首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 484 毫秒
1.
Segmentation of the vertebrate embryo body is a fundamental developmental process that occurs with strict temporal precision. Temporal control of this process is achieved through molecular segmentation clocks, evidenced by oscillations of gene expression in the unsegmented presomitic mesoderm (PSM, precursor tissue of the axial skeleton) and in the distal limb mesenchyme (limb chondrogenic precursor cells). The first segmentation clock gene, hairy1, was identified in the chick embryo PSM in 1997. Ten years later, chick hairy2 expression unveils a molecular clock operating during limb development. This review revisits vertebrate embryo segmentation with special emphasis on the current knowledge on somitogenesis and limb molecular clocks. A compilation of human congenital disorders that may arise from deregulated embryo clock mechanisms is presented here, in an attempt to reconcile different sources of information regarding vertebrate embryo development. Challenging open questions concerning the somitogenesis clock are presented and discussed, such as When?, Where?, How?, and What for? Hopefully the next decade will be equally rich in answers. Birth Defects Research (Part C) 81:65–83, 2007. © 2007 Wiley‐Liss, Inc.  相似文献   

2.
The formation of the segmentation pattern in Drosophila embryos provides an excellent model for investigating the process of pattern formation in multicellular organisms. Several genes required in an embryo for normal segmentation have been analyzed by classical and molecular genetic and morphological techniques. A detailed consideration of these results suggests that these segmentation genes are combinatorially involved in translating the positional identities of individual cells at an early stage in Drosophila development.  相似文献   

3.
4.
Calcium is a universal signal in the regulation of wide aspects in biology, but few are known about the function of calcium in the control of early embryo development. Ca2+ deficiency in soil induces early embryo abortion in peanut, producing empty pods, which is a general problem; however, the underlying mechanism remains unclear. In this study, embryo abortion was characterized to be caused by apoptosis marked with cell wall degradation. Using a method of SSH cDNA libraries associated with library lift (SSHaLL), 62 differentially expressed genes were isolated from young peanut embryos. These genes were classified to be stress responses, catabolic process, carbohydrate and lipid metabolism, embryo morphogenesis, regulation, etc. The cell retardation with cell wall degradation was caused by up‐regulated cell wall hydrolases and down‐regulated cellular synthases genes. HsfA4a, which was characterized to be important to embryo development, was significantly down‐regulated under Ca2+‐deficient conditions from 15 days after pegging (DAP) to 30 DAP. Two AhCYP707A4 genes, encoding abscisic acid (ABA) 8′‐hydroxylases, key enzymes for ABA catabolism, were up‐regulated by 21‐fold under Ca2+‐deficient conditions upstream of HsfA4a, reducing the ABA level in early embryos. Over‐expression of AhCYP707A4 in Nicotiana benthamiana showed a phenotype of low ABA content with high numbers of aborted embryos, small pods and less seeds, which confirms that AhCYP707A4 is a key player in regulation of Ca2+ deficiency‐induced embryo abortion via ABA‐mediated apoptosis. The results elucidated the mechanism of low Ca2+‐induced embryo abortion and described the method for other fields of study.  相似文献   

5.
The expression of most Drosophila segmentation genes is not limited to the early blastoderm stage, when the segmental anlagen are determined. Rather, these genes are often expressed in a variety of organs and tissues at later stages of development. In contrast to the early expression, little is known about the regulatory interactions that govern the later expression patterns. Among other tissues, the central gap gene Krüppel is expressed and required in the anlage of the Malpighian tubules at the posterior terminus of the embryo. We have studied the interaction of Krüppel with other terminal genes. The gap genes tailles and huckebein, which repress Krüppel in the central segmentation domain, activate Krüppel expression in the posterior Malpighian tubule domain. The opposite effect on the posterior Krüppel expression is achieved by the interposition of another factor, the homeotic gene fork head, which is not involved in the control of the central domain. In addition, Krüppel activates different genes in the Malpighian tubules than in the central domain. Thus, both the regulation and the function of Krüppel in the Malpighian tubules differ strikingly from its role in segmentation.  相似文献   

