首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
Chemical communication is an important component of mammalian social behaviors. Gray short-tailed opossums (Monodelphis domestica) communicate by scent marking. The male opossum possesses a prominent suprasternal scent gland, extracts of which strongly attract female opossums. This attractivity remains unaltered following repeated lyophilization. The suprasternal gland secretion functions in a sexually dimorphic manner, i.e., it elicits elevated levels of IP(3) in the vomeronasal (VN) sensory epithelium of female opossums, but suppressed the levels of IP(3) in the VN sensory epithelium of male opossums. The elevated levels of IP(3) induced by suprasternal gland secretion in female vomeronasal sensory epithelium is inhibited by the G(i/o) specific inhibitor, NF023, but not its inactive analogue, NF007. It is also suppressed by specific antibodies to the alpha subunits of G(i) and G(o) proteins, by the phospholipase C inhibitor, U73122, as well as by GDPbetaS. Surprisingly, GDPbetaS itself enhances basal levels of IP(3) in female VN sensory epithelium. This GDPbetaS-induced increase in levels of IP(3) is reduced by the PLC inhibitor, U73122, but not by the G(i/o) inhibitor, NF023. In addition, GDP also enhances basal levels of IP(3). GDPbetaS, a known inhibitor of G-protein activation, thus appears to have dual functions: as both stimulator and inhibitor of IP(3) production in the VN sensory epithelium of opossums. In contrast, this nucleotide analogue functions as an inhibitor in the VN sensory epithelium of mice. The mechanism of signal transduction underlying the suprasternal gland secretion-elicited signals in the VN sensory epithelium of opossums appears to involve signals that are generated through activation of G-protein-coupled receptors and transduced via activation of G(i/o)-proteins and the effector, phospholipase C, resulting in an increased production of the second messenger, IP(3). The extracellular signals are thus amplified.  相似文献   

2.
The vomeronasal sensory epithelium contains two distinct populations of vomeronasal sensory neurons. Apical neurons express Gi2α‐linked V1R vomeronasal receptors and project to the anterior portion of the accessory olfactory bulb, while basal neurons express Goα‐linked V2R receptors and project to the posterior portion. Sensory neurons expressing V1R and V2R vomeronasal receptors are sensitive to different stimuli. Neurons in the vomeronasal system undergo continuous cell turnover during adulthood. To analyze over time neurogenesis of the different sensory cell populations, adult mice were injected with bromodeoxyuridine (BrdU) and sacrificed at postinjection days 1, 3, 5, 7, and 11. Newborn vomeronasal neurons were revealed by antibodies against BrdU while subclasses of vomeronasal neurons were identified using antibodies against Goα or Gi2α proteins. To ascertain whether G proteins are early expressed during neurogenesis, multiple labeling experiments using PSA‐NCAM and doublecortin were performed. Distribution of BrdU‐labeled cells was analyzed in angular segments from the margin of the sensory epithelium. No sexual differences were found. Within survival groups, BrdU‐Goα labeled cells were found more marginally when compared with BrdU‐Gi2α labeled cells. The number of BrdU‐positive cells decreased from day 1 to day 3 to remain constant afterwards. The relative proportions of BrdU‐Gi2α and BrdU‐Goα labeled cells remained similar and constant from postinjection day 1 onwards. This rate was also comparable with BrdU‐positive cells starting day 3. These results indicate an early, constant, and similar rate of neurogenesis in the two major subclasses of vomeronasal neurons, which suggests that both cell populations maturate independently. © 2010 Wiley Periodicals, Inc. Develop Neurobiol 70: 961–970, 2010  相似文献   

