首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Periodontal ligament (PDL) cells convert the orthodontic forces into biological responses by secreting signaling molecules to induce modeling of alveolar bone and tooth movement. Beta-catenin pathway is activated in response to mechanical loading in PDL cells. The upstream signaling pathways activated by mechanical loading resulting in the activation of β-catenin pathway through Wnt-independent mechanism remains to be characterized. We hypothesized that mechanical loading induces activation of β-catenin signaling by mechanisms that dependent on focal adhesion kinase (FAK) and nitric oxide (NO). We found that mechanical or pharmacological activation of β-catenin signaling in PDL cells upregulated the expression of β-catenin target genes. Pre-treatment of PDL cells with FAK inhibitor-14 prior to mechanical loading abolished the mechanical loading-induced phosphorylation of Akt and dephosphorylation of β-catenin. PDL cells pre-treated with NO donor or NO inhibitor and subjected to mechanical loading. Western blot analysis showed that the mechanical loading or pre-treatment with NO donor increased the levels of dephosphorylated β-catenin, pAkt, and pGSK-3β. Pre-treatment with NO inhibitor blocked the mechanical loading-induced phosphorylation of Akt and dephosphorylation of β-catenin. These data indicate that mechanical loading-induced β-catenin stabilization in PDL cells involves phosphorylation of Akt by two parallel pathways requiring FAK and NO.  相似文献   

2.
3.
In the last decade taxane-based therapy has emerged as a standard of care for hormone-refractory prostate cancer. Nevertheless, a significant fraction of tumors show no appreciable response to the treatment, while the others develop resistance and recur. Despite years of intense research, the mechanisms of taxane resistance in prostate cancer and other malignancies are poorly understood and remain a topic of intense investigation. We have used improved mutagenesis via random insertion of a strong promoter to search for events, which enable survival of prostate cancer cells after Taxol exposure. High-throughput mapping of the integration sites pointed to the PRKAR2A gene, which codes for a type II-α regulatory subunit of protein kinase A, as a candidate modulator of drug response. Both full-length and N-terminally truncated forms of the PRKAR2A gene product markedly increased survival of prostate cancer cells lines treated with Taxol and Taxotere. Suppression of protein kinase A enzymatic activity is the likely mechanism of action of the overexpressed proteins. Accordingly, protein kinase A inhibitor PKI (6–22) amide reduced toxicity of Taxol to prostate cancer cells. Our findings support the role of protein kinase A and its constituent proteins in cell response to chemotherapy.  相似文献   

4.
Gliomas are resistant to radiation therapy, as well as to TNFα induced killing. Radiation-induced TNFα triggers Nuclear factor κB (NFκB)-mediated radioresistance. As inhibition of NFκB activation sensitizes glioma cells to TNFα-induced apoptosis, we investigated whether TNFα modulates the responsiveness of glioma cells to ionizing radiation-mimetic Neocarzinostatin (NCS). TNFα enhanced the ability of NCS to induce glioma cell apoptosis. NCS-mediated death involved caspase-9 activation, reduction of mitochondrial copy number and lactate production. Death was concurrent with NFκB, Akt and Erk activation. Abrogation of Akt and NFκB activation further potentiated the death inducing ability of NCS in TNFα cotreated cells. NCS-induced p53 expression was accompanied by increase in TP53-induced glycolysis and apoptosis regulator (TIGAR) levels and ATM phosphorylation. siRNA-mediated knockdown of TIGAR abrogated NCS-induced apoptosis. While DN-IκB abrogated NCS-induced TIGAR both in the presence and absence of TNFα, TIGAR had no effect on NFκB activation. Transfection with TIGAR mutant (i) decreased apoptosis and γH2AX foci formation (ii) decreased p53 (iii) elevated ROS and (iv) increased Akt/Erk activation in cells cotreated with NCS and TNFα. Heightened TIGAR expression was observed in GBM tumors. While NCS induced ATM phosphorylation in a NFκB independent manner, ATM inhibition abrogated TIGAR and NFκB activation. Metabolic gene profiling indicated that TNFα affects NCS-mediated regulation of several genes associated with glycolysis. The existence of ATM-NFκB axis that regulate metabolic modeler TIGAR to overcome prosurvival response in NCS and TNFα cotreated cells, suggests mechanisms through which inflammation could affect resistance and adaptation to radiomimetics despite concurrent induction of death.  相似文献   

5.

