首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
Because cytotoxic T-lymphocytes (CTLs) have been shown to play a role in controlling human immunodeficiency virus (HIV) infection and because CTL-based simian immunodeficiency virus (SIV) vaccines have proved effective in non-human primates, one goal of HIV vaccine design is to elicit effective CTL responses in humans. Such a vaccine could improve viral control in patients who later become infected, thereby reducing onwards transmission and enhancing life expectancy in the absence of treatment. The ability of HIV to evolve mutations that evade CTLs and the ability of these 'escape mutants' to spread amongst the population poses a challenge to the development of an effective and robust vaccine. We present a mathematical model of within-host evolution and between-host transmission of CTL escape mutants amongst a population receiving a vaccine that elicits CTL responses to multiple epitopes. Within-host evolution at each epitope is represented by the outgrowth of escape mutants in hosts who restrict the epitope and their reversion in hosts who do not restrict the epitope. We use this model to investigate how the evolution and spread of escape mutants could affect the impact of a vaccine. We show that in the absence of escape, such a vaccine could markedly reduce the prevalence of both infection and disease in the population. However the impact of such a vaccine could be significantly abated by CTL escape mutants, especially if their selection in hosts who restrict the epitope is rapid and their reversion in hosts who do not restrict the epitope is slow. We also use the model to address whether a vaccine should span a broad or narrow range of CTL epitopes and target epitopes restricted by rare or common HLA types. We discuss the implications and limitations of our findings.  相似文献   

2.
Vaccines with limited ability to prevent HIV infection may positively impact the HIV/AIDS pandemic by preventing secondary transmission and disease in vaccine recipients who become infected. To evaluate the impact of vaccination on secondary transmission and disease, efficacy trials assess vaccine effects on HIV viral load and other surrogate endpoints measured after infection. A standard test that compares the distribution of viral load between the infected subgroups of vaccine and placebo recipients does not assess a causal effect of vaccine, because the comparison groups are selected after randomization. To address this problem, we formulate clinically relevant causal estimands using the principal stratification framework developed by Frangakis and Rubin (2002, Biometrics 58, 21-29), and propose a class of logistic selection bias models whose members identify the estimands. Given a selection model in the class, procedures are developed for testing and estimation of the causal effect of vaccination on viral load in the principal stratum of subjects who would be infected regardless of randomization assignment. We show how the procedures can be used for a sensitivity analysis that quantifies how the causal effect of vaccination varies with the presumed magnitude of selection bias.  相似文献   

3.
Immune escape mutations selected by human leukocyte antigen class I-restricted CD8(+) cytotoxic T lymphocytes (CTLs) can result in biologically and clinically relevant costs to HIV-1 replicative fitness. This phenomenon may be exploited to design an HIV-1 vaccine capable of stimulating effective CTL responses against highly conserved, mutationally constrained viral regions, where immune escape could occur only at substantial functional costs. Such a vaccine might 'channel' HIV-1 evolution towards a less-fit state, thus lowering viral load set points, attenuating the infection course and potentially reducing the risk of transmission. A major barrier to this approach, however, is the accumulation of immune escape variants at the population level, possibly leading to the loss of immunogenic CTL epitopes and diminished vaccine-induced cellular immune responses as the epidemic progresses. Here, we review the evidence supporting CTL-driven replicative defects in HIV-1 and consider the implications of this work for CTL-based vaccines designed to attenuate the infection course.  相似文献   

4.

Background

It is important for public health and within the HIV vaccine development field to understand the potential population level impact of an HIV vaccine of partial efficacy—both in preventing infection and in reducing viral load in vaccinated individuals who become infected—in the context of a realistic future implementation scenario in resource limited settings.

Methods

An individual level model of HIV transmission, progression and the effect of antiretroviral therapy was used to predict the outcome to 2060 of introduction in 2025 of a partially effective vaccine with various combinations of efficacy characteristics, in the context of continued ART roll-out in southern Africa.

