首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract: Our laboratory has recently cloned and expressed a brain- and neuron-specific Na+-dependent inorganic phosphate (Pi) cotransporter that is constitutively expressed in neurons of the rat cerebral cortex, hippocampus, and cerebellum. We have now characterized Na+-dependent 32Pi cotransport in cultured fetal rat cortical neurons, where >90% of saturable Pi uptake is Na+-dependent. Saturable, Na+-dependent 32Pi uptake was first observed in primary cultures of cortical neurons at 7 days in vitro (DIV) and was maximal at 12 DIV. Na+-dependent Pi transport was optimal at physiological temperature (37°C) and pH (7.0–7.5), with apparent Km values for Pi and Na+ of 54 ± 12.7 µM and 35 ± 4.2 mM, respectively. A reduction in extracellular Ca2+ markedly reduced (>60%) Na+-dependent Pi uptake, with a threshold for maximal Pi import of 1–2.5 mM CaCl2. Primary cultures of fetal cortical neurons incubated in medium where equimolar concentrations of choline were substituted for Na+ had lower levels of ATP and ADP and higher levels of AMP than did those incubated in the presence of Na+. Furthermore, a substantial fraction of the 32Pi cotransported with Na+ was concentrated in the adenine nucleotides. Inhibitors of oxidative metabolism, such as rotenone, oligomycin, or dinitrophenol, dramatically decreased Na+-dependent Pi import rates. These data establish the presence of a Na+-dependent Pi cotransport system in neurons of the CNS, demonstrate the Ca2+-dependent nature of 32Pi uptake, and suggest that the neuronal Na+-dependent Pi cotransporter may import Pi required for the production of high-energy compounds vital to neuronal metabolism.  相似文献   

2.
The influence of aging and dietary restriction on increase in intracellular free calcium ([Ca2+]i) of CD4+ lymphocytes from Macaca mulatta was examined after stimulation with anti-CD3 mAb. We used a flow cytometric assay with the dye indo-1 and either direct or reciprocal immunofluorescent staining to dientify CD4+ cells. After stimulation with anti-CD3 mAb, intracellular free calcium responses were reduced in CD4+ lymphocytes from old male and female ad libitum fed monkeys compared to young and adult male or female monkeys. Old female monkeys had significantly lower [Ca2+]i than did old male monkeys. The reduced responses were in part related to a decreased percentage of responding cells. Dietary restrition of males over a four-year period did not alter [Ca2+]i response compared to ad libitum fed male monkeys. Female monkeys of all ages (which were restricted only for four months) also had similar [Ca2+]i responses to ad libitum fed controls. Our data suggest that age-related changes in [Ca2+]i responses are similar between humans and M. mulatta, and that over these intervals, no effects of caloric restrictions can be detected. © 1995 Wiley-Liss, Inc.  相似文献   

3.
Nucleotide binding affinity to Na,K-ATPase is reduced by a number of anions such as nitrate and perchlorate in comparison with affinity in the presence of chloride (all with sodium as the cation). The reduction correlates with the position of these anions in the Hofmeister series. Transient kinetic experiments using the fluorescent dye eosin—which binds to the nucleotide site of the Na,K-ATPase—show that simultaneous anion binding, exemplified with nitrate, and eosin binding is possible. The effect of nitrate on eosin binding is reflected in a decreased binding-rate constant and an increased dissociation rate constant, leading to a decreased equilibrium binding constant for eosin. Since eosin binding is analogous with nucleotide binding to Na,K-ATPase, the results suggest the simultaneous presence of nucleotide and anion binding sites.Abbreviations E1 the protein conformation in Na+ - E2 the enzyme conformation in K+ - Eo eosin (tetrabromofluorescein) - F fluorescence - I ionic strength - ki rate constant - Ki equilibrium dissociation constant - Ki,0 equilibrium dissociation constant at zero ionic strength - N nitrate - zi net charge - charge product zi·zj  相似文献   