3.
The inositol 1,4,5-trisphosphate receptor (IP3R) is an intracellular Ca2+ release channel responsible for mobilizing stored Ca2+. Three different receptor types have been molecularly cloned, and their genes have been classified into a family. The gene for the type 1 receptor (IP3R1) is predominantly expressed in cerebellar Purkinje neurons, but its gene product is localized widely in a variety of tissues; however, there is little information on what types of cells express the other two receptor types, type 2 and type 3 (IP3R2 and IP3R3, respectively). We studied the expression of the IP3R gene family in various mouse tissues by in situ hybridization histochemistry. Compared with IP3R1, the levels of expression of IP3R2 and IP3R3 mRNAs were low in all of the tissues tested. IP3R2 mRNA was localized in the intralobular duct cells of the submandibular gland, the urinary tubule cells of the kidney, the epithelial cells of epididymal ducts and the follicular granulosa cells of the ovary, while the IP3R3 mRNA was distributed in gastric cells, salivary and pancreatic acinar cells and the epithelium of the small intestine. All of these cells which express either IP3R2 or IP3R3 mRNA are known to have a secretory function in which IP3/Ca2+ signalling has been shown to be involved, and thus either IP3R2 or IP3R3 may be a prerequisite to secretion in these cells.  相似文献   

4.
Stimulation of A2A receptors (A2A R) coupled to Gs/olf protein activates Adenylyl cyclase (AC) leading to the release of cAMP which activates the cAMP-dependent PKA phosphorylation. The possible role of A2A R in the modulation of free cytosolic Ca2+ concentration ([Ca2+]i) involving IP3, cAMP and PKA was investigated in HEK 293-A2A R. The levels of IP3 and cAMP were observed by enzyme immunoassay detection method and [Ca2+]i using Fluo-4 AM. Moreover, cAMP-dependent PKA was determined using the PKA Colorimetric Activity Kit. We observed that the cells pre-treated with A2A R agonist NECA showed increased levels of cAMP, PKA, IP3 and [Ca2+]i levels. However, the reverse effect was observed with A2A R antagonists (ZM241385 and caffeine). Blocking the Gαq/PLC/DAG/IP3 pathway with neomycin, a PLC inhibitor did not affect the modulation of IP3 and [Ca2+]i levels in HEK 293-A2A R cells. To investigate the Gαi/AC/cAMP/PKA, HEK 293-A2A R cells pre-treated with pertussis toxin followed by forskolin in the presence of A2A R agonist (NECA) showed no effect on cAMP levels. Further, Gαs/AC/cAMP/PKA pathway was investigated to elucidate the role of cAMP-dependent PKA in IP3 mediated [Ca2+]i modulation. In the HEK 293-A2A R cells pre-treated with PKA inhibitor KT5720 and treated with NECA led to inhibit the IP3 and [Ca2+]i levels. The study distinctly demonstrated that A2A R modulates IP3 levels to release the [Ca2+]i via cAMP-dependent PKA. The role of A2A R mediated Gαs pathway inducing IP3 mediated [Ca2+]i release may open new avenues in the therapy of neurodegenerative disorder.  相似文献   

5.
Activation of the β2-adrenoceptor (β2-AR) elicits an endothelial nitric oxide synthase (eNOS)-dependent relaxation in mouse pulmonary artery, which, contrary to the muscarinic receptor-dependent relaxation, is preserved in hypoxic pulmonary arterial hypertension. We therefore characterized the signaling pathways underlying the β2-AR-mediated eNOS activation, with special focus on Gi/o proteins, protein kinases and caveolae. Functional studies (for evaluation of vasorelaxant response), Western blotting (for assessment of eNOS and caveolin-1 phosphorylation) and transmission electron microscopy (for visualization of caveolae) were conducted in pulmonary arteries from wild-type or caveolin-1 knockout mice. In wild-type isolated arteries, relaxation to the selective β2-AR agonist procaterol was reduced by inhibitors of Gi/o proteins (pertussis toxin, PTX), phosphatidylinositol 3-kinase (PI3K; wortmannin or LY 294002), Akt (Akt inhibitor X) and Src-kinase (PP2) and by cholesterol depletion (using methyl-β-cyclodextrin). Procaterol induced eNOS phosphorylation at Ser1177, which was prevented by PTX, PP2 or Akt inhibitor. Procaterol also promoted caveolin-1 phosphorylation at Tyr14, which was decreased by PTX or PP2. Caveolin-1 gene deletion resulted in endothelial caveolae disruption in mouse pulmonary artery and in potentiation of procaterol-induced relaxation. Unlike procaterol, acetylcholine-induced relaxation was unaffected by PTX, methyl-β-cyclodextrin or caveolin-1 gene deletion. To conclude, the mouse pulmonary endothelial β2-AR is coupled to a Gi/o-Src kinase-PI3K/Akt pathway to promote eNOS phosphorylation at Ser1177 leading to a NO-dependent vasorelaxation. Caveolin-1 exerts a negative control on this response that is abrogated by its phosphorylation at Tyr14, through a Gi/o-Src kinase pathway. Since pulmonary β2-AR- and muscarinic receptor-mediated relaxations differentiate in their respective signaling pathways leading to eNOS activation and sensitivities during hypoxia-induced pulmonary arterial hypertension, mechanisms underlying eNOS activation might be key determinants of pulmonary endothelial dysfunction.  相似文献   