6.
Selection of the best quality embryo is the key for a faithful implantation in in vitro fertilization (IVF) practice. However, the process of evaluating numerous images captured by time-lapse imaging (TLI) system is time-consuming and some important features cannot be recognized by naked eyes. Convolutional neural network (CNN) is used in medical imaging yet in IVF. The study aims to apply CNN on day-one human embryo TLI. We first presented CNN algorithm for day-one human embryo segmentation on three distinct features: zona pellucida (ZP), cytoplasm and pronucleus (PN). We tested the CNN performance compared side-by-side with manual labelling by clinical embryologist, then measured the segmented day-one human embryo parameters and compared them with literature reported values. The precisions of segmentation were that cytoplasm over 97%, PN over 84% and ZP around 80%. For the morphometrics data of cytoplasm, ZP and PN, the results were comparable with those reported in literatures, which showed high reproducibility and consistency. The CNN system provides fast and stable analytical outcome to improve work efficiency in IVF setting. To conclude, our CNN system is potential to be applied in practice for day-one human embryo segmentation as a robust tool with high precision, reproducibility and speed.  相似文献   

7.
Sipuncula is a clade of unsegmented marine worms that are currently placed among the basal radiation of conspicuously segmented Annelida. Their new location provides a unique opportunity to reinvestigate the evolution and development of segmented body plans. Neural segmentation is clearly evident during ganglionic ventral nerve cord (VNC) formation across Sedentaria and Errantia, which includes the majority of annelids. However, recent studies show that some annelid taxa outside of Sedentaria and Errantia have a medullary cord, without ganglia, as adults. Importantly, neural development in these taxa is understudied and interpretation can vary widely. For example, reports in sipunculans range from no evidence of segmentation to vestigial segmentation as inferred from a few pairs of serially repeated neuronal cell bodies along the VNC. We investigated patterns of pan-neuronal, neuronal subtype, and axonal markers using immunohistochemistry and whole mount in situ hybridization (WMISH) during neural development in an indirect-developing sipunculan, Themiste lageniformis. Confocal imaging revealed two clusters of 5HT+ neurons, two pairs of FMRF+ neurons, and Tubulin+ peripheral neurites that appear to be serially positioned along the VNC, similar to other sipunculans, to other annelids, and to spiralian taxa outside of Annelida. WMISH of a synaptotagmin1 ortholog in T. lageniformis (Tl-syt1) showed expression throughout the centralized nervous system (CNS), including the VNC where it appears to correlate with mature 5HT+ and FMRF+ neurons. An ortholog of elav1 (Tl-elav1) showed expression in differentiated neurons of the CNS with continuous expression in the VNC, supporting evidence of a medullary cord, and refuting evidence of ontogenetic segmentation during formation of the nervous system. Thus, we conclude that sipunculans do not exhibit any signs of morphological segmentation during development.  相似文献   