4.
Plasma membrane water transport is a crucial cellular phenomenon. Net water movement in response to an osmotic gradient changes cell volume. Steady-state exchange of water molecules, with no net flux or volume change, occurs by passive diffusion through the phospholipid bilayer and passage through membrane proteins. The hypothesis is tested that plasma membrane water exchange also correlates with ATP-driven membrane transport activity in yeast (Saccharomyces cerevisiae). Longitudinal 1H2O NMR relaxation time constant (T1) values were measured in yeast suspensions containing extracellular relaxation reagent. Two-site-exchange analysis quantified the reversible exchange kinetics as the mean intracellular water lifetime (τi), where τi−1 is the pseudo-first-order rate constant for water efflux. To modulate cellular ATP, yeast suspensions were bubbled with 95%O2/5%CO2 (O2) or 95%N2/5%CO2 (N2). ATP was high during O2, and τi−1 was 3.1 s−1 at 25°C. After changing to N2, ATP decreased and τi−1 was 1.8 s−1. The principal active yeast ion transport protein is the plasma membrane H+-ATPase. Studies using the H+-ATPase inhibitor ebselen or a yeast genetic strain with reduced H+-ATPase found reduced τi−1, notwithstanding high ATP. Steady-state water exchange correlates with H+-ATPase activity. At volume steady state, water is cycling across the plasma membrane in response to metabolic transport activity.  相似文献   

5.
Summary In the isolated, superfused mouse lacrimal gland, intracellular Na+ activities (aNa i ) of the acinar cells were directly measured with double-barreled Na+-selective microelectrodes. In the nonstimulated conditionaNa i was 6.5±0.5 mM and membrane potential (V m ) was –38.9±0.4 mV. Addition of 1 mM ouabain or superfusion with a K+-free solution slightly depolarized the membrane and caused a gradual increase inaNa i . Stimulation with acetylcholine (ACh, 1 M) caused a membrane hyperpolarization by about 20 mV and an increase inaNa i by about 9 mM in 5 min. The presence of amiloride (0.1 mM) reduced the ACh-induced increase inaNa i by approximately 50%, without affectingV m and input resistance in both nonstimulated and ACh-stimulated conditions. Acid loading the acinar cells by an addition/withdrawal of 20 mM NH4Cl or by replacement of Tris+-buffer saline solution with HCO 3 /CO2-buffered solution increasedaNa i by a few mM. Superfusion with a Cl-free NO 3 solution or 1 mM furosemide or 0.5 mM bumetanide-containing solution had little effect on the restingaNa i levels, however, it reduced the ACh-induced increase inaNa i by about 30%. Elimination of metabolite anions (glutamate, fumarate and pyruvate) from the superfusate reduced both the restingaNa i and the ACh-induced increase inaNa i .The present results suggest the presence of multiple Na+ entry mechanisms activated by ACh, namely, Na+/H+ exchange, Na-K-Cl cotransport and organic substrate-coupled Na+ transport mechanisms.  相似文献   

6.
Blocking either the Na+ channel or the Na+/H+ exchanger (NHE) has been shown to reduce Na+ and Ca2+ overload during myocardial ischemia and reperfusion, respectively, and to improve post-ischemic contractile recovery. The effect of combined blockade of both Na+ influx routes on ionic homeostasis is unknown and was tested in this study. [Na+]i, pHi and energy-related phosphates were measured using simultaneous 23Na- and 31P-NMR spectroscopy in isolated rat hearts. Eniporide (3 μM) and/or lidocaine (200 μM) were administered during 5 min prior to 40 min of global ischemia and 40 min of drug free reperfusion to block the NHE and the Na+ channel, respectively. Lidocaine reduced the rise in [Na+]i during the first 10 min of ischemia, followed by a rise with a rate similar to the one found in untreated hearts. Eniporide reduced the ischemic Na+ influx during the entire ischemic period. Administration of both drugs resulted in a summation of the effects found in the lidocaine and eniporide groups. Contractile recovery and infarct size were significantly improved in hearts treated with both drugs, although not significantly different from hearts treated with either one of them.  相似文献   

