首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Lactobacillus casei CRL 705, isolated from a dry fermented sausage, produces an antibacterial peptide which is active against Listeria monocytogenes. Previous studies have shown that this compound is potentially useful to control food-borne pathogens in ground meat. In view of the potential application of this antimicrobial substance in food fermentation, a detailed biochemical analysis of this peptide is required. In this work, the purification and amino acid sequence of this bacteriocin is presented. The adsorption-desorption pH-dependent property of lactocin 705 was exploited for purification. The active extract was further subjected to RP-HPLC and SDS-PAGE. The active antimicrobial band was electroeluted from an SDS-PAGE gel and its amino acid sequence determined. Lactocin 705 had an estimated molecular weight of 3357.80 and an isoelectric point of 10.03. The peptide contains a high ratio of glycine residues and does not show any modified amino acids, like lanthionine or beta-methyllanthionine. The sequence was unique when compared to several databases.  相似文献   

2.
A bacteriocin produced by Pediococcus acidilactici has been purified to homogeneity by a rapid and simple four-step purification procedure which includes ammonium sulphate precipitation, chromatography with a cation-exchanger and Octyl Sepharose, and reverse-phase chromatography. The purification resulted in an approximately 80,000-fold increase in the specific activity and about a 6-fold increase in the total activity. The amino acid composition and sequencing data indicated that the bacteriocin contained 43-44 amino acid residues. The predicted M(r) and isolectric point of the bacteriocin are about 4600 and 8.6, respectively. Comparing the amino acid sequence of this bacteriocin with the sequences of leucocin A-UAL 187, sakacin P and curvacin A (bacteriocins produced by Leuconostoc gelidum, Lactobacillus sake and Lactobacillus curvatus, respectively) revealed that all four bacteriocins had in their N-terminal region the sequence Tyr-Gly-Asn-Gly-Val-Xaa-Cys, indicating that this concensus sequence is of fundamental importance for this group of bacteriocins. The bacteriocin from P. acidilactici and sakacin P were very similar, having at least 25 common amino acid residues. The sequence similarity was greatest in the N-terminal half of the molecules--17 of the first 19 residues were common--indicating the fundamental importance of this region. Leucocin A-UAL 187 and curvacin A had, respectively, at least 16 and 13 amino acid residues in common with the bacteriocin from P. acidilactici.  相似文献   

3.
Bacteriocin-like activity (BLA) was screened in 690 strains of lactic acid bacteria isolated from plant materials such as silages and fermented vegetables. Among them, a strain identified as Enterococcus faecium NIAI 157 showed a clear BLA against the indicator strain, Ent. faecium IFO 13712. The proteinaceous nature and antimicrobial activity against closely related species strongly indicated that this BLA was a bacteriocin and was designated enterocin ON-157. The bacteriocin activity of this strain was extracellularly produced in the logarithmic growth phase in MRS broth and purified by ultrafiltration, ammonium sulphate precipitation and cation-exchange chromatography. Purified enterocin ON-157 had a molecular weight of approximately 2500 Da in SDS-PAGE analysis and was easily inhibited by treatment with alpha-amylase and proteolytic enzymes. Enterocin ON-157 had a bactericidal mode of action and inhibited the growth of the enterococci, Lactobacillus sake and Listeria monocytogenes. Enterococcus faecium NIAI 157 harboured two plasmids, 49.0 kb and 43.7 kb, and a variant missing a larger plasmid by curing with novobiocin lost the bactriocin activity.  相似文献   

4.
Enterococcus sp. 812, isolated from fresh broccoli, was previously found to produce a bacteriocin active against a number of Gram-positive bacteria, including Listeria monocytogenes. Bacteriocin activity decreased slightly after autoclaving (121 °C for 15 min), but was inactivated by protease K. Mass spectrometry analysis revealed the bacteriocin mass to be approximately 4,521.34 Da. N-terminal amino acid sequencing yielded a partial sequence, NH2-ATYYGNGVYXDKKKXWVEWGQA, by Edman degradation, which contained the consensus class IIa bacteriocin motif YGNGV in the N-terminal region. The obtained partial sequence showed high homology with some enterococcal bacteriocins; however, no identical peptide or protein was found. This peptide was therefore considered to be a novel bacteriocin produced by Enterococcus sp. 812 and was termed enterocin T.  相似文献   