Results

In the context of our base case epidemic (in 2015 HIV prevalence 28% and incidence 1.7 per 100 person years), a vaccine with only 30% preventative efficacy could make a substantial difference in the rate with which HIV incidence declines; the impact on incidence in relative terms is projected to increase over time, with a projected 67% lower HIV incidence in 2060 compared with no vaccine introduction. The projected mean decline in the general adult population death rate 2040–2060 is 11%. A vaccine with no prevention efficacy but which reduces viral load by 1 log is predicted to result in a modest (14%) reduction in HIV incidence and an 8% reduction in death rate in the general adult population (mean 2040–2060). These effects were broadly similar in multivariable uncertainty analysis.

Interpretation

Introduction of a partially effective preventive HIV vaccine would make a substantial long-term impact on HIV epidemics in southern Africa, in addition to the effects of ART. Development of an HIV vaccine, even of relatively low apparent efficacy at the individual level, remains a critical global public health goal.  相似文献   

5.
Reversion of CTL escape-variant immunodeficiency viruses in vivo   总被引:17,自引:0,他引:17  
Engendering cytotoxic T-lymphocyte (CTL) responses is likely to be an important goal of HIV vaccines. However, CTLs select for viral variants that escape immune detection. Maintenance of such escape variants in human populations could pose an obstacle to HIV vaccine development. We first observed that escape mutations in a heterogeneous simian immunodeficiency virus (SIV) isolate were lost upon passage to new animals. We therefore infected macaques with a cloned SIV bearing escape mutations in three immunodominant CTL epitopes, and followed viral evolution after infection. Here we show that each mutant epitope sequence continued to evolve in vivo, often re-establishing the original, CTL-susceptible sequence. We conclude that escape from CTL responses may exact a cost to viral fitness. In the absence of selective pressure upon transmission to new hosts, these original escape mutations can be lost. This suggests that some HIV CTL epitopes will be maintained in human populations.  相似文献   

6.
Several studies have shown that cytotoxic T lymphocytes (CTLs) play an important role in controlling HIV/SIV infection. Notably, the observation of escape mutants suggests a selective pressure induced by the CTL response. However, it remains difficult to assess the definite role of the cellular immune response. We devise a computational model of HIV/SIV infection having a broad cellular immune response targeting different viral epitopes. The CTL clones are stimulated by viral antigen and interact with the virus population through cytotoxic killing of infected cells. Consequently, the virus population reacts through the acquisition of CTL escape mutations. Our model provides realistic virus dynamics and describes several experimental observations. We postulate that inter-clonal competition and immunodominance may be critical factors determining the sequential emergence of escapes. We show that even though the total killing induced by the CTL response can be high, escape rates against a single CTL clone are often slow and difficult to estimate from infrequent sequence measurements. Finally, our simulations show that a higher degree of immunodominance leads to more frequent escape with a reduced control of viral replication but a substantially impaired replicative capacity of the virus. This result suggests two strategies for vaccine design: Vaccines inducing a broad CTL response should decrease the viral load, whereas vaccines stimulating a narrow but dominant CTL response are likely to induce escape but may dramatically reduce the replicative capacity of the virus.  相似文献   

7.

Background

The AIDS epidemic in Brazil remains concentrated in populations with high vulnerability to HIV infection, and the development of an HIV vaccine could make an important contribution to prevention. This study modeled the HIV epidemic and estimated the potential impact of an HIV vaccine on the number of new infections, deaths due to AIDS and the number of people receiving ARV treatment, under various scenarios.