7.
CD and nmr studies have been carried out on aqueous trifluoroethanol (TFE) solutions of bradykinin (BK) and a bradykinin antagonist. The CD results exhibit a striking effect of TFE on the spectra of BK, with sequence Arg-Pro-Pro-Gly-Phe-Ser-Pro-Phe-Arg, and the BK antagonist, with sequence D -Arg-Arg-Pro-Hyp-Gly-Thi-D -Ser-D -Cpg-Cpg-Arg [where Hyp is 4-hydroxy-L -proline; Thi refers to β-(2-thienyl)-L -alanine and Cpg refers to α-cyclopentylglycine]. The effect of increasing concentration of TFE in water on the difference ellipticity at 222 nm was examined and showed that BK may be a mixture of at least two different conformers, one of which largely forms when the TFE concentration is increased beyond 80%. The linear extrapolation of 100% of the difference ellipticity of BK at low TFE concentrations yields a value in agreement with that shown by the BK antagonist, indicating that the conformation of BK at the lower TFE concentrations is similar to that of the BK antagonist. The conformational analysis was carried out using both one-dimensional and two-dimensional 1H-nmr techniques. The total correlation spectroscopy (TOCSY) spectrum of BK in a 60/40% (v/v) TFE/H2O solution at 10°C and a nuclear Overhauser effect spectroscopy (NOESY) spectrum that shows only sequential Hα(i) – NH(i + 1) or the Hα(i) – Hδδ′(i + 1) NOEs indicate that the majority of the molecules adopt an all-trans extended conformation. The TOCSY for BK in the 95/5% (v/v) TFE/H2O solution shows that there are two major conformations in the solution with about equal population. The NOESY experiment shows two new important cross peaks for one conformation, namely Pro2(α)-Pro3 (α) and the Pro2(α)-Gly4(NH), indicating a cis Pro2-Pro3 bond and a type VI β-turn between residues Arg1 and Gly4 involving cis proline at position 3, respectively. The low temperature coefficient of Gly4 for this conformation suggests the presence of an intramolecular hydrogen bond, therefore a type VIa β-turn is present. The other conformation is all trans and extended. The BK antafonist shows difference CD spectra in TFE solutions referred to H2O that are superficially indicative of a β-bend. However, nmr speaks against this possibility, as only one set of peaks were observed in the TOCSY and NOESY experiments, indicating an all-trans extended confirmation over the range of TFE concentrations. The BK-antagonist CD data suggest that solvent perturbation of the CD of an extended confirmation perturbation of the optical activity of the thienyl moiety of the peptide since the CD spectrum of N-acetyl-β-thienyl-L -alanine N-methylamide is strongly perturbed by TFE. The present results again demonstrate the complementary relationship between CD and nmr. © 1994 John Wiley & Sons, Inc.  相似文献   

8.
Summary We have studied a class of Ca i 2+ -dependent K channels in inside-out excised membrane patches fromParamecium under patch clamp. Single channels had a conductance of 72 ±9.0 pS in a solution containing 100mM K+. The channels were selective for K+ over Rb+ with the permeability ratio of 1 0.56. and over Na+, Cs+ or NH 4 + with a ratio 1<0.1. The channel activity was dependent on Ca i 2+ , which was applied to the cytoplasmic side; the Ca i 2+ concentration for the half maximal activation was 2 m. The Hill coefficient for the Ca i 2+ dependence of the channel activity was 2.58, indicating that more than two Ca i 2+ bindings are necessary for full activation. Unlike most Ca i 2+ -dependent K channels in other organisms, the channels inParamecium were slightly more active upon hyperpolarization than upon depolarization. The voltage dependence was fitted to a Boltzmann curve with 41.2 mV pere-fold change in channel activity. While a high Ca i 2+ concentration activated the channels, it also irreversibly reduced the channel activity over time. The decay of channel activity occurred faster at higher Ca i 2+ concentrations. Quaternary ammonium ions suppressed ion passage through the channel; more highly alkylated quaternary ammonium ions were more efficient in blocking. Ba i 2+ and Ca i 2+ were relatively ineffective in blockage. It was concluded that these Ca i 2+ -dependent K channels inParamecium are different from the previously described Ca i 2+ -dependent K channels, and are perhaps of a novel class.  相似文献   

9.
Summary The intracellular pH (pH i ) of Ehrlich ascites tumor cells, both in the steady state and under conditions of acid loading or recovery from acid loading, was investigated by measuring the transmembrane flux of H+ equivalents and correlating this with changes in the distribution ratio of dimethyloxazolidine-2,4-dione (DMO). The pH i of cells placed in an acidic medium (pH o below 7.15) decreases and reaches a steady-state value that is more alkaline than the outside. For example when pH o is acutely reduced to 5.5, pH i falls exponentially from 7.20 ± 0.06 to 6.29 ± 0.04 with a halftime of 5.92 ± 1.37 min, suggesting a rapid influx of H+. The unidirectional influx of H+ exhibits saturation kinetics with respect to extracellular [H+]; the maximal flux is 15.8 ± 0.05 mmol/(kg dry wt · min) andK m is 0.74 ± 0.09 × 10–6 m.Steady-state cells with pH i above 6.8 continuously extrude H+ by a process that is not dependent on ATP but is inhibited by anaerobiosis. Acid-loaded cells (pH i 6.3) when returned to pH o 7.3 medium respond by transporting H+, resulting in a rapid rise in pH i . The halftime for this process is 1.09 ± 0.22 min. The H+ efflux measured under similar conditions increases as the intracellular acid load increases. An ATP-independent as well as an ATP-dependent efflux contributes to the restoration of pH i to its steady-state value.  相似文献   

