostatic interaction, not a covalent-like bonding character between His57 and Asp102. Also, it is proved that a slight downfield character of H(epsilon)(1) is originated from a electrostatic interaction between His57 and the backbone carbonyl group of Val213 and Ser214. These downfield chemical shifts are observed only when the tetrahedral intermediate is formed in the acylation process.  相似文献   

16.
Hybrid quantum mechanical/molecular mechanical (QM/MM) calculations using restricted and unrestricted Hartree-Fock and B3LYP ab initio (QM) and Amber force field (MM), respectively, have been applied to study the catalytic site of papain in both free and substrate bonded forms. Ab initio geometry optimizations have been performed for the active site of papain and the N-methyl-acetamide (NMA)-papain complex within the molecular mechanical treatment of the protein environment. A covalent tetrahedral intermediate structure could be obtained only when the amide N atom of the substrate molecule was protonated through a proton transfer from the His-159 in the catalytic site. Our results support the previous assumption that a proton transfer from His-159 to the amide N atom of the substrate occurs prior to or concerted with the nucleophilic attack of the Cys-25 sulfur atom to the carbonyl group of the substrate. The electron correlation effect will reduce the proton transfer barrier. Therefore, this proton transfer can be easily observed in the B3LYP/6-31G* calculations. The HF/6-31G* method overestimates the reaction barrier against this proton transfer. The sulfur atom of Cys-25 and the imidazole ring of His-159 are found to be coplanar in the free form of the enzyme. However, the rotation of the imidazole ring of His-159 was observed during the formation of the tetrahedral intermediate. Without the papain environment, the coplanar thiolate-imidazolium ion pair RS-...ImH+ is much less stable than the neutral form of RSH....Im. Within the protein environment, however, the thiolate-imidazolium ion pair becomes more stable than its neutral form by 4.1 and 0.4 kcal/mol in HF/6-31G* and B3LYP/6-31G* calculations, respectively. The barrier of proton transfer from S-H group of Cys-25 to the imidazole ring of His-159 was reduced from 22.0 kcal/mol to 15.2 kcal/mol by the protein environment in HF/6-31G* calculations. This barrier is found to be much smaller (2.5 kcal/mol) in B3LYP/6-31G* calculations.  相似文献   

17.
Limonene 1,2-epoxide hydrolase (LEH) is completely different from those of classic epoxide hydrolases (EHs) which catalyze the hydrolysis of epoxides to vicinal diols. A novel concerted general acid catalysis step involving the Asp101-Arg99-Asp132 triad is proposed to play an important role in the mechanism. Combined quantum-mechanical/molecular-mechanical (QM/MM) calculations gave activation barriers of 16.9 and 25.1 kcal/mol at the B3LYP/6-31G(d,p)//CHARMM level for nucleophilic attack on the more and less substituted epoxide carbons, respectively. Furthermore, the important roles of residues Arg99, Tyr53 and Asn55 on mutated LEH were evaluated by QM/MM-scanned energy mapping. These results may provide an explanation for site-directed mutagenesis.  相似文献   

18.
Jiang YL  Ichikawa Y  Song F  Stivers JT 《Biochemistry》2003,42(7):1922-1929
The reaction catalyzed by the DNA repair enzyme uracil DNA glycosylase (UDG) proceeds through an unprecedented stepwise mechanism involving a positively charged oxacarbenium ion sugar and uracil anion leaving group. Here we use a novel approach to evaluate the catalytic contribution of electrostatic interactions between four essential phosphodiester groups of the DNA substrate and the cationic transition state. Our strategy was to substitute each of these phosphate groups with an uncharged (R)- or (S)-methylphosphonate linkage (MeP). We then compared the damaging effects of these methylphosphonate substitutions on catalysis with their damaging effects on binding of a cationic 1-azadeoxyribose (1-aza-dR(+)) oxacarbenium ion analogue to the UDG-uracil anion binary complex. A plot of log k(cat)/K(m) for the series of MeP-substituted substrates against log K(D) for binding of the 1-aza-dR(+) inhibitors gives a linear correlation of unit slope, confirming that the electronic features of the transition state resemble that of the 1-aza-dR(+), and that the anionic backbone of DNA is used in transition state stabilization. We estimate that all of the combined phosphodiester interactions with the substrate contribute 6-8 kcal/mol toward lowering the activation barrier, a stabilization that is significant compared to the 16 kcal/mol catalytic power of UDG. However, unlike groups of the enzyme that selectively stabilize the charged transition state by an estimated 7 kcal/mol, these phosphodiester groups also interact strongly in the ground state. To our knowledge, these results provide the first experimental evidence for electrostatic stabilization of a charged enzymatic transition state and intermediate using the anionic backbone of DNA.  相似文献   

19.
Protein thiol/sulfenic acid oxidation potentials provide a tool to select specific oxidation agents, but are experimentally difficult to obtain. Here, insights into the thiol sulfenylation thermodynamics are obtained from model calculations on small systems and from a quantum mechanics/molecular mechanics (QM/MM) analysis on human 2-Cys peroxiredoxin thioredoxin peroxidase B (Tpx-B). To study thiol sulfenylation in Tpx-B, our recently developed computational method to determine reduction potentials relatively compared to a reference system and based on reaction energies reduction potential from electronic energies is updated. Tpx-B forms a sulfenic acid (R-SO?) on one of its active site cysteines during reactive oxygen scavenging. The observed effect of the conserved active site residues is consistent with the observed hydrogen bond interactions in the QM/MM optimized Tpx-B structures and with free energy calculations on small model systems. The ligand effect could be linked to the complexation energies of ligand L with CH3S? and CH3SO?. Compared to QM only calculations on Tpx-B’s active site, the QM/MM calculations give an improved understanding of sulfenylation thermodynamics by showing that other residues from the protein environment other than the active site residues can play an important role.  相似文献   

20.
Chen X  Fang L  Liu J  Zhan CG 《Biochemistry》2012,51(6):1297-1305
The catalytic mechanism for butyrylcholineserase (BChE)-catalyzed hydrolysis of acetylthiocholine (ATCh) has been studied by performing pseudobond first-principles quantum mechanical/molecular mechanical-free energy (QM/MM-FE) calculations on both acylation and deacylation of BChE. Additional quantum mechanical (QM) calculations have been carried out, along with the QM/MM-FE calculations, to understand the known substrate activation effect on the enzymatic hydrolysis of ATCh. It has been shown that the acylation of BChE with ATCh consists of two reaction steps including the nucleophilic attack on the carbonyl carbon of ATCh and the dissociation of thiocholine ester. The deacylation stage includes nucleophilic attack of a water molecule on the carboxyl carbon of substrate and dissociation between the carboxyl carbon of substrate and hydroxyl oxygen of Ser198 side chain. QM/MM-FE calculation results reveal that the acylation of BChE is rate-determining. It has also been demonstrated that an additional substrate molecule binding to the peripheral anionic site (PAS) of BChE is responsible for the substrate activation effect. In the presence of this additional substrate molecule at PAS, the calculated free energy barrier for the acylation stage (rate-determining step) is decreased by ~1.7 kcal/mol. All of our computational predictions are consistent with available experimental kinetic data. The overall free energy barriers calculated for BChE-catalyzed hydrolysis of ATCh at regular hydrolysis phase and substrate activation phase are ~13.6 and ~11.9 kcal/mol, respectively, which are in reasonable agreement with the corresponding experimentally derived activation free energies of 14.0 kcal/mol (for regular hydrolysis phase) and 13.5 kcal/mol (for substrate activation phase).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号