首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
It has been assumed that physical interaction between B cells and helper T cells in the presence of specific antigen is an early and essential step in the physiologic antibody response to thymus-dependent antigens. The present studies were designed to examine this physical interaction by employing carrier-specific T hybridoma cells that can provide help to highly enriched hapten-binding B cells. Direct conjugation of the B and T cells can be visualized at both the light and electron microscopic level and the number of conjugates can be directly quantified. Before their effective conjugation with T cells, the B cells must be incubated with specific antigen for 4 to 6 hr. After this time, the T cells form conjugates with the B cells within 5 min. Conjugate formation requires hapten specificity, carrier specificity, covalent linkage between hapten and carrier, and is MHC restricted. Two types of T-B conjugates were observed by electron microscopy: an antigen-independent attachment of B cell microvilli to small portions of the T cell surface and an antigen-dependent, intimate apposition of large areas of the plasma membranes of the T and B cells. The kinetics of development of the two modes of interaction suggest that the second type may be important for signal transduction, since the number of T and B cells showing intimate interactions increases with time. Monoclonal antibodies directed against Thy-1.2, LFA-1 alpha, L3T4, and I-A partially block conjugation of the two cell types, suggesting that these surface molecules are involved in T-B interaction.  相似文献   

2.
The requirement that CD4+ helper T cells recognize antigen in association with class II Major Histocompatibility Complex (MHC) encoded molecules constrains T cells to activation through intercellular interaction. The cell biology of the interactions between CD4+ T cells and antigen-presenting cells includes multipoint intermolecular interactions that probably involve aggregation of both polymorphic and monomorphic T cell surface molecules. Such aggregations have been shown in vitro to markedly enhance and, in some cases, induce T cell activation. The production of T-derived lymphokines that have been implicated in B cell activation is dependent on the T cell receptor for antigen and its associated CD3 signalling complex. T-dependent help for B cell activation is therefore similarly MHC-restricted and involves T-B intercellular interaction. Recent reports that describe antigen-independent B cell activation through coculture with T cells activated by anti-T-cell receptor or anti-CD3 antibodies suggest that cellular interaction with T cells, independent of antigen presentation or lymphokine secretion, induces or triggers B cells to become responsive to T-derived lymphokines, and that this may be an integral component of the physiological, antigen- and MHC-restricted T-dependent B cell activation that leads to antibody production.  相似文献   

3.
In the presence of pokeweed mitogen (PWM), T helper (TH) cell clones can induce differentiation of a very high proportion of normal B lymphocytes into plasmocytes. This property can be used to test TH cell function regardless of clonal specificity. We have investigated the role of L3T4 surface antigen in this new assay. Only TH cell clones expressing the L3T4 antigen have effector activity in this PWM-dependent helper assay; L3T4- TH cell variants are inactive. The involvement of L3T4 antigen is further shown by the ability of anti-L3T4 monoclonal antibody to inhibit the PWM-dependent polyclonal B cell differentiation induced by L3T4+ TH cell clones. This inhibition is not the consequence of arrested TH cell activation, nor of a lack of appropriate B cell stimulation by TH cell lymphokines. We show that PWM focuses TH cells on the B cell hybridoma LB15-13, and that anti-L3T4 mAb prevents the T-B cell clustering mediated by PWM. Thus, by a mechanism comparable with the one described for concanavalin A in the cytotoxicity assay, PWM acts by bridging TH cells and B cells; the T cell surface antigen L3T4 is involved in this process.  相似文献   

4.
An antibody response against a thymic-dependent Ag requires cognate recognition of the Ag by B and T cells. Functional T-B cell (T-B) interaction involves binding of Ag by B cell surface Ig, internalization and processing of Ag, expression of an Ag fragment in the context of Ia, binding of Ag/Ia by the TCR and binding of T cell-derived lymphokines by B cell lymphokine receptors. It is becoming increasingly evident that B and T cell accessory molecules also are involved in T-B interactions. To determine the role of accessory molecules in T-B collaboration, we have designed a system in which T-B interaction was artificially induced in the absence of carrier protein. TNP-modified, turkey gamma-globulin-specific, Th cells were allowed to form conjugates with TNP-specific B cells in the absence of hapten-carrier complex. Both B and T cells were induced to proliferate and B cells partially differentiated into antibody-secreting cells when B cells were cultured with TNP-modified but not unmodified T cells. The activation of B cells by TNP-modified T cells was not MHC restricted but was blocked by anti-Ia antibodies, suggesting a role for Ia distinct from Ag presentation. Furthermore, B cell proliferation was also inhibited by antibodies to L3T4 and LFA-1, suggesting a functional accessory role for these molecules in induction of B cell proliferation/differentiation.  相似文献   