10.
Carbonic anhydrase (CA) inhibitors lower the rate of aqueous humor (AH) secretion into the eye. Different CA isozymes might play different roles in the response. Here we have studied the effects of carbonic anhydrase inhibitors on cytoplasmic pH (pH i ) regulation, using a dextran-bound CA inhibitor (DBI) to selectively inhibit membrane-associated CA in a cell line derived from rabbit NPE. pH i was measured using the fluorescent dye BCECF and the pH i responses to the cell permeable CA inhibitor acetazolamide (ACTZ) and DBI were compared. ACTZ markedly inhibited the rapid pH i changes elicited by bicarbonate/CO2 removal and readdition but DBI was ineffective in this respect, consistent with the inability of DBI to enter the cell and inhibit cytoplasmic CA isozymes. Added alone, ACTZ and DBI caused a similar reduction (0.2 pH units) of baseline pH i . We considered whether CA-IV might facilitate H+ extrusion via Na-H exchange. The Na-H exchanger inhibitor amiloride (1 mm) reduced pH i 0.52 ± 0.10 pH units. In the presence of DBI, the magnitude of pH i reduction caused by amiloride was significantly (P < 0.05) reduced to 0.26 ± 0.09 pH units. ACTZ similarly reduced the magnitude of the pH i reduction. DBI also reduced by ∼40% the rate of pH i recovery in cells acidified by an ammonium chloride (20 mm) prepulse; a reduction in pH i recovery rate was also caused by ACTZ and amiloride. DBI failed to alter the pH i alkalinization response caused by elevating external potassium concentration, a response insensitive to amiloride but sensitive to ACTZ. These observations are consistent with a reduction in Na-H exchanger activity in the presence of DBI or ACTZ. We suggest that the CA-IV isozyme might catalyze rapid equilibration of H+ and HCO 3 with CO2 in the unstirred layer outside the plasma membrane, preventing local accumulation of H+ which competes with sodium for the same external Na-H exchanger binding site. Inhibition of CA-IV could produce pH i changes that might alter the function of other ion transporters and channels in the NPE. Received: 24 April 1997/Revised: 4 November 1997  相似文献   

11.
Abstract

The three dimensional structure of the activiral agent, 5-methoxymethyl-2′-deoxyuridine (MmdUrd) was determined by x-ray diffraction methods. MMdUrd crystallized in space group P212121 of the orthorhombic system with a = 9.166(1)A, b, = 25.348(1)Amm c = 5.270(1)A and Z = 4. The conformation of the glycosyl bond is anti (χ = 233.30), the deoxyribose ring has the C(2′)-endo envelope conformation (2E), the CH2OH side chain has the g+ conformation and the methoxy group at the C(5) position is on the same side of pyrimidine plane as the 0(4′) oxygen. NMR spectroscopy was used to determine the conformation in solution. The spectra indicate that the sugar ring exists in a 60:40 equilibrium of the S- and N-states. The population of the three rotamers about the exocyclic c(4′)–C(5′) bond were estimated to be g+:t:g::61%:31%:8%. The correlaiton of molecular conforation with antiviral activity is discussed.  相似文献   

12.
Sertoli cells are responsible for regulating a wide range of processes that lead to the differentiation of male germ cells into spermatozoa. Cytoplasmic pH (pH i ) has been shown to be an important parameter in cell physiology, regulating namely cell metabolism and differentiation. However, membrane transport mechanisms involved in pH i regulation mechanisms of Sertoli cells have not yet been elucidated. In this work, pH i was determined using the pH-sensitive fluorescent probe 2′,7′-bis-(2-carboxyethyl)-5-(and-6)-carboxyfluorescein (BCECF). Addition of weak acids resulted in rapid acidification of the intracellular milieu. Sertoli cells then recovered pH i by a mechanism that was shown to be sensitive to external Na+. pH i recovery was also greatly reduced in the presence of 4,4′-diisothiocyanatostilbene-2,2′-disulfonic acid (DIDS) and amiloride. These results point toward the action of an Na+-driven HCO3/Cl exchanger and/or an Na+/HCO3 cotransporter and the action of the Na+/H+ exchanger on pH i regulation in the experimental conditions used. pH i recovery was only slightly affected by ouabain, suggesting that the inhibition of Na+/K+-ATPase affects recovery indirectly, possibly via the shift on the Na+ gradient. On the other hand, recovery from the acid load was independent of the presence of concanamycin A, a specific inhibitor of the V-type ATPases, suggesting that these pumps do not have a relevant action on pH i regulation in bovine Sertoli cells.  相似文献   