5.
Lactocin S, a bacteriocin produced by Lactobacillus sake L45, has been purified to homogeneity by ion exchange, hydrophobic interaction and reverse-phase chromatography, and gel filtration. The purification resulted in approximately a 40,000-fold increase in the specific activity of lactocin S and enabled the determination of a major part of the amino acid sequence. Judging from the amino acid composition, lactocin S contained approximately 33 amino acid residues, of which about 50% were the nonpolar amino acids alanine, valine, and leucine. Amino acids were not detected upon direct N-terminal sequencing, indicating that the N-terminal amino acid was blocked. By cyanogen bromide cleavage at an internal methionine, the sequence of the 25 amino acids (including the methionine at the cleavage site) in the C-terminal part of the molecule was determined. The sequence was Met-Glu-Leu-Leu-Pro-Thr-Ala-Ala-Val-Leu-Tyr-Xaa-Asp-Val-Ala-Gly-Xaa-Phe- Lys-Tyr-Xaa-Ala-Lys-His-His, where Xaa represents unidentified residues. It is likely that the unidentified residues are modified forms of cysteine or amino acids associated with cysteine, since two cysteic acids per lactocin S molecule were found upon performic acid oxidation of lactocin S. The sequence was unique when compared to the SWISS-PROT data bank.  相似文献   

6.
Lactocin S, a bacteriocin produced by Lactobacillus sake L45, has been purified to homogeneity by ion exchange, hydrophobic interaction and reverse-phase chromatography, and gel filtration. The purification resulted in approximately a 40,000-fold increase in the specific activity of lactocin S and enabled the determination of a major part of the amino acid sequence. Judging from the amino acid composition, lactocin S contained approximately 33 amino acid residues, of which about 50% were the nonpolar amino acids alanine, valine, and leucine. Amino acids were not detected upon direct N-terminal sequencing, indicating that the N-terminal amino acid was blocked. By cyanogen bromide cleavage at an internal methionine, the sequence of the 25 amino acids (including the methionine at the cleavage site) in the C-terminal part of the molecule was determined. The sequence was Met-Glu-Leu-Leu-Pro-Thr-Ala-Ala-Val-Leu-Tyr-Xaa-Asp-Val-Ala-Gly-Xaa-Phe- Lys-Tyr-Xaa-Ala-Lys-His-His, where Xaa represents unidentified residues. It is likely that the unidentified residues are modified forms of cysteine or amino acids associated with cysteine, since two cysteic acids per lactocin S molecule were found upon performic acid oxidation of lactocin S. The sequence was unique when compared to the SWISS-PROT data bank.  相似文献   

7.
AIMS: Purification and characterization of a new bacteriocin, Bacthuricin F4 of Bacillus thuringiensis. METHODS AND RESULTS: A newly isolated B. thuringiensis subsp. kurstaki strain BUPM4, was shown to produce a novel bacteriocin named Bacthuricin F4. The highest bacteriocin activity was found in the growth medium and evidenced in the late exponential growth phase. Bacthuricin F4 could be purified by a two-step procedure: ammonium sulphate precipitation of protein from culture supernatant followed by a reverse phase chromatography. Upon purification, the specific activity was increased 100-fold. This bacteriocin was heat-stable up to 70 degrees C and resisted up to pH 3.0. Bacthuricin F4 was sensitive to proteases demonstrating its proteinaceous nature. Its molecular mass, determined by mass spectrometry was 3160.05 Da. Direct N-terminal sequencing of Bacthuricin F4 revealed the following sequence: DWTXWSXL. The latter was unique in the databases. Bacthuricin F4 was active against Bacillus species while it had little or no effect on Gram-negative bacteria. CONCLUSIONS: A strain BUPM4 of B. thuringiensis subsp. kurstaki, was shown to produce a new bacteriocin named Bacthuricin F4 of both new molecular mass (3160.05 Da) and new amino acid terminal sequence. This is, to our knowledge, the first bacteriocin exhibiting such characteristics reported to be produced by B. thuringiensis. SIGNIFICANCE AND IMPACT OF THE STUDY: The bacteriocin produced by the B. thuringiensis strain BUPM4 respond to both criteria of thermostability and stability to low pHs. Thus, it could be used for the control of the related species of Bacillus harmful for agricultural products.  相似文献   