5.
6.
Hen egg-white lysozyme (HEL)-specific Thy-1+, Lyt-1+2- T cell lines and clones were derived from the nonresponder C57BL/6 strain. Although the antigen-specific proliferative response of these T cells in the presence of syngeneic irradiated spleen cells as a source of antigen-presenting cells (APC) was normal, the same cells were incapable of stimulating B cells to secrete antibody in vitro. This deficiency could, however, be corrected by the addition of an excess of normal T cells or a supernatant from concanavalin A-stimulated rat spleen cells. Alternatively, the use of highly cross-reactive ring-necked pheasant lysozyme in the cultures allowed expression of efficient help, ruling out any inherent deficiency in the T cells. The antibody response was specific and required MHC compatibility between the T lines and responding B cells. By using (H-2b X H-2d)F1 B cells and another H-2d-restricted HEL-specific T line, it was shown that only the H-2b-restricted T-B collaboration required exogenous factors, and the H-2d-restricted collaboration did not. Because both proliferative and helper responses are dependent upon MHC-restricted antigen presentation by macrophage-APC and B cells, respectively, these results suggest that the defect in the nonresponder H-2b-restricted T-B collaborative pathway may relate to the inability of B cells to adequately process and present HEL to clonal T cells.  相似文献   

7.
The helper activity of resting T cells and in vitro generated effector T cells and the relative roles of cognate interaction, diffusible cytokines, and non-cognate T-B contact in B cell antibody responses were evaluated in a model in which normal murine CD4+ T cells (Th), activated with alloantigen-bearing APC, were used to support the growth and differentiation of unstimulated allogeneic B cells. Both "fresh" T cells, consisting of memory and naive cells, stimulated for 24 h, and "effector" T cells, derived from naive cells after 4 days of in vitro stimulation, induced the secretion of IgM, IgG3, IgG1, IgG2a, and IgA. Effector T cells were significantly better helpers of the response of small dense B cells, inducing Ig at lower numbers and inducing at optimal numbers 2- to 3-fold more Ig production than fresh T cells. The predominant isotype secreted was IgM. Supernatants derived from fresh T cell cultures contained moderate levels of IL-2, whereas those from effector cultures contained significant levels of IL-6 and IFN-gamma in addition to IL-2. The involvement of soluble factors in the B cell response was demonstrated by the ability of antibodies to the cytokines IL-2, IL-4, and IL-6 to each block Ig secretion. Antibodies to IL-5 and IFN-gamma had no effect on the T cell-induced response. Kinetic studies suggested that IL-4 acted during the initial stages of the response, whereas the inability of anti-IL-6 to block B cell proliferation suggested that IL-6 was involved in part in promoting differentiation of the B cells. The relative contributions of cognate (MHC-restricted) and bystander (MHC-unrestricted) T-B cell contact vs cytokine (non-contact)-mediated responses were assessed in a transwell culture system. The majority of the IgM, IgG3, IgG1, and IgG2a response induced by both fresh and effector T cells was dependent on cognate interaction with small, high density B cells. In contrast, a small proportion of these isotypes and most of the IgA secreted resulted from the action of IL-6 on large, presumably preactivated, B cells. The IgA response did not require cell contact or vary when fresh and effector cells were the helpers. The contribution of bystander contact in the overall antibody response to both T cell populations was minimal.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