Background

Rheumatoid arthritis (RA) is associated with a high prevalence of atherosclerosis. Recently increased levels of microparticles (MPs) have been reported in patients with RA. MPs could represent a link between autoimmunity and endothelial dysfunction by expressing tumor necrosis factor alpha (TNFα), a key cytokine involved in the pathogenesis of RA, altering endothelial apoptosis and autophagy. The aim of this study was to investigate TNFα expression on MPs and its relationship with endothelial cell fate.

Methods

MPs were purified from peripheral blood from 20 healthy controls (HC) and from 20 patients with RA, before (time (T)0) and after (T4) 4-month treatment with etanercept (ETA). Surface expression of TNFα was performed by flow cytometry analysis. EA.hy926 cells, an immortalized endothelial cell line, were treated with RA-MPs purified at T0 and at T4 and also, with RA-MPs in vitro treated with ETA. Apoptosis and autophagy were then evaluated.

Results

RA-MPs purified at T0 expressed TNFα on their surface and this expression significantly decreased at T4. Moreover, at T0 RA-MPs, significantly increased both apoptosis and autophagy levels on endothelial cells, in a dose-dependent manner. RA-MPs did not significantly change these parameters after 4 months of in vivo treatment with ETA.

Conclusions

Our data demonstrate that MPs isolated from patients with RA exert a pathological effect on endothelial cells by TNFα expressed on their surface. In vivo and in vitro treatment with ETA modulates this effect, suggesting anti-TNF therapy protects against endothelial damage in patients with RA.
  相似文献   

6.
Resistance of glioblastoma multiforme (GBM) to TNFα induced apoptosis is attributed to NFκB activation. As TNF-receptor family member CD40 regulates NFκB activation, we investigated the role of CD40 in NFκB activation in GBM. We observed elevated CD40 levels in human glioma samples as compared to the surrounding normal tissue. Treatment with TNFα elevated CD40 levels in glioma cells and inhibition of CD40 signaling failed to abrogate TNFα induced NFκΒ activity. While TNFα increased the interaction between TRAF2/6, IκBα, IKKα/β in the CD40 signalosome, the level of CD40 in the signalosome remained unaffected upon TNFα treatment. Interestingly, TNFα decreased the spatial localization of CD40 and increased TRAF2/6 co-localization with lipid raft marker Caveolin. As localization of CD40 signalosome in lipid raft is crucial for NFκB activation, TNFα mediated decreased clustering of CD40 in lipid rafts could have possibly contributed to its non-involvement in NFκB activation.  相似文献   

7.
Purα is a nucleic acid-binding protein with DNA-unwinding activity, which has recently been shown to have a role in the cellular response to DNA damage. We have investigated the function of Purα in Ultraviolet-C (UVC) radiation-induced DNA damage and nucleotide excision repair (NER). Mouse embryo fibroblasts from PURA-/- knockout mice, which lack Purα, showed enhanced sensitivity to UVC irradiation as assessed by assays for cell viability and clonogenicity compared to Purα positive control cultures. In reporter plasmid reactivation assays to measure the removal of DNA adducts induced in vitro by UVC, the Purα-negative cells were less efficient in DNA damage repair. Purα-negative cells were also more sensitive to UVC-induced DNA damage measured by Comet assay and showed a decreased ability to remove UVC-induced cyclobutane pyrimidine dimers. In wild-type mouse fibroblasts, expression of Purα is induced following S-phase checkpoint activation by UVC in a similar manner to the NER factor TFIIH. Moreover, co-immunoprecipitation experiments showed that Purα physically associates with TFIIH. Thus, Purα has a role in NER and the repair of UVC-induced DNA damage.Key words: purα, ultraviolet radiation, DNA damage, DNA repair, nucleotide excision repair, TFIIH  相似文献   