8.
F. VILLANI, G. SALZANO, E. SORRENTINO, O. PEPE, P. MARINO AND S. COPPOLA. 1993. Enterococcus faecalis 226, isolated from natural whey cultures utilized as starters in the manufacture of mozzarella cheese from water-buffalo milk, produces a bacteriocin designated enterocin 226NWC. The bacteriocin was isolated from culture supernatant fluids of the producer strain and was active against strains of the same species and Listeria monocytogenes, but not against useful lactic acid bacteria. Enterocin 226NWC is a protein with an apparent molecular weight of about 5800; it is relatively heat-stable and has a bactericidal mode of action. Listeria monocytogenes, growing in the presence of the enterocin 226NWC producer strain in broth and in reconstituted skim milk, was inhibited.  相似文献   

9.
Enterococcus gallinarum strain 012, isolated from the duodenum of ostrich, produced enterocin 012 which is active against Ent. faecalis, Lactobacillus acidophilus, Lact. sake, Listeria innocua, Propionibacterium acidipropionici, Propionibacterium sp., Clostridium perfringens, Pseudomonas aeruginosa and Salmonella typhimurium. One of the four pathogenic strains of Escherichia coli isolated from the intestinal tract of ostrich was inhibited by enterocin 012. No antimicrobial activity was recorded against Bacillus cereus, Cl. sporogenes, Cl. tyrobutyricum, Leuconostoc cremoris, Pediococcus pentosaceus, Staphylococcus carnosus and Streptococcus thermophilus. Enterocin 012 was resistant to treatment with lysozyme, catalase, lipase and papain, but sensitive to Proteinase K, alpha-chymotrypsin, trypsin and pepsin. Treatment of enterocin 012 with gastric juice from the duodenum resulted in a 50% loss of antibacterial activity. Half of the activity was lost when incubated at 80 degrees C for 30 min, or when kept overnight at a pH of 1.0-5.0 and pH 11.0 and 12.0, respectively. Enterocin 012 production started in mid-logarithmic growth and reached a maximum of 800 AU ml-1, but increased further to 1600 AU ml-1 in the stationary growth phase. The peptide is approximately 3.4 kDa in size, as determined after partial purification with Amberlite XAD-1180 and ammonium sulphate precipitation, followed by tricine-sodium dodecyl sulphate-polyacrylamide gel electrophoresis. The mechanism of antimicrobial activity against Lact. sake LMG 13558 is bactericidal and caused cell lysis of active growing cells.  相似文献   

10.
11.
Weissella paramesenteroides DX has been shown to produce a 4450-Da class IIa bacteriocin, weissellin A, composed of 43 amino acids with the sequence KNYGNGVYCNKHKCSVDWATFSANIANNSVAMAGLTGGNAGN. The bacteriocin shares 68% similarity with leucocin C from Leuconostoc mesenteroides. Computational analyses predict that the bacteriocin is a hydrophobic molecule with a beta-sheet type conformation. Weissellin A exhibited various levels of activity against all gram-positive bacteria tested, but was not active against Salmonella enterica Enteritidis. The antimicrobial activity was not associated with target-cell lysis. The bacteriocin retained activity after exposure to 121 °C for 60 min or to −20 °C for 6 months, and to pH 2.0-10.0. It was not sensitive to trypsin, α-chymotrypsin, pepsin and papain, but was inactivated by proteinase K. At a dissolved oxygen concentration of 50%, weissellin A was produced with growth-associated kinetics. The properties of weissellin A make this bacteriocin a potentially suitable agent for food and feed preservation.  相似文献   