8.
The mechanism of help for resting B cell growth in MHC-restricted T-B collaboration was investigated using an in vitro polyclonal model for these T cell-B cell interactions. In the presence of rabbit anti-mouse Ig, small, size-selected B cells elicit help from syngeneic Ia-restricted Th2 cell lines specific for F(ab')2 rabbit globulin. Both Ag-presenting and bystander B cells receive signals from stimulated Th cells that lead to B cell proliferation. The results suggest that the direct activation of resting Ag-presenting and bystander B cells by Th2 cells is mediated by a similar effector mechanism. Although proliferative responses by Ag-presenting B cells are of greater magnitude, help for both Ag-presenting and bystander B cell populations is characterized by the lack of a requirement for membrane Ig cross-linking, by identical kinetics, and by the necessity for direct cell contact or close proximity with Th cells. B cell proliferation is not induced by exposure to the sequence of diffusable mediators released from a synchronized Ag-specific T-B interaction. The T cell-dependent proliferation by both B cell populations can be inhibited by excess mitomycin C-treated syngeneic "cold target" B cells, demonstrating a requirement for a short-range T cell-B cell interaction. mAb inhibition experiments fail to identify a role for class II, LFA-1, or CD4 membrane molecules in the delivery of help to bystander B cells. Antibody against H2d bystander class II molecules has no effect on bystander B cell proliferation at concentrations that completely block Ag presentation by H2d B cells to an H2d-restricted Th cell line. Antibodies against the cell adhesion molecule LFA-1 or the Th cell molecule CD4 do inhibit bystander B cell proliferation, but only to the extent that they block T cell activation and the induction of help. The inductive stimulus leading to resting B cell growth results from an early, short-range interaction with Th cells. B cell proliferation is supported by T cell soluble mediators as a consequence of this interaction, which is required for at least 8 hr after T cell recognition of Ag/Ia on the surface of Ag-presenting B cells.  相似文献   

9.
The B cell surface trigger(s) and the molecular mechanism(s) of somatic hypermutation remain unknown, partly because of the lack of amendable in vitro models. Recently, however, we reported that upon B cell receptor cross-linking and coculture with activated T cells, the Burkitt's lymphoma cell line BL2 introduces mutations in its IgVH gene in vitro. We now confirm the relevance of our culture model by establishing that the entire spectrum of somatic mutations observed in vivo, including insertions and deletions, could be found in the DNA of BL2 cells. Additionally, we show that among four human B cell lines, only two with a centroblast-like phenotype can be induced to mutate. Triggering of somatic mutations in BL2 cells requires intimate T-B cell contacts and is independent of CD40-CD40-ligand (CD40L) interactions as shown by 1) the lack of effect of anti-CD40 and/or anti-CD40L blocking Abs on somatic mutation and 2) the ability of a CD40L-deficient T cell clone (isolated from an X-linked hyper-IgM syndrome patient) to induce somatic mutation in B cell receptor-engaged BL2 cells. Thus, our in vitro model reveals that T-B cell membrane interactions through surface molecules different from CD40-CD40L can trigger somatic hypermutation.  相似文献   

10.
We report here a role of B cell stimulatory factor 1 (BSF-1) in the induction of antigen-specific proliferation of affinity-purified small B lymphocytes by a thymus-dependent antigen and a carrier-reactive T cell line. By using an ovalbumin-reactive T cell line (designated Hen-1), which does not produce BSF-1 following activation, it was possible to demonstrate that the antigen-specific proliferative response of trinitrophenyl (TNP)-binding B cells to TNP-ovalbumin required exogenous BSF-1 in addition to direct interaction with irradiated Hen-1 T cells. The activation obtained under these conditions was highly efficient, being sensitive to antigen doses as low as 0.001 microgram/ml. The addition of saturating amounts of BSF-1 did not alter the antigen-specificity or the requirements for hapten-carrier linkage or major histocompatibility complex-restricted T-B interaction in this system. The involvement of BSF-1 was confirmed by the ability of 11B11 anti-BSF-1 antibody to specifically suppress the response of TNP-binding B cells to TNP-ovalbumin, BSF-1, and irradiated Hen-1 T cells. Finally, this response was augmented by addition of the monokine interleukin 1. These data indicate that the proliferative response of small B cells to the thymus-dependent antigen and carrier-reactive T cell line used in our experiments can be regulated by the same factors that govern B cell proliferation induced by thymus-independent type 2 antigens or anti-IgM antibodies.  相似文献   