Methods and Findings

The historical HIV prevalence was modeled using Spectrum and projections were made from 2010 to 2050 to study the impact of an HIV vaccine with 40% to 70% efficacy, and 80% coverage of adult population, specific groups such as MSM, IDU, commercial sex workers and their partners, and 15 year olds. The possibility of disinhibition after vaccination, neglecting medium- and high-risk groups, and a disease-modifying vaccine were also considered. The number of new infections and deaths were reduced by 73% and 30%, respectively, by 2050, when 80% of adult population aged 15–49 was vaccinated with a 40% efficacy vaccine. Vaccinating medium- and high-risk groups reduced new infections by 52% and deaths by 21%. A vaccine with 70% efficacy produced a great decline in new infections and deaths. Neglecting medium- and high-risk population groups as well as disinhibition of vaccinated population reduced the impact or even increased the number of new infections. Disease-modifying vaccine also contributed to reducing AIDS deaths, the need for ART and new HIV infections.

Conclusions

Even in a country with a concentrated epidemic and high levels of ARV coverage, such as Brazil, moderate efficacy vaccines as part of a comprehensive package of treatment and prevention could have a major impact on preventing new HIV infections and AIDS deaths, as well as reducing the number of people on ARV. Targeted vaccination strategies may be highly effective and cost-beneficial.  相似文献   

8.
A new generation of HIV vaccines   总被引:10,自引:0,他引:10  
WHO estimates that currently there are 40 million individuals living with HIV and there are 16000 new infections daily, worldwide. The best strategy to control the AIDS epidemic would be the development of an effective vaccine. New strategies for vaccine development have gained momentum over the past decade, some of which show greater promise in macaque models than did earlier protein-subunit or recombinant-canarypox strategies. These new vaccines include DNA vaccines and live viral vectors, and have been based on the generation of high levels of antiviral T cells. These vaccines do not prevent infection, but rather control virus replication with a rapid expansion and then contraction of antiviral T cells in response to the challenge infection. These recent vaccine successes in macaques raise hope that a vaccine can be developed that will successfully limit both the development of AIDS and viral transmission.  相似文献   

9.
Mass vaccination campaigns have drastically reduced the burden of infectious diseases. Unfortunately, in recent years several infectious diseases have re-emerged. Pertussis poses a well-known example. Inspired by pertussis, we study, by means of an epidemic model, the population and evolutionary dynamics of a pathogen population under the pressure of vaccination. A distinction is made between infection in immunologically naive individuals (primary infection) and infection in individuals whose immune system has been primed by vaccination or infection (secondary infection). The results show that (i) vaccination with an imperfect vaccine may not succeed in reducing the infection pressure if the transmissibility of secondary infections is higher than that of primary infections; (ii) pathogen strains that are able to evade the immunity induced by vaccination can only spread if escape mutants incur no or only a modest fitness cost and (iii) the direction of evolution depends crucially on the distribution of the different types of susceptibles in the population. We discuss the implications of these results for the design and use of vaccines that provide temporary immunity.  相似文献   

10.
Population effects of malaria vaccination programs will depend on the stage specificity of the vaccine, its duration of effectiveness, whether it is responsive to natural boosting, the proportion vaccinated, and the preexisting endemic conditions. This paper develops models of infection-blocking (sporozoite), disease-modifying (merozoite), and transmission-blocking (gametic) vaccines. It explores numerically their different effects on prevalence of infection and disease when utilized in different types of immunization programs at various levels of coverage. Simulations show that possible qualitative consequences of malaria vaccination programs include decreased prevalence of infection and disease and decreased prevalence of infection without a corresponding decrease in prevalence of disease. Epidemics, either one-time or cyclical, could occur. These effects could be accompanied by changes in the age distribution of disease. Finally, vaccination could contribute to elimination of transmission. The duration of effectiveness of the malaria vaccine relative to the duration of natural immunity could have important consequences for the unvaccinated. The problem of predicting a threshold for elimination of transmission is discussed.  相似文献   