6.
GAP-43 and Go are peripheral membrane proteins enriched in neuronal growth cone. GAP-43 was highly purified from bovine cerebral cortex and myristoylated Goα was highly purified from Escherichia coli cotransformed with pQE60 Goα and pBB131 (NMT). GAP-43 stimulated GTPγS binding to Goα and the stimulation effect was dependent on concentration of GAP-43. Protein-protein binding experiments using CaM-Sepharose affinity media revealed that Goα GDP bound GAP-43 directly to form intermolecular complex. This interaction induced conformational change of Goα. In the presence of GAP-43, fluorescence spectrum of Goα GDP blue shifted 4 nm; fluorescence intensity increased 35.3% and apparent quenching constant (Ksv) increased from (1.1 ±0.22) ×105 to (4.1±0.43) × 105 (M−1). However, no obvious changes of fluorescence spectra of Goα GTPγS were observed in the absence or presence of GAP-43. Our results indicated that GAP-43 induced conformational change of Goα GDP so as to accelerate GDP release and subsequent GTPγS binding, which activates G proteins to trigger signal transduction and amplification. These results provided insights into understanding the function of G proteins in coupling between receptors and effectors and the key role of GDP/GTP exchange mode in GTPase cycle.  相似文献   

7.
A peptide pheromone of the red-bellied male newt, sodefrin was tested for its ability to increase intracellular concentrations of Ca2+ ([Ca2+]i) in the dissociated vomeronasal (VN) cells of females by means of calcium imaging system. The pheromone elicited a marked elevation of [Ca2+]i in a small population of VN cells from sexually developed females. The population of cells exhibiting sodefrin-induced elevation of [Ca2+]i increased concentration-dependently. A pheromone of a different species was ineffective in this respect. The VN cells from non-reproductive females or from reproductive males scarcely responded to sodefrin in terms of elevating [Ca2+]i. In the cells from hypophysectomized and ovariectomized females, the sodefrin-inducible increase of [Ca2+]i never occurred. The cells from the operated newts supplemented with prolactin and estradiol exhibited [Ca2+]i responses to sodefrin with a high incidence. Thus, sex- and hormone-dependency as well as species-specificity of the responsiveness of the VN cells to sodefrin was evidenced at the cellular level. Subsequently, possibility of involvement of phospholipase C (PLC)-inositol 1,4,5-trisphosphate (IP3) and/or PLC-diacylglycerol (DAG)-protein kinase C (PKC) pathways in increasing [Ca2+]i in VN cells in response to sodefrin was explored using pharmacological approaches. The results indicated that PLC is involved in generating the Ca2+ signal in all sodefrin-responsive VN cells, whereas IP3 in approximately 50% of the cells and DAG-PKC in the remaining cells. In the latter case, the increase of [Ca2+]i was postulated to be induced by the influx of Ca2+ through the L-type channel. The significance of the finding is discussed.  相似文献   