8.
Pyrimidine metabolism was investigated at various stages ofsomatic embryo development of white spruce (Picea glauca). The contribution of thede novo and the salvage pathways of pyrimidine biosynthesis to nucleotide and nucleic acid formation and the catabolism of pyrimidine was estimated by the exogenously supplied [6-14C]orotic acid, an intermediate of thede novo pathway, and with [2-14C]uridine and [2-14C]uracil, substrates of the salvage pathways. Thede novo pathway was very active throughout embryo development. More than 80 percnt; of [6-14C]orotic acid taken up by the tissue was utilized for nucleotide and nucleic acid synthesis in all stages of this process. The salvage pathways of uridine and uracil were also operative. Relatively high nucleic acid biosynthesis from uridine was observed, whereas the contribution of uracil salvage to the pyrimidine nucleotide and nucleic acid synthesis was extremely limited. A large proportion of uracil was degraded as 14CO2, probably via β-ureidopropionate. Among the enzymes of pyrimidine metabolism, orotate phosphoribosyltransferase was high during the initial phases of embryo development, after which it gradually declined. Uridine kinase, responsible for the salvage of uridine, showed an opposite pattern, since its activity increased as embryos developed. Low activities of uracil phosphoribosyltransferase and non-specific nucleoside phosphotransferase were also detected throughout the developmental period. These results suggest that the flux of thede novo and salvage pathways of pyrimidine nucleotide biosynthesisin vivo is roughly controlled by the amount of these enzymes. However, changing patterns of enzyme activity during embryo development that were measuredin vitro did not exactly correlate with the flux estimated by the radioactive precursors. Therefore, other fine control mechanisms, such as the fluctuation of levels of substrates and/or effectors may also participate to the real control of pyrimidine metabolism during white spruce somatic embryo development.  相似文献   

9.
A carp caudal cDNA of 1.3 kb was cloned after screening an early segmentation stage cDNA library with a probe produced by PCR using conserved homeobox sequences as primers and genomic DNA as template. The homeobox gene was called carp-cdxl. The gene appears highly similar to other vertebrate caudal homologs, especially the zebrafish gene cdx(Zf-cad). The possible relationship to homeobox genes within the Hox-C gene complexes is discussed. A weak expression of the gene, detected by in situ hybridization, was found shortly before gastrulation (at 25% epiboly) in cells likely to have a posterior fate. During gastrulation expression became stronger. At the early segmentation stage, cells of the neural keel in the area of the prospective spinal cord expressed the gene. During the progression of segmentation, expression retracted in a caudal direction. The tailbud expressed the gene throughout, but the somites lost expression shortly after their formation. Only the most lateral mesoderm cells maintained expression in the trunk area. Carp-cdxl was also expressed in the endoderm. At 24 h after fertilization the gene was only expressed in the tailbud. At 48 h, no expression could be detected. The expression pattern suggests a function for carp-cdxl in gastrulation and patterning along the anterior-posterior axis of the embryo.  相似文献   

10.
Nitrogen stable isotopes ratios (δ15N) were determined for selected tissues (muscle, liver, blood and yolk) of pregnant females and their embryos of a placental viviparous species, the Pacific sharpnose shark (Rhizoprionodon longurio), and a yolk-sac viviparous species, the speckled guitarfish (Pseudobatos glaucostigmus). The R. longurio embryo tissues were 15N enriched compared to the same tissues in the pregnant female, using the difference in δ15N (Δδ15N) between embryo and adult. Mean Δδ15N was 2.17‰ in muscle, 4.39‰ in liver and 0.80‰ in blood. For P. glaucostigmus, embryo liver tissue was significantly 15N enriched in comparison with liver of the pregnant female (Δδ15N mean = 1.22‰), whereas embryo muscle was 15N depleted relative to the muscle of the pregnant female (Δδ15N mean = −1.22‰). Both species presented a significant positive linear relationship between Δδ15N and embryo total length (LT). The results indicated that embryos have different Δδ15N depending on their reproductive strategy, tissue type analysed and embryo LT.  相似文献   

11.
Germination of Nemophila insignis seed is inhibited by light over a wide range of temperatures. At low temperatures the light intensity required for inhibition is higher. At 25 C there is little germination (in darkness as well as in light); at 27.5 C germination is inhibited altogether. Virtually complete germination in light is obtained when the endosperm directly covering the radicle is removed. This operation also improves germination in darkness at 25 C. Mechanical scarification performed elsewhere in the seed is without effect. As with Phacelia tanacetifolia, Nemophila seed apparently fails to germinate in light because the endosperm restrains the expansive growth of the embryo. The embryo of dark-imbibed seed develops a force which enables it to overcome the physical resistance of the endosperm. Light inhibits the process which leads to generation of “expansive force.” Gibberellic acid at 5 × 10–4 m stimulates germination in light and in the dark. Abscisic acid at 10-4 m inhibits germination; at 10-6 m it inhibits only root growth. The inhibition of germination or root growth caused by abscisic acid cannot be reversed by gibberellic acid. Eighty per cent oxygen under certain conditions promotes germination. The rate of O2 uptake is enhanced in oxygen-enriched atmosphere; however, there is no corresponding increase in the rate of CO2 output. Thus high oxygen tension enhances an oxidative process other than respiration. This reaction is favorable to seed germination.  相似文献   