11.
During infection with human immunodeficiency virus (HIV), immune pressure from cytotoxic T-lymphocytes (CTLs) selects for viral mutants that confer escape from CTL recognition. These escape variants can be transmitted between individuals where, depending upon their cost to viral fitness and the CTL responses made by the recipient, they may revert. The rates of within-host evolution and their concordant impact upon the rate of spread of escape mutants at the population level are uncertain. Here we present a mathematical model of within-host evolution of escape mutants, transmission of these variants between hosts and subsequent reversion in new hosts. The model is an extension of the well-known SI model of disease transmission and includes three further parameters that describe host immunogenetic heterogeneity and rates of within host viral evolution. We use the model to explain why some escape mutants appear to have stable prevalence whilst others are spreading through the population. Further, we use it to compare diverse datasets on CTL escape, highlighting where different sources agree or disagree on within-host evolutionary rates. The several dozen CTL epitopes we survey from HIV-1 gag, RT and nef reveal a relatively sedate rate of evolution with average rates of escape measured in years and reversion in decades. For many epitopes in HIV, occasional rapid within-host evolution is not reflected in fast evolution at the population level.  相似文献   

12.
There is an urgent need for a vaccine to prevent chronic infection by hepatitis C virus (HCV) and its many genetic variants. The first human vaccine trial, using recombinant viral vectors that stimulate pan-genotypic T cell responses against HCV non-structural proteins, failed to demonstrate efficacy despite significant preclinical promise. Understanding the factors that govern HCV T cell vaccine success is necessary for design of improved immunization strategies. Using a rat model of chronic rodent hepacivirus (RHV) infection, we assessed the impact of antigenic variation and immune escape upon success of a conceptually analogous RHV T cell vaccine. Naïve Lewis rats were vaccinated with a recombinant human adenovirus expressing RHV non-structural proteins (NS)3-5B and later challenged with a viral variant containing immune escape mutations within major histocompatibility complex (MHC) class I-restricted epitopes (escape virus). Whereas 7 of 11 (64%) rats cleared infection caused by wild-type RHV, only 3 of 12 (25%) were protected against heterologous challenge with escape virus. Uncontrolled replication of escape virus was associated with durable CD8 T cell responses targeting escaped epitopes alone. In contrast, clearance of escape virus correlated with CD4 T cell helper immunity and maintenance of CD8 T cell responses against intact viral epitopes. Interestingly, clearance of wild-type RHV infection after vaccination conferred enhanced protection against secondary challenge with escape virus. These results demonstrate that the efficacy of an RHV T cell vaccine is reduced when challenge virus contains escape mutations within MHC class I-restricted epitopes and that failure to sustain CD8 T cell responses against intact epitopes likely underlies immune failure in this setting. Further investigation of the immune responses that yield protection against diverse RHV challenges in this model may facilitate design of broadly effective HCV vaccines.  相似文献   

13.

Background

In South Africa, the prevalence of oncogenic Human Papillomavirus (HPV) may be as high as 64%, and cervical cancer is the leading cause of cancer-related death among women. The development of efficacious prophylactic vaccines has provided an opportunity for primary prevention. Given the importance of psycho-social forces in vaccine uptake, we sought to elucidate factors influencing HPV vaccination among a sample of low-income South African adolescents receiving the vaccine for the first time in Soweto.

Methods

The HPV vaccine was introduced to adolescents in low-income townships throughout South Africa as part of a nationwide trial to understand adolescent involvement in future vaccine research targeting human immunodeficiency virus (HIV). We performed in-depth semi-structured interviews with purposively-sampled adolescents and their care providers to understand what forces shaped HPV vaccine uptake. Interviews were recorded, transcribed, translated, and examined using thematic analysis.

Results

Of 224 adolescents recruited, 201 initiated the vaccine; 192 (95.5%) received a second immunization; and 164 (81.6%) completed three doses. In our qualitative study of 39 adolescent-caregiver dyads, we found that factors driving vaccine uptake reflected a socio-cultural backdrop of high HIV endemnicity, sexual violence, poverty, and an abundance of female-headed households. Adolescents exercised a high level of autonomy and often initiated decision-making. Healthcare providers and peers provided support and guidance that was absent at home. The impact of the HIV epidemic on decision-making was substantial, leading participants to mistakenly conflate HPV and HIV.