8.
Abstract: To examine the possibility that NaF enhances phosphoinositide-specific phospholipase C (PIC) activity in neural tissues by a mechanism independent of a guanine nucleotide binding protein (Gp), we have evaluated the contribution of Gp activation to NaF-stimulated phosphoinositide hydrolysis in human SK-N-SH neuroblastoma cells. Addition of NaF to intact cells resulted in an increase in the release of inositol phosphates (450% of control values; EC50 of ~ 8 mM). Inclusion of U-73122, an aminosteroid inhibitor of guanine nucleotide-regulated PIC activity in these cells, resulted in a dose-dependent inhibition of NaF-stimulated inositol lipid hydrolysis (IC50 of ~ 3.5 μM). When added to digitonin-permeabilized cells, NaF or guanosine-5′-O-thiotriphosphate (GTPγS) resulted in a three- and sevenfold enhancement, respectively, of inositol phosphate release. In the combined presence of optimal concentrations of NaF and GTPγS, inositol phosphate release was less than additive, indicative of a common site of action. Inclusion of 2–5 mM concentrations of guanosine-5′-O-(2-thiodiphosphate) (GDPβS) fully blocked phosphoinositide hydrolysis elicited by GTPγS, whereas that induced by NaF was partially inhibited (65%). However, preincubation of the cells with GDPβS resulted in a greater reduction in the ability of NaF to stimulate inositol phosphate release (87% inhibition). Both GTPγS and NaF-stimulated inositol phosphate release were inhibited by inclusion of 10 μM U-73122 (54–71%). The presence of either NaF or GTPγS also resulted in a marked lowering of the Ca2+ requirement for activation of PIC in permeabilized cells. These results indicate that in SK-N-SH cells, little evidence exists for direct stimulation of PIC by NaF and that the majority of inositol phosphate release that occurs in the presence of NaF can be attributed to activation of Gp.  相似文献   

9.
The Gs and Gi pathways interact to control the levels of intracellular cAMP. Although coincident signaling through Gs and Gi-coupled receptors can attenuate Gs-stimulated cAMP levels, it is not known if prior activation of the Gi pathway can affect signaling by Gs-coupled receptors. We have found that activated Gαo/i interact with RGS20, a GTPase activating protein for members of the Gαο/i family. Interaction between Gαo/i and RGS20 results in decreased cellular levels of RGS20. This decrease was induced by activated Gαo and Gαi2 but not by Gαq, Gαi1 or Gαi3. The Gαo/i-induced decrease in RGS20 can be blocked by proteasomal inhibitors lactacystin or MG132. Activated Gαo stimulates the ubiquitination of RGS20. The serotonin-1A receptor that couples to Go/i reduces the levels of RGS20 and this effect is blocked by lactacystin, suggesting that Go/i promotes the degradation of RGS20. Expression of RGS20 attenuates the inhibition of β-adrenergic receptor-induced cAMP levels mediated by the serotonin-1A receptor. Prior activation of the serotonin-1A receptor results in loss of the RGS20-mediated attenuation, and the loss of attenuation is blocked when lactacystin is included during the prior treatment. These observations suggest that Go/i-coupled receptors, by stimulating the degradation of RGS20, can regulate how subsequent activation of the Gs and Gi pathways controls cellular cAMP levels, thus allowing for signal integration.  相似文献   

10.
Binding sites of Griffonia simplicifolia I-B4 isolectin (GS-I-B4), which recognizes terminal α-galactose residues of glycoconjugates, were examined in the juxtaluminal region of the rat vomeronasal sensory epithelium and its associated glands of the vomeronasal organ, using a lectin cytochemical technique. Lowicryl K4M-embedded ultra-thin sections, which were treated successively with biotinylated GS-I-B4 and streptavidin-conjugated 10 nm colloidal gold particles, were observed under a transmission electron microscope. Colloidal gold particles, which reflect the presence of terminal α-galactose-containing glycoconjugates, were present in vomeronasal receptor neurons in the sensory epithelium and secretory granules of acinar cells of associated glands of the epithelium. Quantitative analysis demonstrated that the density of colloidal gold particles associated with sensory cell microvilli that projected from dendritic endings of vomeronasal neurons was considerably higher than that of microvilli that projected from neighboring sustentacular cells. The same was true for the apical cytoplasms of these cells just below the microvilli. These results suggest that of the sensory microvilli and dendritic endings contained a much larger amount of the α-galactose-containing glycoconjugates, compared with those in sustentacular microvilli. Further, biochemical analyses demonstrated several vomeronasal organ-specific glycoproteins with terminal α-galactose.  相似文献   