12.
Structure of the embryo sac and development of the proembryo of Acer saccharinum L. are described from paraffin sections. The embryo sac is monosporic and identical to the 8-nucleate Polygonum type in all respects. Cell, nuclear, and nucleolar sizes are constant within a narrow range and sharply distinctive for all components of the mature sac. Polar nuclei fuse before double fertilization. The longitudinal axis of symmetry of the egg, zygote, and proembryo is variously oriented with respect to the longitudinal axis of the embryo sac and is determined by the point of attachment of the presumptive egg cell to the sac wall. Subsequent development of the young embryo is responsive to aligning factors within the embryo sac and is collateral with the longitudinal axis of the sac. The first segmentation is transverse to the longitudinal axis of the zygote; the second and third are transverse in the basal cell and longitudinal in the apical cell. Descendants of ci form a short irregular suspensor; ca and m give rise to the apical and basal halves respectively of the embryo proper. The contribution of the proembryonic tiers to the older embryo differs in embryos of different initial orientation. Distribution and orientation of mitosis in the proembryo are shown in two accumulation maps.  相似文献   

13.
吴丽芳  魏晓梅 《广西植物》2019,39(8):1107-1114
该研究以蔗糖、麦芽糖、山梨醇及PEG(6000)为渗透剂,探讨了不同渗透剂对白刺花体细胞胚发育、胚成熟及萌发的影响。结果表明:白刺花下胚轴形成的胚性愈伤组织接种至MS+2,4-D 0.2 mg·L~(-1)+NAA 1.0 mg·L~(-1)+6-BA 2.0 mg·L~(-1)+TDZ 1.0 mg·L~(-1)+蔗糖40 g·L~(-1)+谷氨酰胺100 mg·L~(-1)+植物凝胶3g·L~(-1)的培养基上,体细胞胚发生率高达66. 21%,总胚数为79个; 7%蔗糖可使体细胞胚成熟率高达64.36%,同时也可提高多子叶畸形胚形成; 2%麦芽糖+2%山梨醇+4%蔗糖组合使体细胞胚成熟率最高达88.89%,畸形胚比例最低; 30 g·L~(-1)PEG培养时,体细胞成熟率最高,为82.35%;鱼雷期的体细胞胚最合适转接,可使体胚萌发率达90.58%,复合糖上培养得到的成熟体细胞胚生根率最高,为87.47%。这为实现白刺花体细胞胚育苗奠定了理论基础,并提供了可行的方案。  相似文献   

14.
The toxicity of Cd2+in vivo during the early phases of radish (Raphanus sativus L.) seed germination and the in vitro Cd2+ effect on radish calmodulin (CaM) were studied. Cd2+ was taken up in the embryo axes of radish seeds; the increase in fresh weight of embryo axes after 24 h of incubation was inhibited significantly in the presence of 10 mmol m?3 Cd2+ in the external medium, when the Cd2+ content in the embryo axes was c. 1.1 μmol g?1 FW. The reabsorption of K+, which characterizes germination, was inhibited by Cd2+, suggesting that Cd2+ affected metabolic reactivation. The slight effect of Cd2+ on the transmembrane electric potential of the cortical cells of the embryo axes excluded a generalized toxicity of Cd2+ at the plasma membrane level. After 24 h of incubation, Cd2+ induced no increase in total acid-soluble thiols and Cd2+-binding peptides able to reduce Cd2+ toxicity. Ca2+ added to the incubation medium partially reversed the Cd2+-induced inhibition of the increase in fresh weight of embryo axes and concomitantly reduced Cd2+ uptake. Equilibrium dialysis experiments indicated that Cd2+ bound to CaM and competed with Ca2+ in this binding. Cd2+ inhibited the activation of Ca2+-CaM-dependent calf-brain phosphodiesterase, inhibiting the Ca2+-CaM active complex. Cd2+ reduced the binding of CaM to the Ca2+-CaM binding enzymes present in the soluble fraction of the embryo axes of radish seeds. The possibility that Cd2+ toxicity in radish seed germination is mediated by the action of Cd2+ on Ca2+-CaM is discussed in relation to the in vivo and in vitro effects of Cd2+.  相似文献   