12.
Curvaticin FS47, a bacteriocin produced by Lactobacillus curvatus FS47, is inhibitory to Listeria monocytogenes, as well as Lactobacillus, Pediococcus, Enterococcus, and Bacillus spp. The bacteriocin was purified by 40% ammonium sulfate precipitation, solid-phase extraction, and reversed-phase high-pressure liquid chromatography. Purified curvaticin FS47 was determined to be 4.07 kDa by mass spectrometry and was partially sequenced. Thirty-one N-terminal amino acids were identified; the curvaticin FS47 protein sequence did not show homology to the pediocin-like group of bacteriocins.  相似文献   

13.
AIM: To partially characterize the bacteriocin produced by the GM-1 strain of Enterococcus faecium, isolated from the faeces of a newborn human infant. METHODS AND RESULTS: The bacteriocin produced by E. faecium GM-1 showed a broad spectrum of activity against indicator strains of Escherichia coli, Staphylococcus aureus, Vibrio spp., Salmonella typhimurium, Listeria monocytogenes, Lactobacillus acidophilus, and Streptococcus thermophilus. Treatment of the GM-1 bacteriocin with proteolytic enzymes reduced its inhibitory activities. The bacteriocin was stable at 100 degrees C for 20 min and displayed inhibitory activity at neutral pH. The optimal production of bacteriocin from E. faecium GM-1 was obtained when the culture conditions were pH 6.0-6.5 and 35-40 degrees C. The inhibitory activity of the bacteriocin was not substantially changed by the use of different carbon sources in the media, except when galactose was substituted for glucose. The use of a sole nitrogen source caused a decrease in inhibitory activity. A bacteriocin gene similar to enterocin P was identified from the total DNA of E. faecium GM-1 by PCR and direct sequencing methods. CONCLUSION: E. faecium GM-1, which was isolated from the faeces of a newborn baby, produces an enterocin P-like bacteriocin with inhibitory activity against Gram-positive and Gram-negative bacteria, including food-borne pathogens. SIGNIFICANCE AND IMPACT OF THE STUDY: E. faecium GM-1, isolated from infant faeces, produces a new bacteriocin that is similar to enterocin P. This bacteriocin is heat stable and has a broad antibacterial spectrum that includes both Gram-positive and Gram-negative bacteria.  相似文献   

14.
This study aimed to compare two different approaches for the purification of enterocin B from Enterococcus faecium strain W3 based on the observation that the bacteriocin was found both in cell associated form and in culture supernatant. The first approach employed ammonium sulfate precipitation, cation-exchange chromatography, and sequential reverse-phase high-performance liquid chromatography. The latter approach exploited a pH-mediated cell adsorption–desorption method to extract cell-bound bacteriocin, and one run of reverse-phase chromatography. The first method resulted in purification of enterocin B with a recovery of 4% of the initial bacteriocin activity found in culture supernatant. MALDI-TOF MS analysis and de novo peptide sequencing of the purified bacteriocin confirmed that the active peptide was enterocin B. The second method achieved the purification of enterocin B with a higher recovery (16%) and enabled us to achieve pure bacteriocin within a shorter period of time by avoiding time consuming purification protocols. The purity and identity of the active peptide were confirmed again by matrix-assisted laser desorption/ionization time-of flight (MALDI-TOF) mass spectrometry (MS) analysis. Although both approaches were satisfactory to obtain a sufficient amount of enterocin B for use in MS and amino acid sequence analysis, the latter was proved to be applicable in large-scale and rapid purification of enterocin B.  相似文献   

15.
Antimicrobial activity of bacteriocin S760 (enterocin) produced by Enterococcusfaecium strain LWP760 was studied. Bacteriocin S760 is a cationic, hydrophobic, and heat stable peptide with the molecular weight of 5.5 kDa and pl of 9.8. Enterocin S760 is shown to inhibit in vitro the growth both of sensitive and resistant to antibacterials gramnegative and grampositive bacteria of 25 species. MICs of the bacteriocin S760 vary between 0.05-1.6 mg/l for Escherichia coli 0157:H117, Salmonella typhimurium, Salmonella enteritidis, Campylobacter jejuni, Yersinia enterocolitica, Yersinia pseudotuberculosis, Listeria monocytogenes and Clostridium perfringens, that are main food-borne pathogens, and from 0.4-1.6 mg/l for Streptococcus pyogenes, Streptococcus pneumoniae and Corynebacterium diphteriae. It is also active against antibioticresistant strains of Staphylococcus aureus, Enterobacter cloacae, Acinetobacter baumannii (with MICs of 0.05-3 mg/l), Klebsiella pneumoniae (with MICs of 6 mg/l), Pseudomonas aeruginosa (with MICs of 0.4-25 mg/1), as well against fungi belonging to species of Candida albicans, Candida krusei and Aspergillus niger (with MICs of 0.1-0.2 mg/l). Enterocin S760 is a novel antimicrobial agents useful in medicine, veterinary and food industry.  相似文献   