11.
Clusterin induces the expression of various chemotactic cytokines including tumor necrosis factor-α (TNF-α) in macrophages and is involved in the cell migration. According to the results of this study, clusterin induced the directional migration (chemotaxis) of macrophages based on a checkerboard analysis. The chemotactic activity of clusterin was prevented by pretreatment with pertussis toxin (PTX), indicating that the Gαi/o-protein coupled receptor (GPCR) was involved in the chemotactic response of clusterin. Clusterin-stimulated chemotaxis was abrogated in a dose-dependent manner by pretreatment with gallein (a Gβγ inhibitor), indicating the involvement of Gβγ released from the GPCR. In addition, inhibitors of phospholipase C (PLC, U73122) and phosphoinositide 3-kinase (PI3K, LY294002), the key targets of Gβγ binding and activation, suppressed chemotactic migration by clusterin. The phosphorylation of Akt induced by clusterin was blocked by pretreatment with gallein or LY294002 but not with U73122, indicating that Gβγ released from the PTX-sensitive Gi protein complex activated PLC and PI3K/Akt signaling pathways separately. The activation of cellular MAP kinases was essential in that their inhibitors blocked clusterin-induced chemotaxis, and Gβγ was required for the activation of MAP kinases because gallein reduced their phosphorylations induced by clusterin. In addition, the inflammation-induced migration of macrophages was greatly reduced in clusterin-deficient mice based on a thioglycollate-induced peritonitis model system. These results suggest that clusterin stimulates the chemotactic migration of macrophages through a PTX-sensitive GPCR and Gβγ-dependent pathways and describe a novel role of clusterin as a chemoattractant of monocytes/macrophages, suggesting that clusterin may serve as a molecular bridge between inflammation and its remodeling of related tissue by recruiting immune cells.  相似文献   

12.
Loss of venom from the venom gland after biting or manual extraction leads to morphological changes in venom secreting cells and the start of a cycle of production of new venom. We have previously shown that stimulation of both α- and β-adrenoceptors in the secretory cells of the venom gland is essential for the onset of the venom production cycle in Bothrops jararaca. We investigated the signaling pathway by which the α-adrenoceptor initiates the venom production cycle. Our results show that the α1-adrenoceptor subtype is present in venom gland of the snake. In quiescent cells, stimulation of α1-adrenoceptor with phenylephrine increased the total inositol phosphate concentration, and this effect was blocked by the phospholipase C inhibitor U73122. Phenylephrine mobilized Ca2+ from thapsigargin-sensitive stores and increased protein kinase C activity. In addition, α1-adrenoceptor stimulation increased the activity of ERK 1/2, partially via protein kinase C. Using RT-PCR approach we obtained a partial sequence of a snake α1-adrenoceptor (260 bp) with higher identity with α1D and α1B-adrenoceptors from different species. These results suggest that α1-adrenoceptors in the venom secreting cells are probably coupled to a Gq protein and trigger the venom production cycle by activating the phosphatidylinositol 4,5-bisphosphate and ERK signaling pathway.  相似文献   

