首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 906 毫秒
1.
A mathematical model is presented that permits simulation of a time sequence of DNA distributions with a single set of cell-cycle parameters. The method is particularly suited to the quantitative analysis of sets of sequential DNA distributions from perturbed cell populations. The model permits determination of the durations and associated dispersions of the phases of the cell cycle as well as the point in the cell cycle at which the perturbing agent exerts its effect. The mathematical details of the simulation technique are presented, and the technique is applied to the analysis of DNA distributions from perturbed cell populations. Three cell populations are modeled: CHO-line cells released from a block at the interface of the G1-and S-phases, 3T3 cells released from a G1-phase block produced by serum starvation, and S49 mouse lymphoma cells responding to a block in the G1-phage produced by N6,02'-dibutyryl adenosine 3':5'-cyclic monophosphate (Bt2cAMP).  相似文献   

2.
Summary The varying sensitivity to radiation in the different phases of the cell cycle was investigated using L-929 cells of the mouse. The cells were synchronized by mechanical selection of mitotic cells. The synchronous populations were X-irradiated with a single dose of 10 Gy in the middle of the G1-phase, at the G1/S-transition or in the middle of the S-phase, respectively. The radiation effect was determined in 2 h intervals a) by14C-TdR incorporation (IT) into the DNA, b) by autoradiography (AR), c) by flow cytometry (FCM). The incorporation rate decreased in all three cases, but the reasons appeared to be different, as can be derived from FCM and AR data: After irradiation in G1, a fraction of cells was prevented from entering S-phase, after irradiation at G1/S a proportion of cells was blocked in the S-phase, and after irradiation in S, DNA synthesis rate was reduced. As a consequence of these effects, the mean transition time through S-phase increased. The G2 blocks, obtained after irradiation at the three stages of the cycle were also different: Cells irradiated in G1 are partly released from the block after 10 h. Irradiation at G1/S caused a persisting accumulation of 50% of the cells in G2, and for irradiation in S more than 80% of the cells were arrested in G2.  相似文献   

3.
We studied intracellular activity of the plasminogen activator within the cell cycle of chemically synchronized normal and RSV-transformed chick fibrolasts in culture. Consideration has also been given to the relationship between the plasminogen activator activity and cycles of DNA synthesis or mitosis in cycling fibroblasts after viral infection. The plasminogen activator activity of the cell lysates was assayed on [125I]fibrin-coated Petri dishes and was expressed as the radioactivity released from the plates. Normal fibroblasts produced detectable levels of plasminogen activator in the S-phase and late G2-phase or mitosis of the cell cycle. In contrast, RSV-transformed cells produced high levels of this activator throughout the entire cell cycle although this activity fluctuated and reached a maximum in the G2-M periods. We also found that the level of plasminogen activator activity in the transformed fibroblasts is influenced by the cycles of DNA synthesis and that cell division is required for the appearance of plasminogen activator activity in the ‘de novo’ virus-infected cultures.  相似文献   

4.
The proliferating cells of mouse epidermis (basal cells) can be separated from the non-proliferating cells (differentiating cells) (Laerum, 1969) and brought into a mono-disperse suspension. This makes it possible to determine the cell cycle distributions (e.g. the relative number of cells in the G^ S and (G2+ M) phases of the cell cycle) of the basal cell population by means of micro-flow fluorometry. To study the regenerative cell proliferation in epidermis in more detail, changes in cell cycle distributions were observed by means of micro-flow fluorometry during the first 48 hr following adhesive tape stripping. 3H-TdR uptake (LI and grain count distribution) and mitotic rate (colcemid method) were also observed. An initial accumulation of G2 cells was observed 2 hr after stripping, followed by a subsequent decrease to less than half the control level. This was followed by an increase of cells entering mitosis from an initial depression to a first peak between 5 and 9 hr which could be satisfactorily explained by the changes in the G2 pool. After an initial depression of the S phase parameters, three peaks with intervals of about 12 hr followed. The cells in these peaks could be followed as cohorts through the G2 phase and mitosis, indicating a partial synchrony of cell cycle passage, with a shortening of the mean generation time of basal cells from 83-3 hr to about 12 hr. The oscillations of the proportion of cells in G2 phase indicated a rapid passage through this cell cycle phase. The S phase duration was within the normal range but showed a moderate decrease and the Gj phase duration was decreased to a minimum. In rapidly proliferating epidermis there was a good correlation between change in the number of labelled cells and cells with S phase DNA content. This shows that micro-flow fluorometry is a rapid method for the study of cell kinetics in a perturbed cell system in vivo.  相似文献   