13.
Summary The ionic dependencies of the transepithelial and intracellular electrical parameters were measured in the isolated frog cornea. In NaCl Ringer's the intracellular potential differenceV sc measured under short-circuit conditions depolarized by nearly the same amount after either increasing the stromal-side KCl concentration from 2.5 to 25mm or exposure to 2mm BaCl2 (K+ channel blocker). With Ba2+ the depolarization of theV sc by 25mm K+ was reduced to one-quarter of the control change. If the Cl-permselective apical membrane resistanceR o remained unchanged, the relative basolateral membrane resistanceR i, which includes the lateral intercellular space, increased at the most by less than twofold after Ba2+. These effects in conjunction with the depolarization of theV sc by 62 mV after increasing the stromal-side K+ from 2.5 to 100mm in Cl-free Ringer's as well as the increase of the apparent ratio of membrane resistances (a=R o/Ri) from 13 to 32 are all indicative of an appreciable basolateral membrane K+ conductance. This ratio decreased significantly after exposure to either 25mm K+ or Ba2+. The decline ofR o/Ri with 25mm K+ appears to be anomalous since this decrease is not consistent with just an increase of basolateral membrane conductance by 25mm K+, but rather perhaps a larger decrease ofR o thanR iAlso an increase of lateral space resistance may offset the effect of decreasingR i with 25mm K+. In contrast,R o/Ri did transiently increase during voltage clamping of the apical membrane potential differenceV o and exposure to 25mm K+ on the stromal side. This increase and subsequent decrease ofR o/Ri supports the idea that increases in stromal K+ concentration may produce secondary membrane resistance changes. These effects onR o/Ri show that the presence of asymmetric ionic conductance properties in the apical and basolateral membranes can limit the interpretative value of this parameter. The complete substitution of Na+ withn-methyl-glucamine in Cl-free Ringer's on the stromal side hyperpolarized theV sc by 6 mV whereas 10–4 m ouabain depolarized theV sc by 7 mV. Thus the basolateral membrane contains K+, Na+ and perhaps Cl pathways in parallel with the Na/K pump component.  相似文献   

14.
P Manavalan  F A Momany 《Biopolymers》1980,19(11):1943-1973
Empirical conformational energy calculations have been carried out for N-methyl derivatives of alanine and phenylalanine dipeptide models and N-methyl-substituted active analogs of three biologically active peptides, namely thyrotropin-releasing hormone (TRH), enkephalin (ENK), and luteinizing hormone-releasing hormone (LHRH). The isoenergetic contour maps and the local dipeptide minima obtained, when the peptide bond (ω) preceding the N-methylated residue is in the trans configuration show that (1) N-methylation constricts the conformational freedom of both the ith and (i + 1)th residues; (2), the lowest energy position for both residues occurs around ? = ?135° ± 5° and ψ = 75° ± 5°, and (3) the αL conformational state is the second lowest energy state for the (i + 1)th residue, whereas for the ith residue the C5 (extended) conformation is second lowest in energy. When the peptide bond (ωi) is in the cis configuration the ith residue is energetically forbidden in the range ? = 0° to 180° and ψ = ?180° to +180°. Conformations of low energy for ωi = 0° are found to be similar to those obtained for the trans peptide bond. In all the model systems (irrespective of cis or trans), the αR conformational state is energetically very high. Significant deviations from planarity are found for the peptide bond when the amide hydrogen is replaced by a methyl group. Two low-energy conformers are found for [(N-Me)His2]TRH. These conformers differ only in the ? and ψ values at the (N-Me)His2 residue. Among the different low-energy conformers found for each of the ENK analogs [D -Ala2,(N-Me)Phe4, Met5]ENK amide and [D -Ala2,(N-Me)Met5]ENK amide, one low-energy conformer was found to be common for both analogs with respect to the side-chain orientations. The stability of the low-energy structures is discussed in the light of the activity of other analogs. Two low-energy conformers were found for [(N-Me)Leu7]LHRH. These conformations differ in the types of bend around the positions 6 and 7 of LHRH. One bend type is eliminated when the active analog [D -Ala6,(M-Me)Leu7]LHRH is considered.  相似文献   