13.
In Xenopus oocytes, both sphingosine-1-phosphate (S1P) and lysophosphatidic acid (LPA) activate Ca2+-dependent oscillatory Cl currents by acting through membrane-bound receptors. External application of 50 μM S1P elicited a long-lasting oscillatory current that continued over 30 min from the beginning of oscillation, with 300 nA (n = 11) as a usual maximum peak of current, whereas 1-μM LPA treatment showed only transiently oscillating but more vigorous current responses, with 2,800 nA (n = 18) as a maximum peak amplitude. Both phospholipid-induced Ca2+-dependent Cl currents were observed in the absence of extracellular Ca2+, were blocked by intracellular injection of the Ca2+ chelator, EGTA, and could not be elicited by treatment with thapsigargin, an inhibitor of endoplasmic reticulum (ER) Ca2+ ATPase. Intracellular Ca2+ release appeared to be from inositol 1,4,5-trisphosphate (IP3)-sensitive Ca2+ store, because Cl currents were blocked by heparin injection. Pretreatment with the aminosteroid, U-73122, an inhibitor of G protein-mediated phospholipase C (PLC) activation, to oocytes inhibited the current responses evoked both by S1P and LPA. However, when they were injected with 10 ng of antisense oligonucleotide (AS-ODN) against Xenopus phospholipase C (PLC-xβ), oocytes could not respond to S1P application, whereas they responded normally to LPA, indicating that the S1P signaling pathway goes through PLC-xβ, whereas LPA signaling goes through another unknown PLC. To determine the types of G proteins involved, we introduced AS-ODNs against four types of G-protein α subunits that were identified in Xenopus laevis; Gqα, G11α, G0α, and Gi1α. Among AS-ODNs against the Gαs tested, AS-Gqα and AS-Gi1α to S1P and AS-Gqα and AS-G11α to LPA specifically reduced current responses, respectively, to about 20–30% of controls. These results demonstrate that LPA and S1P, although they have similar structural features, release intracellular Ca2+ from the IP3-sensitive pool, use different components in their signal transduction pathways in Xenopus oocytes. J. Cell. Physiol. 176:412–423, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

14.
LIBRA is a fluorescent biosensor of inositol 1,4,5-trisphosphate (IP3) and is composed of the ligand-binding domain of the rat type 3 IP3 receptor and cyan and yellow fluorescent proteins. We examined the responses of LIBRA and its IP3-insensitive mutant LIBRA-N to compounds known to inhibit IP3-induced Ca2+ release. Heparin, a competitive antagonist of IP3 receptors, increased the emission ratio of LIBRA but not that of LIBRA-N. In contrast, 2-aminoethoxydiphenyl borate, a known non-competitive inhibitor of IP3 receptor, decreased the emission ratios of both LIBRA and LIBRA-N. Thus, the concurrent use of LIBRA-N with LIBRA identifies nonspecific responses. These results indicate that LIBRA and its mutant control can be used to detect specific agonists and antagonists of IP3 receptors. We also demonstrate the utility of LIBRA and LIBRA-N in discriminating between specific and nonspecific responses in intact cells.  相似文献   

15.
GM1-gangliosidosis is an autosomal recessive lysosomal lipid storage disorder, caused by mutations of the lysosomal β-galactosidase (β-gal) and results in the accumulation of GM1. The underlying mechanisms of neurodegeneration are poorly understood. Here we demonstrate increased autophagy in β-gal-deficient (β-gal−/−) mouse brains as evidenced by elevation of LC3-II and beclin-1 levels. Activation of autophagy in the β-gal−/− brain was found to be accompanied with enhanced Akt-mTOR and Erk signaling. In addition, the mitochondrial cytochrome c oxidase activity was significantly decreased in brains and cultured astrocytes from β-gal−/− mouse. Mitochondria isolated from β-gal−/− astrocytes were morphologically abnormal and had a decreased membrane potential. These cells were more sensitive to oxidative stress than wild type cells and this sensitivity was suppressed by ATP, an autophagy inhibitor 3-methyladenine and a pan-caspase inhibitor z-VAD-fmk. These results suggest activation of autophagy leading to mitochondrial dysfunction in the brain of GM1-gangliosidosis.  相似文献   