16.
Enterocin 81, a bacteriocin produced by Enterococcus faecium WHE 81 previously isolated from cheese, exhibited a very narrow spectrum of activity, which is mainly directed against enterococci and Listeria spp. including Listeria monocytogenes. Enterocin 81 activity, which was extremely rapid with maximal effect achieved within 30 min, could not be detected after treatment with various proteolytic enzymes. This activity was bactericidal in nature and induced an important efflux of intracellular material, which was visualized under electron microscopy as filaments coming out of L. monocytogenes cells. However, enterocin 81 did not display bacterial lysis on sensitive cells, as no changes in cell morphology were detected following the bactericidal action. Furthermore, this bacteriocin was shown to be equally active at pH values ranging from 4·0 to 8·0, which, along with the narrow activity spectrum, are two factors of paramount interest with regards to possible use of this bacteriocin in fermented foods.  相似文献   

17.
A simple two-step procedure was developed to obtain pure enterocin 4, a bacteriocin produced by Enterococcus faecalis INIA 4. Chemical and genetic characterization revealed that the primary structure of enterocin 4 is identical to that of peptide antibiotic AS-48 from Enterococcus faecalis S-48. In contrast to the reported inhibitory spectrum of AS-48, enterocin 4 displayed no activity against gram-negative bacteria.  相似文献   

18.
Lactic acid bacteria exhibiting activity against the gram-positive bacterium Bacillus subtilis were isolated from rice bran. One of the isolates, identified as Enterococcus faecalis RJ-11, exhibited a wide spectrum of growth inhibition with various gram-positive bacteria. A bacteriocin purified from culture fluid, designated enterocin RJ-11, was heat stable and was not sensitive to acid and alkaline conditions, but it was sensitive to several proteolytic enzymes. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis analysis revealed that enterocin RJ-11 had a molecular weight of 5,000 in its monomeric form. The amino acid sequence determined for purified enterocin RJ-11 exhibited high levels of similarity to the sequences of enterocins produced by Enterococcus faecium.  相似文献   

19.
We report the isolation and characterization of a new bacteriocin, thuricin S, produced by the Bacillus thuringiensis subsp. entomocidus HD198 strain. This antibacterial activity is sensitive to proteinase K, is heat-stable, and is stable at a variety of pH values (3-10.5). The monoisotopic mass of thuricin S purified by high performance liquid chromatography, as determined with mass spectrometry ESI-TOF-MS, is 3137.61 Da. Edman sequencing and NanoESI-MS/MS experiments provided the sequence of the 18 N-terminal amino acids. Interestingly, thuricin S has the same N-terminal sequence (DWTXWSXL) as bacthuricin F4 and thuricin 17, produced by B. thuringiensis strains BUPM4 and NEB17, respectively, and could therefore be classified as a new subclass IId bacteriocin.  相似文献   

20.
Sakacin A, a bacteriocin produced by Lactobacillus sake Lb706 and which inhibits the growth of Listeria monocytogenes, was purified to homogeneity by ammonium sulphate precipitation and ion-exchange, hydrophobic-interaction and reversed-phase chromatography. The complete amino acid sequence of sakacin A was determined by Edman degradation. The bacteriocin consisted of 41 amino acid residues and had a calculated M(r) of 4308.7, which is in good agreement with the value determined by mass spectrometry. The structural gene encoding sakacin A (sakA) was cloned and sequenced. The gene encoded a primary translation product of 59 amino acid residues which was cleaved between amino acids 18 and 19 to yield the active sakacin A. Sakacin A shared some sequence similarities with other bacteriocins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号