8.
In mammalian cells, inflammation is mainly mediated by the binding of tumor necrosis factor alpha to tumor necrosis factor receptor 1. In this study, we investigated lateral dynamics of TNF-R1 before and after ligand binding using high-density single-particle tracking in combination with photoactivated localization microscopy. Our single-molecule data indicates the presence of tumor necrosis factor receptor 1 with different mobilities in the plasma membrane, suggesting different molecular organizations. Cholesterol depletion led to a decrease of slow receptor species and a strong increase in the average diffusion coefficient. Moreover, as a consequence of tumor necrosis factor-alpha treatment, the mean diffusion coefficient moderately increased while its distribution narrowed. Based on our observation, we propose a refined mechanism on the structural arrangement and activation of tumor necrosis factor receptor 1 in the plasma membrane.  相似文献   

9.
Breast cancer is a leading cause of death for women. The estrogen receptors (ERs) ratio is important in the maintenance of mitochondrial redox status, and higher levels of ERβ increases mitochondrial functionality, decreasing ROS production. Our aim was to determine the interaction between the ERα/ERβ ratio and the response to cytotoxic treatments such as cisplatin (CDDP), paclitaxel (PTX) and tamoxifen (TAM). Cell viability, apoptosis, autophagy, ROS production, mitochondrial membrane potential, mitochondrial mass and mitochondrial functionality were analyzed in MCF-7 (high ERα/ERβ ratio) and T47D (low ERα/ERβ ratio) breast cancer cell lines. Cell viability decreased more in MCF-7 when treated with CDDP and PTX. Apoptosis was less activated after cytotoxic treatments in T47D than in MCF-7 cells. Nevertheless, autophagy was increased more in CDDP-treated MCF-7, but less in TAM-treated cells than in T47D. CDDP treatment produced a raise in mitochondrial mass in MCF-7, as well as the citochrome c oxidase (COX) and ATP synthase protein levels, however significantly reduced COX activity. In CDDP-treated cells, the overexpression of ERβ in MCF-7 caused a reduction in apoptosis, autophagy and ROS production, leading to higher cell survival; and the silencing of ERβ in T47D cells promoted the opposite effects. In TAM-treated cells, ERβ-overexpression led to less cell viability by an increment in autophagy; and the partial knockdown of ERβ in T47D triggered an increase in ROS production and apoptosis, leading to cell death. In conclusion, ERβ expression plays an important role in the response of cancer cells to cytotoxic agents, especially for cisplatin treatment.  相似文献   

10.
11.
The 26S proteasome is an ATP-dependent proteolytic complex found in all eukaryotes, archaebacteria, and some eubacteria. Inhibition of the 26S proteasome causes pleiotropic effects in cells, including cellular apoptosis, a fact that has led to the use of the 26S proteasome inhibitor, bortezomib, for treatment of the multiple myeloma cancer. We previously showed that in addition to the effects of proteolysis, inhibition of the 26S proteasome causes a rapid decrease in the protein synthesis rate due to phosphorylating alfa subunit of the eukaryotic translation initiation factor 2 (eIF2α) by the heme-regulated inhibitor kinase (HRI). In order to test whether inhibition of the 26S proteasome causes the same effect in cancer cells, we have investigated the influence of two commonly used proteasome inhibitors, bortezomib and MG132, on the phosphorylation status of eIF2α in B16F10 melanoma and 4T1 breast cancer cells. It was found that both of the inhibitors caused rapid phosphorylation of eIF2α. Taking into account that the Hsp70 is a critical component needed for the HRI activation and enzymatic activity, we have tested a possible participation of this protein in the eIF2α phosphorylation event. However, treatment of the cells with two structurally different Hsp70 inhibitors, quercetin and KNK437, in the presence of the proteasome inhibitors did not affect the eIF2α phosphorylation. In addition, neither protein kinase C (PKC) nor p38 mitogen-activated protein kinase (MAPK) was required for the proteasome inhibitor-induced eIF2α phosphorylation; furthermore, both the PKC inhibitor staurosporine and the p38 MAPK inhibitor SB203580 caused enchanced phosphorylation of eIF2α. Zinc(II) protoporphyrine IX (ZnPP), an inhibitor of the heme-oxygenase-1 (HO-1), which has also been previously reported to be involved in HRI activation, also failed to prevent the induction of eIF2α phosphorylation in the presence of the proteasome inhibitor bortezomib or MG132.  相似文献   