15.
The effect of the putative K+/H+ ionophore, nigericin on the internal Na+ concentration ([Na i ]), the internal pH (pH i ), the internal Ca2+ concentration ([Ca i ]) and the baseline release of the neurotransmitter, GABA was investigated in Na+-binding benzofuran isophtalate acetoxymethyl ester (SBFIAM), 2′,7′-bis(carboxyethyl)-5(6) carboxyfluorescein acetoxymethyl ester (BCECF-AM), fura-2 and [3H]GABA loaded synaptosomes, respectively. In the presence of Na+ at a physiological concentration (147 mM), nigericin (0.5 μM) elevates [Na i ] from 20 to 50 mM, increases thepH i , 0.16 pH units, elevates four fold the [Ca i ] at expense of external Ca2+ and markedly increases (more than five fold) the release of [3H]GABA. In the absence of a Na+ concentration gradient (i.e. when the external Na+ concentration equals the [Na i ]), the same concentration (0.5 μM) of nigericin causes the opposite effect on thepH i (acidifies the synaptosomal interior), does not modify the [Na i ] and is practically unable to elevate the [Ca i ] or to increase [3H]GABA release. Only with higher concentrations of nigericin than 0.5 μM the ionophore is able to elevate the [Ca i ] and to increase the release of [3H]GABA under the conditions in which the net Na+ movements are eliminated. These results clearly show that under physiological conditions (147 mM external Na+) nigericin behaves as a Na+/H+ ionophore, and all its effects are triggered by the entrance of Na+ in exchange for H+ through the ionophore itself. Nigericin behaves as a K+/H+ ionophore in synaptosomes just when the net Na+ movements are eliminated (i.e. under conditions in which the external and the internal Na+ concentrations are equal). In summary care must be taken when using the putative K+/H+ ionophore nigericin as an experimental tool in synaptosomes, as under standard conditions (i.e. in the presence of high external Na+) nigericin behaves as a Na+/H+ ionophore.  相似文献   

16.
Summary We have studied the kinetic properties of rabbit red cell (RRBC) Na+/Na+ and Na+/H+ exchanges (EXC) in order to define whether or not both transport functions are conducted by the same molecule. The strategy has been to determine the interactions of Na+ and H+ at the internal (i) and external (o) sites for both exchanges modes. RRBC containing varying Na i and H l were prepared by nystatin and DIDS treatment of acid-loaded cells. Na+/Na+ EXC was measured as Na o -stimulated Na+ efflux and Na+/H+ EXC as Na o -stimulated H+ efflux and pH o -stimulated Na+ influx into acid-loaded cells.The activation of Na+/Na+ EXC by Na o at pH i 7.4 did not follow simple hyperbolic kinetics. Testing of different kinetic models to obtain the best fit for the experimental data indicated the presence of high (K m 2.2 mM) and low affinity (K m 108 mM) sites for a single- or two-carrier system. The activation of Na+/H+ EXC by Na o (pH i 6.6, Na i <1 mM) also showed high (K m 11 mM) and low (K m 248 mM) affinity sites. External H+ competitively inhibited Na+/Na+ EXC at the low affinity Na o site (K H 52 nM) while internally H+ were competitive inhibitors (pK 6.7) at low Na i and allosteric activators (pK 7.0) at high Na i .Na+/H+ EXC was also inhibited by acid pH o and allosterically activated by H i (pK 6.4). We also established the presence of a Na i regulatory site which activates Na+/H+ and Na+/Na+ EXC modifying the affinity for Na o of both pathways. At low Na i , Na+/Na+ EXC was inhibited by acid pH i and Na+/H+ stimulated but at high Na i , Na+/Na+ EXC was stimulated and Na+/H+ inhibited being the sum of both pathways kept constant. Both exchange modes were activated by two classes of Na o sites,cis-inhibited by external H o , allosterically modified by the binding of H+ to a H i regulatory site and regulated by Na i . These findings are consistent with Na+/Na+ EXC being a mode of operation of the Na+/H+ exchanger.Na+/H+ EXC was partially inhibited (80–100%) by dimethyl-amiloride (DMA) but basal or pH i -stimulated Na+/Na+ EXC (pH i 6.5, Na i 80 mM) was completely insensitive indicating that Na+/Na+ EXC is an amiloride-insensitive component of Na+/H+ EXC. However, Na+ and H+ efflux into Na-free media were stimulated by cell acidification and also partially (10 to 40%) inhibited by DMA: this also indicates that the Na+/H+ EXC might operate in reverse or uncoupled modes in the absence of Na+/Na+ EXC.In summary, the observed kinetic properties can be explained by a model of Na+/H+ EXC with several conformational states, H i and Na i regulatory sites and loaded/unloaded internal and external transport sites at which Na+ and H+ can compete. The occupancy of the H+ regulatory site induces a conformational change and the occupancy of the Na i regulatory site modulates the flow through both pathways so that it will conduct Na+/H+ and/or Na+/Na+ EXC depending on the ratio of internal Na+:H+.  相似文献   