5.
DNA polymerase α/primase (Polα) is the key replication enzyme in eukaryotic cells. This enzyme synthesizes and elongates short RNA primers at an unwound origin of replication. Polα was used as an affinity ligand to identify cellular replication factors interacting with it. Protein complexes between Polα and cellular factors were analyzed by co-immunoprecipitations with monoclonal antibodies directed against Polα and by protein affinity chromatography of cell extracts derived from pure G1-and S-phase cell populations on Polα affinity columns. Co-immunoprecipitations resulted in the identification of a polypeptide with a molecular weight of 46 kDa. For Polα affinity chromatography, the ligand was purified from insect cells infected with a recombinant baculovirus encoding the catalytic subunit (p180) of Polα (Copeland and Wang, 1991). With 5×108 infected Sf9 cells, a rapid one step purification protocol was used which yielded in five hours 0.6 mg pure enzyme with a specific activity of 140,000 units/mg. The G1-and S-phase cell populations were generated by block, release and counterflow centrifugal elutriation of exponentially growing human MANCA cells. Starting with 2×109 non synchronous cells, 5×108 G1-phase cells were isolated. Chromatography of cell extracts derived from G1-or S-phase cells on Polα affinity columns resulted in identifying several polypeptides in the range of 40–70 kDa. Some of these polypeptides are more abundant in eluates derived from S-phase extracts than from G1-phase extracts.  相似文献   

6.
When proliferating fission yeast cells are exposed to nitrogen starvation, they initiate conjugation and differentiate into ascospores. Cell cycle arrest in the G1-phase is one of the prerequisites for cell differentiation, because conjugation occurs only in the pre-Start G1-phase. The role of ste9+ in the cell cycle progression was investigated. Ste9 is a WD-repeat protein that is highly homologous to Hct1/Cdh1 and Fizzy-related. The ste9 mutants were sterile because they were defective in cell cycle arrest in the G1-phase upon starvation. Sterility was partially suppressed by the mutation in cig2 that encoded the major G1/S cyclin. Although cells lacking Ste9 function grow normally, the ste9 mutation was synthetically lethal with the wee1 mutation. In the double mutants of ste9 cdc10ts, cells arrested in G1-phase at the restrictive temperature, but the level of mitotic cyclin (Cdc13) did not decrease. In these cells, abortive mitosis occurred from the pre-Start G1-phase. Overexpression of Ste9 decreased the Cdc13 protein level and the H1-histone kinase activity. In these cells, mitosis was inhibited and an extra round of DNA replication occurred. Ste9 regulates G1 progression possibly by controlling the amount of the mitotic cyclin in the G1-phase.  相似文献   

7.
DNA polymerase α/primase (Polα) is the key replication enzyme in eukaryotic cells. This enzyme synthesizes and elongates short RNA primers at an unwound origin of replication. Polα was used as an affinity ligand to identify cellular replication factors interacting with it. Protein complexes between Polα and cellular factors were analyzed by co-immunoprecipitations with monoclonal antibodies directed against Polα and by protein affinity chromatography of cell extracts derived from pure G1-and S-phase cell populations on Polα affinity columns. Co-immunoprecipitations resulted in the identification of a polypeptide with a molecular weight of 46 kDa. For Polα affinity chromatography, the ligand was purified from insect cells infected with a recombinant baculovirus encoding the catalytic subunit (p180) of Polα (Copeland and Wang, 1991). With 5×108 infected Sf9 cells, a rapid one step purification protocol was used which yielded in five hours 0.6 mg pure enzyme with a specific activity of 140,000 units/mg. The G1-and S-phase cell populations were generated by block, release and counterflow centrifugal elutriation of exponentially growing human MANCA cells. Starting with 2×109 non synchronous cells, 5×108 G1-phase cells were isolated. Chromatography of cell extracts derived from G1-or S-phase cells on Polα affinity columns resulted in identifying several polypeptides in the range of 40–70 kDa. Some of these polypeptides are more abundant in eluates derived from S-phase extracts than from G1-phase extracts.  相似文献   