Conclusions

In a setting of perceived rampant sexual violence and epidemic levels of HIV, adolescents and caregivers sought to decrease harm by seeking a vaccine targeting a sexually transmitted infection (STI). Despite careful consenting, there was confusion regarding the vaccine’s target. Future interventions promoting STI vaccines will need to provide substantial information for participants, particularly adolescents who may exercise a significant level of autonomy in decision-making.  相似文献   

14.
HIV vaccine development has been hampered by issues such as undefined correlates of protection and extensive diversity of HIV. We addressed these issues using a previously established SIV-macaque model in which SIV mutants with deletions of multiple gp120 N-glycans function as potent live attenuated vaccines to induce near-sterile immunity against the parental pathogenic SIVmac239. In this study, we investigated the protective efficacy of these mutants against a highly pathogenic heterologous SIVsmE543-3 delivered intravenously to rhesus macaques with diverse MHC genotypes. All 11 vaccinated macaques contained the acute-phase infection with blood viral loads below the level of detection between 4 and 10 weeks postchallenge (pc), following a transient but marginal peak of viral replication at 2 weeks in only half of the challenged animals. In the chronic phase, seven vaccinees contained viral replication for over 80 weeks pc, while four did not. Neutralizing antibodies against challenge virus were not detected. Although overall levels of SIV specific T cell responses did not correlate with containment of acute and chronic viral replication, a critical role of cellular responses in the containment of viral replication was suggested. Emergence of viruses with altered fitness due to recombination between the vaccine and challenge viruses and increased gp120 glycosylation was linked to the failure to control SIV. These results demonstrate the induction of effective protective immune responses in a significant number of animals against heterologous virus by infection with deglycosylated attenuated SIV mutants in macaques with highly diverse MHC background. These findings suggest that broad HIV cross clade protection is possible, even in hosts with diverse genetic backgrounds. In summary, results of this study indicate that deglycosylated live-attenuated vaccines may provide a platform for the elucidation of correlates of protection needed for a successful HIV vaccine against diverse isolates.  相似文献   

15.
Several vaccine studies have ameliorated disease progression in simian-human immunodeficiency virus (SHIV) infections. The successes of these vaccines have been largely attributed to protective effects of cytotoxic T-lymphocyte (CTL) responses, although the precise correlates of immune protection remain poorly defined. It is now well established that vigorous CTL and antibody responses can rapidly select for viral escape variants after HIV and SIV infection. Here we suggest that viral variation analyses should be performed on viruses derived from vaccinated, SIV-, or SHIV-challenged animals as a routine component of vaccine evaluation to determine the contribution of immune responses to the success (or failure) of the vaccine regimen. To illustrate the importance of escape analysis, we show that rapid emergence of escape variants postchallenge contributed to the failure of a DNA prime/MVA boost vaccine regimen encoding SIV Tat.  相似文献   

16.
The live attenuated simian immunodeficiency virus (LASIV) vaccine SIVΔnef is one of the most effective vaccines in inducing protection against wild-type lentiviral challenge, yet little is known about the mechanisms underlying its remarkable protective efficacy. Here, we exploit deep sequencing technology and comprehensive CD8 T cell epitope mapping to deconstruct the CD8 T cell response, to identify the regions of immune pressure and viral escape, and to delineate the effect of epitope escape on the evolution of the CD8 T cell response in SIVΔnef-vaccinated animals. We demonstrate that the initial CD8 T cell response in the acute phase of SIVΔnef infection is mounted predominantly against more variable epitopes, followed by widespread sequence evolution and viral escape. Furthermore, we show that epitope escape expands the CD8 T cell repertoire that targets highly conserved epitopes, defined as anentropic specificity, and generates de novo responses to the escaped epitope variants during the vaccination period. These results correlate SIVΔnef-induced protection with expanded anentropic specificity and increased response depth. Importantly, these findings render SIVΔnef, long the gold standard in HIV/SIV vaccine research, as a proof-of-concept vaccine that highlights the significance of the twin principles of anentropic specificity and repertoire depth in successful vaccine design.  相似文献   