17.
The influence of cytosolic pH (pHi) in controlling K+-channel activity and its interaction with cytosolic-free Ca2+ concentration ([Ca2+]i) was examined in stomatal guard cells ofVicia faba L. Intact guard cells were impaled with multibarrelled microelectrodes and K+-channel currents were recorded under voltage clamp while pHi or [Ca2+]i was monitored concurrently by fluorescence ratio photometry using the fluorescent dyes 2,7-bis (2-carboxyethyl)-5(6)-carboxyfluorescein (BCECF) and Fura-2. In 10 mM external K+ concentration, current through inward-rectifying K+ channels (IK,in) was evoked on stepping the membrane from a holding potential of –100 mV to voltages from –120 to –250 mV. Challenge with 0.3-30 mM Na+-butyrate and Na+-acetate outside imposed acid loads, lowering pHi from a mean resting value of 7.64 ± 0.03 (n = 25) to values from 7.5 to 6.7. The effect on pHi was independent of the weak acid used, and indicated a H+-buffering capacity which rose from 90 mM H+/pH unit near 7.5 to 160 mM H+/pH unit near pHi 7.0. With acid-going pHi, (IK,in) was promoted in scalar fashion, the current increasing in magnitude with the acid load, but without significant effect on the current relaxation kinetics at voltages negative of –150 mV or the voltage-dependence for channel gating. Washout of the weak acid was followed by transient rise in pHi lasting 3–5 min and was accompanied by a reduction in (IK,in) before recovery of the initial resting pHi and current amplitude. The pHi-sensitivity of the current was consistent with a single, titratable site for H+ binding with a pKa near 6.3. Acid pHi loads also affected current through the outward-rectifying K+ channels (IK,out) in a manner antiparallel to (IK,in) The effect on IK, out was also scalar, but showed an apparent pKa of 7.4 and was best accommodated by a cooperative binding of two H+. Parallel measurements showed that Na+-butyrate loads were generally without significant effect on [Ca2+]i, except when pHi was reduced to 7.0 and below. Extreme acid loads evoked reversible increases in [Ca2+]i in roughly half the cells measured, although the effect was generally delayed with respect to the time course of pHi changes and K+-channel responses. The action on [Ca2+]i coincided with a greater variability in (IK,in) stimulation evident at pHi values around 7.0 and below, and with negative displacements in the voltage-dependence of (IK,in) gating. These results distinguish the actions of pHi and [Ca2+]i in modulating (IK,in) they delimit the effect of pHi to changes in current amplitude without influence on the voltage-dependence of channel gating; and they support a role for pHi as a second messenger capable of acting in parallel with, but independent of [Ca2+]i in controlling the K+ channels.Abbreviations BCECF 2,7-bis (2-carboxyethyl)-5(6)-carboxy fluorescein - [Ca2+]i cytosolic free Ca2+ concentration - gK ensemble (steady-state) K+-channel conductance - IK,out, IK,in outward-, inward-rectifying K+ channel (current) - IN current-voltage (relation) - Mes 2-(N-morpholinolethanesulfonic acid - pHi cytosolic pH - V membrane potential  相似文献   

18.
We previously demonstrated that the progesterone‐ (P) initiated human sperm acrosome reaction (AR) was dependent on the presence of extracellular Na+ (Na+o). Moreover, Na+o depletion resulted in a decreased cytosolic pH (pHi), suggesting involvement of a Na+‐dependent pHi regulatory mechanism during the P‐initiated AR. We now report that the decreased pHi resulting from Na+o depletion is reversible and mediated by a Na+/H+ exchange (NHE) mechanism. To determine the role of an NHE in the regulation of pHi, capacitated spermatozoa were incubated in Na+‐deficient, bicarbonate/CO2‐buffered (0NaB) medium for 15–30 min, which resulted in an intracellular acidification as previously reported. These spermatozoa were then transferred to Na+‐containing, bicarbonate/CO2‐buffered (NaB) medium; Na+‐containing, Hepes‐buffered (NaH) medium; or maintained in the 0NaB medium. Included in the NaH medium was the NHE inhibitor 5‐(N‐ethyl‐N‐isopropyl) amiloride (EIPA). The steady‐state pHi was then determined by spectrofluorometric measurement of bis(carboxyethyl)‐5(6)‐carboxyfluoroscein (BCECF) fluorescence. EIPA (0.1 μM) significantly (P < 0.05) inhibited the pHi recovery produced by NaH medium. Moreover, the pHi in NaH medium was not significantly (P < 0.05) different than NaB medium. These results indicate that a Na+‐dependent, bicarbonate‐independent pHi regulatory mechanism, with a pharmacological characteristic consistent with an NHE, is present in capacitated spermatozoa. In support of the involvement of a sperm NHE, we also demonstrated specific immunoreactivity for a 100 kDa porcine sperm protein using an NHE‐1 specific monoclonal antibody. Interestingly, no significant (P = 0.79) effect was seen on the P‐initiated AR when EIPA was included in either the NaH or NaB medium. While these findings suggest that inhibition of NHE‐dependent pHi regulation in capacitated spermatozoa is not sufficient to block initiation of the AR by P, they do not preclude the possibility that an NHE mediates the regulation of capacitation or sperm motility. Mol. Reprod. Dev. 52:189–195, 1999. © 1999 Wiley‐Liss, Inc.  相似文献   