8.
The model is based on the assumption that the cell cycle contains a Go-phase which cells leave randomly with a constant probability per unit time, γ. After leaving the Go-phase, the cells enter the C-phase which ends with cell division. The C-phase and its constituent phases, the‘true’G1-phase, the S-phase, the G2-phase and mitosis are assumed to have constant durations of T, T1Ts, T2 and Tm, respectively. For renewal tissue it is assumed that the probability per unit time of being lost from the population is a constant for all cells irrespective of their position in the cycle. The labelled mitosis curve and labelling index for continuous labelling are derived in terms of γ, T, and Ts. The model generates labelled mitosis curves which damp quickly and reach a constant value of twice the initial labelling index, if the mean duration of the Go-phase is sufficiently long. It is shown that the predicted labelled mitosis and continuous labelling curves agree reasonably well with the experimental curves for the hamster cheek pouch if T has a value of about 60 hr. Data are presented for the rat dorsal epidermis which support the assumption that there is a constant probability per unit time of a cell being released from the Go-phase.  相似文献   

9.
EFFECT OF METHOTREXATE ON THE CELL CYCLE OF L1210 LEUKEMIA   总被引:1,自引:0,他引:1  
The influence of methotrexate (MTX) on the proliferative activity of cells in different phases of cell cycle has been studied. MTX (5 mg/kg) was injected i.p. 3 days after the inoculation of 5 × 106 leukemia cells into F1 (DBA × C57 BL) mice. It was shown that MTX causes degeneration of cells, being in G1- as well as in S-phase at the time of drug injection. Incorporation of 3H-TdR was suppressed for a period ranging from 2 to 12 hr after MTX administration, which is demonstrated by the decrease in the number of grains per cell. The number of cells labeled after 3H-TdR injection was also sharply decreased during this period. For a period of 3 until 15 hr after MTX administration the mitotic index decreased significantly as a result of inhibition of DNA synthesis. The blocking of the G1-S transition was evident during 4 hr after MTX. Thereafter the G1-S transition proceeds at a rate which is practically equal to that for nontreated controls. MTX did not inhibit transition to mitosis of cells being in G2-phase and in a very late S-phase at the time of drug injection. The sensitivity of G1-cells to the cytocidal effect of MTX shows that for L1210 leukemia cells MTX can be classified as a cycle-specific drug killing both G1 and S-cells rather than S-phase specific agent with self-limitation.  相似文献   

10.
Abstract. Flow cytometry of cellular DNA content provides rapid estimates of DNA distributions, i.e. the proportions of cells in the different phases of the cell cycle. Measurements of DNA alone, however, yield no kinetic information and can make it difficult to resolve the cell cycle distributions of normal and transformed cells present in tumour biopsy specimens. The use of absorption cytophotometry of the Feulgen DNA content and [3H]TdR labelling of the same nuclei provides objective criteria to distinguish the ranges of DNA content for G0/G1, S, and G2/M cells. We now report on a study in which we combined flow and absorption cytometry to resolve the cell cycle distributions of host and tumour cells present in biopsy specimens of MCa-11 mouse mammary tumours labelled in vivo for 0.5 hr with [3H]TdR. A similar analysis of exponential monolayer cultures, labelled for 5 min with [3H]TdR under pulse-chase conditions, revealed a highly synchronous traversal of almost all cells through the different phases of the cell cycle. Combination of the flow and absorption methods also allowed us to detect G2 tumour cells in vivo and a minor tumour stem-line in vitro, to show that these two techniques are complementary and yield new information when they are combined.  相似文献   

11.
A new mathematical method is presented to analyze a time sequence of DNA distributions taken from perturbed cell populations. The method, called FPi analysis, consists of plotting the time variation of the fraction of cells in selected DNA contents ‘windows’ of the histogram. It is shown that kinetic information about the flow of cells through the cycle after the perturbation can be estimated from the FPi curves. An analysis of the method reveals that the method yields accurate results for the instrumental and cytochemical variations obtainable by present technology. The value of the method lies in the fact that the information needed can be obtained directly from the measured DNA distribution, thus bypassing the problems with other methods which estimate the fraction of cells in a given phase directly from a single histogram.  相似文献   

12.
The staining of DNA by specific fluorochromes provides a suitable method of receiving histograms in a short time by means of pulse cytometry. They represent the proliferative structure of cell populations at a high degree of statistical security. A method for quantitative determination of cell cycle phases (G1-, S- and G2 + M-phase) is presented which includes the fraction of cell debris in the calculation procedure. The advantages of this method are the elimination of overlapping between the fraction of debris and cell cycle phases and the quantitative determination of the fraction of cell debris offers the opportunity to get information on cytolytic potencies. Apart from the calculation of the various cell cycle phases the method provides criteria on the adaptation of mathematical analysis to primary data.  相似文献   