12.
Adhesion of tumor cells to endothelial cells is known to be involved in the hematogenous metastasis of cancer, which is regulated by hypoxia. Hypoxia is able to induce a significant increase in free intracellular Ca2+ levels in both tumor cells and endothelial cells. Here, we investigate the regulatory effects of calmodulin (CaM), an intracellular calcium mediator, on tumor cell–endothelial cell adhesion under hypoxic conditions. Hypoxia facilitates HeLa cell–ECV304 endothelial cell adhesion, and results in actin cytoskeleton rearrangement in both endothelial cells and tumor cells. Suppression of CaM activation by CaM inhibitor W-7 disrupts actin cytoskeleton organization and CaM distribution in the cell–cell contact region, and thus inhibits cell–cell adhesion. CaM inhibitor also downregulates hypoxia-induced HIF-1-dependent gene expression. These results suggest that the Ca2+-CaM signaling pathway might be involved in tumor cell-endothelial cell adhesion, and that co-localization of CaM and actin at cell–cell contact regions might be essential for this process under hypoxic stress. W.-G. Shen and W.-X. Peng Contributed to this paper equally  相似文献   

13.
PKCδ translocates into the nucleus in response to apoptotic agents and functions as a potent cell death signal. Cytoplasmic retention of PKCδ and its transport into the nucleus are essential for cell homeostasis, but how these processes are regulated is poorly understood. We show that PKCδ resides in the cytoplasm in a conformation that precludes binding of importin-α. A structural model of PKCδ in the inactive state suggests that the nuclear localization sequence (NLS) is prevented from binding to importin-α through intramolecular contacts between the C2 and catalytic domains. We have previously shown that PKCδ is phosphorylated on specific tyrosine residues in response to apoptotic agents. Here, we show that phosphorylation of PKCδ at Tyr-64 and Tyr-155 results in a conformational change that allows exposure of the NLS and binding of importin-α. In addition, Hsp90 binds to PKCδ with similar kinetics as importin-α and is required for the interaction of importin-α with the NLS. Finally, we elucidate a role for a conserved PPxxP motif, which overlaps the NLS, in nuclear exclusion of PKCδ. Mutagenesis of the conserved prolines to alanines enhanced importin-α binding to PKCδ and induced its nuclear import in resting cells. Thus, the PPxxP motif is important for maintaining a conformation that facilitates cytosplasmic retention of PKCδ. Taken together, this study establishes a novel mechanism that retains PKCδ in the cytoplasm of resting cells and regulates its nuclear import in response to apoptotic stimuli.  相似文献   

14.
15.
Prolonged morphine treatment induces extensive desensitization of the μ-opioid receptor (μOR) which is the G-protein-coupled receptor that primarily mediates the cellular response to morphine. To date, the molecular mechanism underlying this process is unknown. Here, we have used live cell fluorescence imaging to investigate whether prolonged morphine treatment affects the physical environment of μOR, or its coupling with G-proteins, in two neuronal cell lines. We find that chronic morphine treatment does not change the amount of enhanced yellow fluorescence protein (eYFP)-tagged μOR on the plasma membrane, and only slightly decreases its association with G-protein subunits. Additionally, morphine treatment does not have a detectable effect on the diffusion coefficient of eYFP-μOR. However, in the presence of another family member, the δ-opioid receptor (δOR), prolonged morphine exposure results in a significant increase in the diffusion rate of μOR. Number and brightness measurements suggest that μOR exists primarily as a dimer that will oligomerize with δOR into tetramers, and morphine promotes the dissociation of these tetramers. To provide a plausible structural context to these data, we used homology modeling techniques to generate putative configurations of μOR-δOR tetramers. Overall, our studies provide a possible rationale for morphine sensitivity.  相似文献   