11.
Th2 immune responses to a number of infectious pathogens are dependent on B7-1/B7-2 costimulatory molecule interactions. We have now examined the Th2 immune response to Nippostrongylus brasiliensis (Nb) in B7-1/B7-2(-/-) mice and show that Th2 effector cells develop that can mediate worm expulsion and produce substantial Th2 cytokines comparable with wild-type infected mice; however, in marked contrast, B cell Ag-specific Ab production is abrogated after B7 blockade. To examine the mechanism of T cell activation, OVA-specific DO11.10 T cells were transferred to recipient mice, which were then immunized with a combination of Nb plus OVA or either alone. Only the combination of Nb plus OVA triggered T cell differentiation to OVA-specific Th2 cells, suggesting that Nb acts as an adjuvant to stimulate Ag-specific naive T cells to differentiate to effector Th2 cells. Furthermore, using the DO11.10 TCR-transgenic T cell adoptive transfer model, we show that blocking B7-1/B7-2 interactions does not impair nonparasite Ag-specific DO11.10 Th2 cell differentiation; however, DO11.10 T cell cycle progression and migration to the B cell zone are inhibited.  相似文献   

12.
A single monoclonal T helper (Th) clone can activate B cells in two distinct pathways; a cognate pathway requiring a major histocompatibility complex (MHC)-restricted T-B cell interaction, and a noncognate pathway not requiring an MHC-restricted T-B cell interaction. The present study was undertaken to investigate whether Th cells mediating a given immune response provide further regulatory function to B cells other than helper function. It was demonstrated that conditions of high antigen concentration which activate a noncognate B cell activation pathway simultaneously inhibit IgG responses. The inhibition is shown to be mediated by the T cell factor interleukin 4, produced by activated cloned Th cells. The inhibitory effect of this factor is directed to B cells and is MHC-unrestricted, antigen-nonspecific, and IgG class-specific. In addition to being susceptible to the effects of augmenting cells and suppressor cells, cloned Th cell populations can therefore themselves function as regulatory cells to inhibit IgG responses when stimulated with high dose of specific antigen. These results indicate that Th cells function to regulate B cells both positively and negatively, depending upon the activation conditions.  相似文献   

13.
We previously showed that immunization of various strains of mice with three types of antigen--PC-Hy (nominal antigen), F6-Hy (Ab2 alpha-Hy, and 4C11-Hy (Ab2 beta-Hy)--induces a differential PC-specific, T15-Id+ antibody response. In this report, the in vitro phosphorylcholine (PC)-specific B cell responses induced by these three antigens were studied. A hemocyanin-specific long-term T helper cell line was used to provide help for primary and secondary in vitro T cell-dependent B cell responses. At low doses (0.005 to 0.5 micrograms/ml) of antigen, a significant increase in the proliferation of PC-OVA-primed BALB/c B cells was observed with Ab2-Hy or PC-Hy conjugate, but not unconjugate, antigens. Similar low doses of antigen could stimulate naive B cells to secrete IgM and stimulate PC-OVA- or 4C11-Hy-primed B cells to secret IgM and IgG1 anti-PC antibodies. The percentage of T15-Id of the PC-specific antibodies produced in the in vitro T-B culture was found to be less dominant than that produced by in vivo immunization, suggesting that certain regulatory mechanisms occur in the in vivo environment that may help to maintain the T15-Id dominance. Taken together, our in vivo and in vitro results indicate that idiotope antigens can function like nominal antigens to induce antigen-specific B cell responses. The mechanisms of thymic-dependent B cell activation induced by idiotope and nominal antigen are similar in that the T-B interaction is MHC-restricted and requires cognate recognition.  相似文献   

14.
It has previously been demonstrated that B cells can be activated through two distinct T helper (Th) cell-dependent pathways, one requiring both carrier-hapten linkage and MHC-restricted T-B interaction and the other requiring neither. In addition, it has been shown that different B cell subpopulations exist and that these subpopulations differ in their activation requirements. Previous studies demonstrated that resting B cells containing an Lyb-5+ subpopulation were activated by MHC-unrestricted T cell signals, whereas resting Lyb-5- B cells were activated only through MHC-restricted T-B interaction. It was suggested that this difference resulted from the ability of Lyb-5+ but not Lyb-5-B cells to respond to soluble MHC-unrestricted Th signals. Because Lyb-5+ B cells were responsive in these previous experiments to MHC-unrestricted Th signals, it could not be determined whether Lyb-5+ B cells were also responsive to MHC-restricted Th signals. Consequently, the present study was undertaken to directly address the question of whether Lyb-5+ B cells can be activated under appropriate conditions by MHC-restricted as well as unrestricted T cell-B cell interactions. It was found that unprimed normal B cells (containing Lyb-5+ and Lyb-5-B cells) but not unprimed xid-defective populations (Lyb-5- only) can be activated by cloned KLH-specific and MHC-restricted Th cells in response to either high or low concentrations of TNP-KLH. The IgM response of Lyb-5+-containing B cells to a high concentration of antigen (10 micrograms/ml) was MHC unrestricted, whereas the IgM response of unprimed Lyb-5+ B cells to a low concentration of antigen (0.001 micrograms/ml) was MHC restricted. Thus, unprimed Lyb-5+ B cells can be activated through both MHC-restricted and unrestricted pathways. It was further demonstrated that the activation requirements of Lyb-5+ and Lyb-5- B cells differed even for MHC-restricted B cell activation.  相似文献   