13.
Centrifugal elutriation was used to separate 9L rat brain tumour cells into fractions enriched in the G1, S, or G2/M phases of the cell cycle. Cells enriched in early G1, phase were recultured, grown in synchrony, and harvested periodically for analysis of their DNA distribution and polyamine content. Mathematical analysis of the DNA distributions indicated that excellent synchrony was obtained with low dissersion throughout the cell cycle. Polyamine accumulation began at the time of seeding, and intracellular levels of putrescine, spermidine, and spermine increased continuously during the cell cycle. In cells in the G2/M phase of the cell cycle, putrescine and spermidine levels were twice as high as in cells in the G1, phase. DNA distribution and polyamine levels were also analysed in cells taken directly from the various elutriation fractions enriched in G1, S, or G2/M. Because we did not obtain pure S or G2/M populations by elutriation or by harvesting synchronized cells, a mathematical procedure—which assumed that the measured polyamine levels for any population were linearly related to the fraction of cells in the G1, S, and G2/M phases times the polyamine levels in these phases and that polyamine levels did not vary within these phases—was used to estimate ‘true’ phase-specific polyamine levels (levels to be expected if perfect synchrony were achieved). Estimated ‘true’ phase-specific polyamine levels calculated from the data obtained from cells either sorted by elutriation or obtained from synchronously growing cultures were very similar.  相似文献   

14.
Normal and SV40 virus-transformed WI-38 human lung fibroblasts were serum starved and refed, or synchronized by double thymidine block and released from the block. At different time points in the cell cycle, steady state levels of P120 mRNA and P120 protein content of the cells were determined by densitometric scans of Northern and Western blots. At the same time points, [3H]thymidine uptake was measured and flow cytometric analysis performed for DNA content and P120 antigen staining. Levels of P120 protein and P120 mRNA were approximately 4 times greater in non-synchronous, exponentially growing transformed cells than in similarly growing normal cells. Early G1-cells, synchronized either with serum deprivation or with metabolic block, contained only a trace amount of P120 protein and mRNA. The P120 gene was transcribed early in G1 and P120 protein synthesis initiated in middle G1. A dramatic increase of P120 protein level occurred in S-phase with a corresponding mRNA peak preceding the P120 protein peak. These results indicate that P120 is overexpressed in transformed WI-38 cells and that P120 is temporally regulated during the cell cycle of both transformed and normal fibroblasts. The dramatic increase in P120 protein expression at the G1 to S boundary suggests that P120 may play a role in the regulation of cell cycle and increased nucleolar activity that is associated with cell proliferation. © 1993 Wiley-Liss, Inc.  相似文献   

15.
Growth deceleration of an Ehrlich ascites tumor with increasing mass is associated with a prolongation of the cell cycle and a decline in the growth fraction. These effects are reversed upon transfer of cells from an older tumor into a new host. Studies were made to locate the stages at which a cell cycle could be suspended or resumed. Transplantation caused a prompt rise in both mitotic and flash H3TdR labeling indices. When all the cells in cycle including mitoses were prelabeled with H3TdR in older tumors, the fraction of labeled mitoses did not decline for a considerable period after transplantation into new hosts. This suggests that the early rise in mitoses is not due to a flow of resting (Go) cells from a G2 store (G2-Go transition). It appears rather to be a reflection of a lag of the mitotic process relative to other stages during the initial readjustment of the cycle. A prompt rise in flash H3TdR indices in the transplants suggested cell entry into S from either a suspended GI (G1-Go transition) or a suspended S (S-Go transition). These possibilities were examined by relating micro-spectrophotometric estimates of DNA to the cell cycle stage as revealed by H3TdR autoradiography. Since Go cells had DNA values corresponding to GI, it was concluded that decycling or recycling could occur only after mitosis and before DNA synthesis.  相似文献   