15.
Mutations in severalPolycomb (Pc) group genes cause maternal-effect or zygotic segmentation defects, suggesting thatPc group genes may regulate the segmentation genes ofDrosophila. We show that individuals doubly heterozygous for mutations inpolyhomeotic and six otherPc group genes show gap, pair rule, and segment polarity segmentation defects. We examined double heterozygous combinations ofPc group and segmentation mutations for enhancement of adult and embryonic segmentation defects.Posterior sex combs andpolyhomeotic interact withKrüppel 2 and enhance embryonic phenotypes ofhunchback andknirps, andpolyhomeotic enhanceseven-skipped. Surprisingly, flies carrying duplications ofextra sex combs (esc), that were heterozygous for mutations ofeven-skipped (eve), were extremely subvital. Embryos and surviving adults of this genotype showed strong segmentation defects in even-numbered segments. Antibody studies confirm that expression ofeve is suppressed by duplications ofesc. However,esc duplications have no effect on other gap or pair rule genes tested. To our knowledge, this is only the second triplo-abnormal phenotype associated withPc group genes. Duplications of nine otherPc group genes have no detectable effect oneve. Expression ofengrailed (en) was abnormal in the central nervous systems of mostPc group mutants. These results support a role forPc genes in regulation of some segmentation genes, and suggest thatesc may act differently from otherPc group genes.  相似文献   

16.
SYNOPSIS. Thymidylate synthetase (E.C.2.1.1.45) has been demonstrated in unsporulated oocysts of Eimeria tenella. The properties of this enzyme have also been investigated in Tetrahymena pyriformis, as a protozoan model, and 7-day-old chick embryo, as a host model. The enzymes from E. tenella and chick embryo were inhibited by all concentrations of MnCl2 and MgCl2 tested. Tetrahymena pyriformis thymidylate synthetase was stimulated by low concentrations of both these cations but was inhibited by high concentrations. Subsequent data refer to chick embryo, E. tenella and T. pyriformis respectively: the apparent Km was 5.89 μM, 5.94 μM, and 0.53 M for the substrate dUMP: and 5.13 μM, 1.10 μM and 4.65 μM, respectively for the cofactor N5N10-methylenetetrahydrofolate. The pH optimum for the enzyme from both chick embryo and T. pyriformis was 8.0, with Tris-HCl buffer; activity of E. tenella thymidylate synthetase was still increasing at pH 8.2. The E. tenella enzyme was found to have a molecular weight of 4.6–4.9 × 105 daltons. The effects of nucleotides, inhibitors, and the omission of assay components on each enzyme are presented. Thymidylate synthetase from E. tenella is not greatly different from that of chick embryo, but does not resemble the enzyme from T. pyriformis. A case for using thymidylate synthetase as a chemotherapeutic target in the treatment of Eimeria infections remains. Indeed Eimeria may be considered as a model for infections caused by other protozoan parasites, such as Toxoplasma and Plasmodium, provided that suitable inhibitors can be found that are not toxic to the host.  相似文献   