15.
This study reports early B and T cell signaling events during cognate interactions between a human B cell line pulsed with peptide and an Ag-specific T cell clone. As has been previously reported, peptide in the context of the appropriate class II molecule stimulated a rise in intracellular calcium [Ca2+]i in the Ag-specific T cell clone. The activation of the T cell clone was associated with a reciprocal rise in [Ca2+]i in the B cells. Engagement of receptors on the B cell surface by the T cell also was associated with inositol phospholipid turnover comparable to that elicited by stimulation through sIg. Early signaling events in B cells can therefore be stimulated in cognate interactions with Ag-specific T cells, without the direct engagement of Ig receptors. A class II deficient B lymphoblastoid mutant, 6.1.6, which was incapable of presenting peptide to the T cell clone, could be stimulated to produce a rise in [Ca2+]i if the T cell clone was activated by monoclonal antibodies to CD3. Therefore, the interaction of class II molecules on the B cell with the TCR and/or the CD4 accessory molecule was not essential for T-dependent B cell activation. However, T-dependent signalling of B cells was profoundly inhibited by mAb to CD18 (beta-chain of LFA-1) on the T cell or CD54 (ICAM-1) on the B cell, demonstrating the importance of this pair of adhesion molecules in early T-B cell interactions.  相似文献   

16.
The immunodeficiency syndrome murine AIDS (MAIDS), caused by the BM5 retrovirus preparation, involves the activation, division, and subsequent anergy of the entire CD4(+) T cell population as well as extensive B cell hyperproliferation and hypergammaglobulinemia, resulting in splenomegaly and lymphadenopathy, followed many weeks later by death. The development of MAIDS requires CD4(+) T cells and MHC class II expression by the infected host, supporting a role for T-B interaction in disease development or progression. To explore this possibility, we examined development of MAIDS in mice deficient in CD4 (CD4 knockout), in which T-B interactions are compromised. We find that in CD4 knockout hosts, BM5 causes T cell immunodeficiency in the remaining T cells but has only a limited ability to induce B cell phenotypic changes, hyperproliferation, hypergammaglobulinemia, or splenomegaly. There is also delayed death of infected mice. This implies that CD4 dependent T-B interaction is needed to induce the B cell aspects of disease and supports a multistep mechanism of disease in which B cell changes follow and are caused by CD4(+) T cell effects.  相似文献   

17.
The ability of trinitrophenyl (TNP)-binding murine B lymphocytes to present native rabbit IgG (RGG), TNP-modified RGG, and rabbit anti-mouse Ig (RAMG) to an Ia-restricted, RGG-specific helper/inducer T cell clone was compared. By three independent assays (lymphokine secretion, T cell proliferation, and B cell differentiation), TNP-RGG was presented at 10(2)- to 10(3)-fold lower concentrations than RGG, and RAMG at 10(2)- to 10(3)-fold lower concentrations than TNP-RGG. The available data suggest that the efficiency of antigen presentation is dependent primarily on the avidity of binding of a ligand to B cell surface Ig and/or the extent of subsequent endocytosis (modulation). Despite the observed quantitative differences between anti-Ig (RAMG) and specific antigen (TNP-RGG), these results demonstrate that qualitatively both are essentially similar in their ability to mediate specific T-B interactions. Thus, anti-Ig antibodies are valid models for analyzing cognate interactions between antigen-specific B and helper T lymphocytes.  相似文献   