16.
To provide a rapid method for examining cell cycle dynamics, we utilized continuous exposure of Chinese hamster ovary cells and human colon cancer cells to colcemid to block cycling cells in metaphase, suppressing re-entry into G1. Changes in cell cycle compartment distribution were monitored by DNA flow cytometry. Analysis of the rate of G2+ M compartment accumulation after addition of colcemid permitted calculation of all cycle transit parameters. These compared favorably with data in the same cell lines determined by the fraction of labeled mitoses technique. Serial assessment of DNA flow cytometry after addition of colcemid permits rapid quantitation of cycle traverse rates.  相似文献   

17.
Cultured human epidermal cells were studied by cell sorting and autoradiography after different 3H-thymidine (3H-dThd)-labelling procedures and after labelling with DNA precursors that are incorporated via salvage or de novo pathways. It was shown that 3H-dThd incorporation was the best measure of the rate of DNA replication. Dose-response experiments with pulse and continuous labelling revealed that all S- and G2-phase cells were cycling, whereas some 20% of the cells stayed in G1-phase for long periods of time. Most, if not all of these cells were probably non-proliferating differentiated keratinocytes. At least two subpopulations of S-phase cells could be discriminated on the basis of the rate of incorporation of DNA precursors. the difference in precursor incorporation did not seem to be caused by differences in nucleotide metabolism but rather to reflect true differences in the rate of DNA replication. Continuous labelling experiments showed that these subpopulations also were apparent in the G1- and G2-phases. Studies of the grain-count distribution revealed that cells that appeared to move rapidly through the S-phase moved slowly through the G2-phase, and vice versa. Cells stained with acridine orange were subjected to a two-parameter analysis in the cell sorter by simultaneous measurement of the DNA and RNA fluorescence. Autoradiography of sorted cells revealed that, on average, cells with low RNA contents incorporated 3H-dThd at a higher rate than cells with high RNA contents.  相似文献   

18.
DNA replication in isolated HeLa cell nuclei   总被引:5,自引:0,他引:5  
DNA replication was investigated in HeLa cell nuclei isolated from different phases of the cell cycle. DNA synthesis occurred only in S-phase nuclei and was dependent on the presence of the four deoxynucleoside triphosphates, Mg++, ATP and S-phase cytoplasm. G1-phase cytoplasm was unable to support such DNA synthesis. A purified preparation of calf thymus DNA polymerase, however, was able to replace S-phase cytoplasm in supporting ATP dependent DNA synthesis, which suggests that the S-phase cytoplasmic factor is a DNA polymerase. G1-phase nuclei could under no conditions be stimulated to initiate DNA replication prematurely.  相似文献   

19.
A SIMPLIFIED METHOD OF DNA DISTRIBUTION ANALYSIS   总被引:9,自引:0,他引:9  
Current methods of analysing DNA distributions utilize complex mathematical expressions that require the use of large non-linear curve fitting methods and, consequently, large computers. This paper presents a new method of analysing DNA distributions of asynchronously growing or mildly perturbed cells. The S phase fraction is obtained by fitting a second degree polynomial to that part of the distribution, mid S phase, which is not influenced by either the G1 or the G2+ M peaks. The method is simple and fast, it exceeds the accuracy of other methods and it can be used on a large desk calculator or mini-computer.  相似文献   

20.
Exposure of Swiss 3T3 cells to micromolar quantities of β-all-trans-retinoic acid (RA) results in either inhibition of growth or stimulation of cellular responsiveness to mitogens, depending on the length of treatment. Inhibition of growth is produced by treatment of the cells with RA for at least 48 hours. The total cellular pools of adenosine 5′-triphosphate (ATP) are markedly increased after 48-hour RA treatment and dose dependence studies show a correlation between the expanded ATP pools and the inhibitory effects. The expansion of total cellular ATP pools by retinoic acid occurs throughout the cell cycle and parallels the cell cycle-dependent fluctuations in total cellular ATP pools of untreated cells. Studies of [3H]thymidine incorporation and labeling indices in intact cells and [3H]dTTP incorporation and labeling indices in isolated nuclei of RA-treated and control cultures suggest that cellular acid-soluble nucleotide pools mediate the inhibition of DNA replication in the 48-hour-RA-treated cells. The stimulatory activity of RA for mitogenic responsiveness is demonstrated by treatment of G0/G1-arrested 3T3 cells with micromolar levels of RA for a maximum of 18 hours resulting in the potentiation of phorbol myristate acetate (PMA)-stimulated transition into S phase of the cell cycle. Marked increases in total cellular ATP and UTP pools are produced by 18-hour treatment of G0/G1-arrested cells with RA, before their exposure to PMA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号