16.
The study of giant cells in populations of different tumor cells and evaluation of their role in cancer development is an expanding field. The formation of giant cells has been shown to be followed by mitotic catastrophe, apoptosis, necrosis, and other types of cell elimination. Reports also demonstrate that giant cells can escape cell death and give rise to new cancer cells. However, it is not known if the programmed cell death is involved in this type of cell cycle disorders. Here we describe principal events that are observed during giant cell formation. We also consider the role of giant cells in cancer development, taking into account both published work and our own recent data in this field.  相似文献   

17.
Summary Previous studies have shown that aldosterone increases transepithelial active Na+ transport after a latent period of about 60 min and incorporation of3H-uridine into polyadenylated RNA (poly(A)(+)RNA) (putatively poly(A)(+)mRNA) as early as 30 min after aldosterone addition. To assess the physiological importance of this pathway, the effects of 3deoxyadenosine and actinomycin D were compared in studies on the urinary bladder of the toadBufo marinus. 3deoxyadenosine (30 g/ml) only partially, though significantly, inhibited the aldosterone-dependent increase in Na+ transport measured as short-circuit current (scc). The incorporation of3H-uridine into poly(A) (+)RNA was inhibited by 70 to 80%. In contrast, Actinomycin D (2 g/ml) totally inhibited the aldosterone-dependent increase in scc, and the incorporation of3H-uridine into poly(A)(+)RNA by 68 to 75%. 3deoxyadenosine or actinomycin D alone had no significant effects on baseline scc, while inhibiting poly(A)(+)RNA to the same extent. The differential effects of deoxyadenosine and actinomycin on aldosterone-dependent Na+ transport may be related to their different sites of action on RNA synthesis: both drugs inhibited, to a similar extent, cytoplasmic poly(A)(+)mRNA; however, 3deoxyadenosine, in contrast to Actinomycin D, failed to inhibit poly(A)(-)RNA, sedimenting between 4S and 18S (putatively poly(A)(-)mRNA). We conclude that the mineralocorticoid action of aldosterone during the first three hours depends on the synthesis of both poly(A)(+)mRNA and poly(A)(-)mRNA.  相似文献   

18.
We demonstrated that nonselective PKC activation promotes mitochondrial function in renal proximal tubular cells (RPTC) following toxicant injury. However, the specific PKC isozyme mediating this effect is unknown. This study investigated the role of PKC-α in the recovery of mitochondrial functions in oxidant-injured RPTC. Wild-type PKC-α (wtPKC-α) and inactive PKC-α mutants were overexpressed in RPTC to selectively increase or block PKC-α activation. Oxidant (tert-butyl hydroperoxidel; TBHP) exposure activated PKC-α in RPTC but decreased PKC-α levels in mitochondria following treatment. Uncoupled and state 3 respirations and activities of complexes I and IV in TBHP-injured cells decreased to 55, 44, 49, and 65% of controls, respectively. F(0)F(1)-ATPase activity and ATP content in injured RPTC decreased to 59 and 60% of controls, respectively. Oxidant exposure increased reactive oxygen species (ROS) production by 210% and induced mitochondrial fragmentation and 52% RPTC lysis. Overexpressing wtPKC-α did not block TBHP-induced ROS production but improved respiration and complex I activity, restored complex IV and F(0)F(1)-ATPase activities, promoted recovery of ATP content, blocked mitochondrial fragmentation, and reduced RPTC lysis to 14%. In contrast, inhibiting PKC-α 1) induced mitochondrial hyperpolarization and fragmentation; 2) blocked increases in ROS production; 3) prevented recovery of respiratory complexes and F(0)F(1)-ATPase activities, respiration, and ATP content; and 4) exacerbated TBHP-induced RPTC lysis. We conclude that 1) activation of PKC-α prevents mitochondrial hyperpolarization and fragmentation, decreases cell death, and promotes recovery of mitochondrial respiration and ATP content following oxidant injury in RPTC; and 2) respiratory complexes I and IV and F(0)F(1)-ATPase are targets of active PKC-α.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号