17.
Rates of HIV immune escape and reversion: implications for vaccination   总被引:1,自引:0,他引:1  
HIV-1 mutates extensively in vivo to escape immune control by CD8+ T cells (CTLs). The CTL escape mutant virus might also revert back to wild-type upon transmission to new hosts if significant fitness costs are incurred by the mutation. Immune escape and reversion can be extremely fast if they occur very early after infection, whereas they are much slower when they begin later during infection. Immune escape presents a significant barrier to vaccination, because escape of vaccine-mediated immune responses could neutralise any benefits of vaccination. Here, we consider the dynamics of immune escape and reversion in vivo in natural infection, and suggest how understanding of this can be used to predict optimal vaccine targets and design vaccination strategies that maximise immune control. We predict that inducing synchronous, broad CTL by vaccination should limit the likelihood of viral escape from immune control.  相似文献   

18.
SARS-CoV-2 vaccination significantly reduces morbidity and mortality, but has less impact on viral transmission rates, thus aiding viral evolution, and the longevity of vaccine-induced immunity rapidly declines. Immune responses in respiratory tract mucosal tissues are crucial for early control of infection, and can generate long-term antigen-specific protection with prompt recall responses. However, currently approved SARS-CoV-2 vaccines are not amenable to adequate respiratory mucosal delivery, particularly in the upper airways, which could account for the high vaccine breakthrough infection rates and limited duration of vaccine-mediated protection. In view of these drawbacks, we outline a strategy that has the potential to enhance both the efficacy and durability of existing SARS-CoV-2 vaccines, by inducing robust memory responses in the upper respiratory tract (URT) mucosa.  相似文献   

19.
Kawamura T 《Uirusu》2011,61(1):59-65
Sexual transmission of HIV is the most common mode of infection in the global HIV epidemic. In the absence of an effective vaccine, there is an urgent need for additional strategies to prevent new HIV infections. An emerging body of evidence now indicates that Langerhans cells (LC) are initial cellular targets in the sexual transmission of HIV, and CD4- and CCR5-mediated infection of LC plays a crucial role in virus dissemination. I focus on the recent advances regarding the cellular events that may occur during heterosexual transmission of HIV.  相似文献   

20.
Cytotoxic T lymphocyte (CTL) responses play a central role in viral suppression in human immunodeficiency virus (HIV) infections. Prophylactic vaccination resulting in effective CTL responses after viral exposure would contribute to HIV control. It is important to know how CTL memory induction by vaccination affects postexposure CTL responses. We previously showed vaccine-based control of a simian immunodeficiency virus (SIV) challenge in a group of Burmese rhesus macaques sharing a major histocompatibility complex class I haplotype. Gag(206-216) and Gag(241-249) epitope-specific CTL responses were responsible for this control. In the present study, we show the impact of individual epitope-specific CTL induction by prophylactic vaccination on postexposure CTL responses. In the acute phase after SIV challenge, dominant Gag(206-216)-specific CTL responses with delayed, naive-derived Gag(241-249)-specific CTL induction were observed in Gag(206-216) epitope-vaccinated animals with prophylactic induction of single Gag(206-216) epitope-specific CTL memory, and vice versa in Gag(241-249) epitope-vaccinated animals with single Gag(241-249) epitope-specific CTL induction. Animals with Gag(206-216)-specific CTL induction by vaccination selected for a Gag(206-216)-specific CTL escape mutation by week 5 and showed significantly less decline of plasma viral loads from week 3 to week 5 than in Gag(241-249) epitope-vaccinated animals without escape mutations. Our results present evidence indicating significant influence of prophylactic vaccination on postexposure CTL immunodominance and cooperation of vaccine antigen-specific and non-vaccine antigen-specific CTL responses, which affects virus control. These findings provide great insights into antigen design for CTL-inducing AIDS vaccines.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号