18.
To study the role of T cells in T-B cell interactions resulting in isotype production, autologous purified human splenic B and T cells were cocultured in the presence of IL-2 and Con A. Under these conditions high amounts of IgM, IgG, and IgA were secreted. B cell help was provided by autologous CD4+ T cells whereas autologous CD8+ T cells were ineffective. Moreover, CD8+ T cells suppressed Ig production when added to B cells cocultured with CD4+ T cells. Autologous CD4+ T cells could be replaced by allogeneic activated TCR gamma delta,CD4+ or TCR alpha beta,CD4+ T cell clones with nonrelevant specificities, indicating that the TCR is not involved in these T-B cell interactions. In contrast, resting CD4+ T cell clones, activated CD8+, or TCR gamma delta,CD4-,CD8- T cell clones failed to induce IL-2-dependent Ig synthesis. CD4+ T-B cell interaction required cell-cell contact. Separation of the CD4+ T and B cells by semiporous membranes or replacement of the CD4+ T cells by their culture supernatants did not result in Ig synthesis. However, intact activated TCR alpha beta or TCR gamma delta,CD4+ T cell clones could be replaced by plasma membrane preparations of these cells. Ig synthesis was blocked by mAb against class II MHC and CD4. These data indicate that in addition to CD4 and class II MHC Ag a membrane-associated determinant expressed on both TCR alpha beta or TCR gamma delta,CD4+ T cells after activation is required for productive T-B cell interactions resulting in Ig synthesis. Ig production was also blocked by mAb against IL-2 and the IL-2R molecules Tac and p75 but not by anti-IL-4 or anti-IL-5 mAb. The CD4+ T cell clones and IL-2 stimulated surface IgM-IgG+ and IgM-IgA+, but not IgM+IgG- or IgM+IgA- B cells to secrete IgG and IgA, respectively, indicating that they induced a selective expansion of IgG- and IgA-committed B cells rather than isotype switching in Ig noncommitted B cells. Induction of Ig production by CD4+ T cell clones and IL-2 was modulated by other cytokines. IL-5 and transforming growth factor-beta enhanced, or blocked, respectively, the production of all isotypes in a dose-dependent fashion. Interestingly, IL-4 specifically blocked IgA production in this culture system, indicating that IL-4 inhibits only antibody production by IgA-committed B cells.  相似文献   

19.
Splenic B cells specific for the haptens, 2,4,6-trinitrophenyl (TNP) or fluorescein isothiocyanate (FITC) were cultured with a range of concentrations of unmodified or TNP- or FITC-conjugated conalbumin and the conalbumin + I-Ak-specific, interleukin (IL) 1-dependent helper T cell clone, D10 . G4, in the presence and absence of IL-1. Lymphokine secretion, T cell proliferation, and antibody secretion by B cells all exhibited identical antigen dose responses. Thus, hapten-binding B cells presented low concentrations of haptenated conalbumin for activation of both the T and the antigen-presenting B cells. Whereas proliferation of D10 . G4 required the addition of IL-1, both lymphokine production and stimulation of B cells to antibody secretion occurred without exogenous IL-1. These results demonstrate that when B lymphocytes function as presenting cells for antigens that bind to their immunoglobulin receptors, activation of the responding T cells and the B cells themselves occur at similar concentrations of antigen. Moreover, for functional T-B interactions, antigen-presenting B and responding T lymphocytes constitute a complete system that requires no other accessory stimuli, whereas clonal expansion of T cells is dependent on accessory factors such as IL-1. Finally, since D10 . G4 secretes IL-4 but neither IL-2 nor interferon-gamma, our results demonstrate that differentiation of B cells as a consequence of direct ("cognate") interactions with helper T cells as well as of bystander B cells can occur in the absence of IL-1, IL-2, and interferon-gamma.  相似文献   

20.
Few studies have addressed the consequences of physical interactions between NK and T cells, as well as physical interactions among NK cells themselves. We show in this study that NK cells can enhance T cell activation and proliferation in response to CD3 cross-linking and specific Ag through interactions between 2B4 (CD244) on NK cells and CD48 on T cells. Furthermore, 2B4/CD48 interactions between NK cells also enhanced proliferation of NK cells in response to IL-2. Overall, these results suggest that NK cells augment the proliferation of neighboring T and NK cells through direct cell-cell contact. These results provide new insights into NK cell-mediated control of innate and adaptive immunity and demonstrate that receptor/ligand-specific cross talk between lymphocytes may occur in settings other than T-B cell or T-T cell interactions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号