17.
 Early pattern formation in the Drosophila embryo occurs in a syncytial blastoderm where communication between nuclei is unimpeded by cell walls. During the development of other insects, similar gene expression patterns are generated in a cellular environment. In Tribolium, for instance, pair-rule stripes are transiently expressed near the posterior end of the growing germ band. To elucidate how pattern formation in such a situation deviates from that of Drosophila, functional data about the genes involved are essential. In a genetic screen for Tribolium mutants affecting the larval cuticle pattern, we isolated 4 mutants (from a total of 30) which disrupt segmentation in the thorax and abdomen. Two of these mutants display clear pair-rule phenotypes. This demonstrates that not only the expression, but also the function of pair-rule genes in this short-germ insect is in principle similar to Drosophila. The other two mutants appear to identify gap genes. They provide the first evidence for the involvement of gap genes in abdominal segmentation of short-germ embryos. However, significant differences between the phenotypes of these mutants and those of known Drosophila gap mutants exist which indicates that evolutionary changes occurred in either the regulation or action of these genes. Received: 8 May 1998 / Accepted: 17 June 1998  相似文献   

18.
Mutations of the segmentation gene Krüppel (Kr) cause deletions of contiguous sets of body segments from the middle region of the Drosophila embryo. We have monitored expression in situ of three other genes implicated in the establishment of the body plan, namely hairy (h), fushi tarazu (ftz) and engrailed (en), in mutant Kr embryos. Our results show that the pattern of expression of all three genes depends upon Kr+ activity and are consistent with a hierarchical model of segmentation gene activity. In addition, we find that the initial expression of the homoeotic selector gene Ultrabithorax(Ubx) follows a novel pattern in Kr- embroys indicating a close integration of the spatial control of homoeotic and segmantation gene expression.  相似文献   

19.
Abstract

Embryo-endosperm relationship in «Triticum durum» seeds: embryo utilization speed of 3H-Tdr from the endosperm. — The transferring speed of DNA labeled precursor (3H-Tdr) from endosperm to embryo, in Triticum, has been detected by embryo transplantation technique. The results show that the first hour (after transplant) some cells (3%) in root meristem incorporated 3H-Tdr. Labeled cells frequency is increasing between the first and the third hour of experiment, up to 25%; thereafter the percentage keeps constant. The histological location of cells and/or an insufficient availability of 3H-Tdr (from the endosperm) might explain the low labeling index detected in the above experiment.  相似文献   

20.
Replication factor C (RFC) is a conserved eukaryotic complex consisting of RFC1/2/3/4/5. It plays important roles in DNA replication and the cell cycle in yeast and fruit fly. However, it is not very clear how RFC subunits function in higher plants, except for the Arabidopsis (At) subunits AtRFC1 and AtRFC3. In this study, we investigated the functions of AtRFC4 and found that loss of function of AtRFC4 led to an early sporophyte lethality that initiated as early as the elongated zygote stage, all defective embryos arrested at the two‐ to four‐cell embryo proper stage, and the endosperm possessed six to eight free nuclei. Complementation of rfc4‐1/+ with AtRFC4 expression driven through the embryo‐specific DD45pro and ABI3pro or the endosperm‐specific FIS2pro could not completely restore the defective embryo or endosperm, whereas a combination of these three promoters in rfc4‐1/+ enabled the aborted ovules to develop into viable seeds. This suggests that AtRFC4 functions simultaneously in endosperm and embryo and that the proliferation of endosperm is critical for embryo maturation. Assays of DNA content in rfc4‐1/+ verified that DNA replication was disrupted in endosperm and embryo, resulting in blocked mitosis. Moreover, we observed a decreased proportion of late S‐phase and M‐phase cells in the rfc4‐1/–FIS2;DD45;ABI3pro::AtRFC4 seedlings, suggesting that incomplete DNA replication triggered cell cycle arrest in cells of the root apical meristem. Therefore, we conclude that AtRFC4 is a crucial gene for DNA replication.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号