19.
Oligomers of (?)-epicatechin with 4β → 8 interflavan bonds, and as many as five monomer units, have been studied by conformational analysis and time-resolved fluorescence. The conformational analysis yields 2x?1 conformations for each oligomer with x monomer units. There are two conformations accessible at each interflavan bond. These conformations are denoted by + and ?. The dominant conformations for the trimer and higher oligomers have an interaction between the phenolic hydroxyl groups on monomers i and i+2. This interaction involves the hydroxyl group at C(5) on monomer i, and either C(13) or C(8) of monomer i+2, depending on whether the conformation of the two intervening interflavan bonds is + + or + ?, respectively. Minor contributions to the ensemble for the tetramer and pentamer are made by conformations that contain the sequence of successive interflavan bonds denoted by ?+ or ??. In ?+ the interaction between monomer units i and i + 2 involves an aliphatic hydroxyl with a phenolic hydroxyl, and there are no hydroxyl-hydroxyl interactions between units iand i + 2 in ??. The onset of a different decay law for the fluorescence when x increases from 3 to 4 may be associated with the appearance of the ?+ and ?? conformations as minor constituents in the ensemble.  相似文献   

20.
We have observed that the rate of folding of the enzymatically hydroxylated form of poly(Gly-Pro-Pro) into the triple-helical conformation is considerably higher than that of the unhydroxylated polypeptide [R. K. Chopra and V. S. Ananthanarayanan (1982) Proc. Natl. Acad. Sci. USA 79 , 7180–7184]. In this study, we examine a plausible kinetic pathway for triple-helix formation by selecting peptide models for the unhydroxylated collagen molecule, and computing their conformational energies before and after proline hydroxylation. Starting with the available data on the preferred conformations of proline- and hydroxyproline-containing peptide sequences, energy minimization was carried out on the following pairs of peptides: Gly-Ala-Pro-Gly-Ala and Gly-Ala-Hyp-Gly-Ala; Gly-Pro-Pro-Gly-Ala and Gly-Pro-Hyp-Gly-Ala; Gly-Ala-Pro-Gly-Ala-Pro and Gly-Ala-Hyp-Gly-Ala-Hyp. It was found that, with each pair of peptides, the energetically most favorable conformation (I) has an extended structure at the Gly-Ala or Gly-Pro segment and a β-bend at the Pro-Gly or Hyp-Gly segment. In the Hyp-containing peptides, this conformation is further stabilized by a (Hypi + 2)OH…OC(Glyi) hydrogen bond. Conformation I is lower in energy by about 6–13 kcal/mol of the peptide than the fully extended conformations that resemble the single collagen polypeptide chain and contain no intramolecular hydrogen bond. In contrast to the proline counterpart, the hydroxyproline-containing peptides are found capable of adopting a partially extended conformation that does not contain the β-bend but retains the (Hyp)OH…OC(Gly) hydrogen bond. The energy of this conformation is intermediate between conformation I and the fully extended conformation. The continuation of the β-bend along the chain is restricted by stereochemical constraints that are more severe in the latter two pairs of peptides than in the first pair. Such a restriction may be considered to trigger the “unbending” of the minimum energy conformation leading to its straightening into the fully extended conformation; the latter, in turn, would lead to triple-helix formation through favorable interchain interactions. We propose that the partially extended conformation in the Hyp-containing peptides could serve as a kinetic intermediate on the way to forming the fully extended conformation. Because of the (Hypi + 2)OH…OC(Glyi) hydrogen bond, this conformation would also serve to lock the trans geometry at the Gly-Ala(Pro) and Ala(Pro)-Hyp peptide bonds, thereby enhancing the rate of their helix formation. A scheme for collagen folding in proposed on the basis of these results.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号