16.
Cell cycle-dependent calcium oscillations in mouse embryonic stem cells   总被引:2,自引:0,他引:2  
During cell cycle progression, somatic cells exhibit different patterns of intracellular Ca2+ signals during the G0 phase, the transition from G1 to S, and from G2 to M. Because pluripotent embryonic stem (ES) cells progress through cell cycle without the gap phases G1 and G2, we aimed to determine whether mouse ES (mES) cells still exhibit characteristic changes of intracellular Ca2+ concentration during cell cycle progression. With confocal imaging of the Ca2+-sensitive dye fluo-4 AM, we identified that undifferentiated mES cells exhibit spontaneous Ca2+ oscillations. In control cultures where 50.4% of the cells reside in the S phase of the cell cycle, oscillations appeared in 36% of the cells within a colony. Oscillations were not initiated by Ca2+ influx but depended on inositol 1,4,5-trisphosphate (IP3)-mediated Ca2+ release and the refilling of intracellular stores by a store-operated Ca2+ influx (SOC) mechanism. Using cell cycle synchronization, we determined that Ca2+ oscillations were confined to the G1/S phase (70% oscillating cells vs. G2/M with 15% oscillating cells) of the cell cycle. ATP induced Ca2+ oscillations, and activation of SOC could be induced in G1/S and G2/M synchronized cells. Intracellular Ca2+ stores were not depleted, and all three IP3 receptor isoforms were present throughout the cell cycle. Cell cycle analysis after EGTA, BAPTA-AM, 2-aminoethoxydiphenyl borate, thapsigargin, or U-73122 treatment emphasized that IP3-mediated Ca2+ release is necessary for cell cycle progression through G1/S. Because the IP3 receptor sensitizer thimerosal induced Ca2+ oscillations only in G1/S, we propose that changes in IP3 receptor sensitivity or basal levels of IP3 could be the basis for the G1/S-confined Ca2+ oscillations. pluripotent; IP3; store operated Ca entry; IP3 receptor  相似文献   

17.
Lysophosphatidylethanolamine (LPE) is a lyso-type metabolite of phosphatidylethanolamine (a plasma membrane component), and its intracellular Ca2 + ([Ca2 +]i) increasing actions may be mediated through G-protein-coupled receptor (GPCR). However, GPCRs for lysophosphatidic acid (LPA), a structurally similar representative lipid mediator, have not been implicated in LPE-mediated activities in SK-OV3 or OVCAR-3 ovarian cancer cells or in receptor over-expression systems. In the present study, LPE-induced [Ca2 +]i increase was observed in MDA-MB-231 cells but not in other breast cancer cell lines. In addition, LPE- and LPA-induced responses showed homologous and heterologous desensitization. Furthermore, VPC32183 and Ki16425 (antagonists of LPA1 and LPA3) inhibited LPE-induced [Ca2 +]i increases, and knockdown of LPA1 by transfection with LPA1 siRNA completely inhibited LPE-induced [Ca2 +]i increases. Furthermore, the involvement of CD97 (an adhesion GPCR) in the action of LPA1 in MDA-MB-231 cells was demonstrated by siRNA transfection. Pertussis toxin (a specific inhibitor of Gi/o proteins), edelfosine (an inhibitor of phospholipase C), or 2-APB (an inhibitor of IP3 receptor) completely inhibited LPE-induced [Ca2 +]i increases, whereas HA130, an inhibitor of autotaxin/lysophospholipase D, did not. Therefore, LPE is supposed to act on LPA1-CD97/Gi/o proteins/phospholipase C/IP3/Ca2 + rise in MDA-MB-231 breast cancer cells.  相似文献   

18.
We have demonstrated that adenosine did not produce any change of intracellular free Ca2+ concentration ([Ca2+]i) in oviductal ciliated cells; however, it increased the ATP-induced Ca2+ influx through the activation of protein kinase A (PKA). Uncaging of IP3 and cAMP triggered a larger Ca2+ influx than did IP3 alone. Furthermore, the IP3 effect was abolished by Xestospongin C, an IP3 receptor blocker. Whole-cell recordings demonstrated the presence of an ATP-induced Ca2+ current, and the addition of adenosine increased the peak of this current. This effect was not observed in the presence of H-89, a PKA inhibitor. Using excised macro-patches of plasma membrane, IP3 generated a current, which was higher in the presence of the catalytic PKA subunit and this current was blocked by Xestospongin C. We show here that activation of plasma membrane IP3 receptors directly triggers Ca2+ influx in response to ATP and that these receptors are modulated by adenosine-activated PKA.  相似文献   

19.
Disrupting inositol 1,4,5-trisphosphate (IP3) receptor (IP3R)/B-cell lymphoma 2 (Bcl-2) complexes using a cell-permeable peptide (stabilized TAT-fused IP3R-derived peptide (TAT-IDPS)) that selectively targets the BH4 domain of Bcl-2 but not that of B-cell lymphoma 2-extra large (Bcl-Xl) potentiated pro-apoptotic Ca2+ signaling in chronic lymphocytic leukemia cells. However, the molecular mechanisms rendering cancer cells but not normal cells particularly sensitive to disrupting IP3R/Bcl-2 complexes are poorly understood. Therefore, we studied the effect of TAT-IDPS in a more heterogeneous Bcl-2-dependent cancer model using a set of ‘primed to death'' diffuse large B-cell lymphoma (DL-BCL) cell lines containing elevated Bcl-2 levels. We discovered a large heterogeneity in the apoptotic responses of these cells to TAT-IDPS with SU-DHL-4 being most sensitive and OCI-LY-1 being most resistant. This sensitivity strongly correlated with the ability of TAT-IDPS to promote IP3R-mediated Ca2+ release. Although total IP3R-expression levels were very similar among SU-DHL-4 and OCI-LY-1, we discovered that the IP3R2-protein level was the highest for SU-DHL-4 and the lowest for OCI-LY-1. Strikingly, TAT-IDPS-induced Ca2+ rise and apoptosis in the different DL-BCL cell lines strongly correlated with their IP3R2-protein level, but not with IP3R1-, IP3R3- or total IP3R-expression levels. Inhibiting or knocking down IP3R2 activity in SU-DHL-4-reduced TAT-IDPS-induced apoptosis, which is compatible with its ability to dissociate Bcl-2 from IP3R2 and to promote IP3-induced pro-apoptotic Ca2+ signaling. Thus, certain chronically activated B-cell lymphoma cells are addicted to high Bcl-2 levels for their survival not only to neutralize pro-apoptotic Bcl-2-family members but also to suppress IP3R hyperactivity. In particular, cancer cells expressing high levels of IP3R2 are addicted to IP3R/Bcl-2 complex formation and disruption of these complexes using peptide tools results in pro-apoptotic Ca2+ signaling and cell death.  相似文献   

20.
AimsCKβ8/CCL23 is a CC chemokine and alternative splicing of the CKβ8 gene produces two mRNAs that encode CKβ8 and its isoform CKβ8-1. Although it has been reported that CKβ8 and CKβ8-1 are implicated in leukocyte trafficking and development of inflammation, the exact roles of these two chemokines in immune responses and the associated chemotaxis signaling are still obscure.Main methodsTo understand the mechanism of CKβ8- and CKβ8-1-induced chemotaxis signaling, we examined the chemotactic activities of osteogenic sarcoma cells expressing CC chemokine receptor 1 in response to CKβ8 and CKβ8-1. We also examined involvement of CKβ8 and CKβ8-1 in inflammatory responses by determining the mRNA expression of pro-inflammatory molecules induced by two chemokines and expressions of these chemokines in foam cells.Key findingsResults from a chemotaxis assay using various inhibitors for signaling molecules showed that the chemotaxis signal pathway induced by both CKβ8 and CKβ8-1 was mediated via the Gi/Go protein, phospholipase C (PLC) and protein kinase Cδ (PKCδ). Treatment with a nuclear factor κB (NF-κB) inhibitor reduced the chemotactic activities of CKβ8 and CKβ8-1, and NF-κB was activated in response to CKβ8 and CKβ8-1. In addition, CKβ8 and CKβ8-1 increased mRNA expression of pro-inflammatory cytokines and adhesion molecules. The mRNA levels of CKβ8 and CKβ8-1 were increased in foam cells.SignificanceThese results indicate that both CKβ8 and CKβ8-1 transduce the chemotaxis signal through the Gi/Go protein, PLC, PKCδ, and NF-κB, and that CKβ8 and CKβ8-1 probably play important roles in inflammatory diseases such as atherosclerosis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号