共查询到20条相似文献,搜索用时 15 毫秒
1.
Purushotham Selvakumar Nidhi Sharma Prabhat Pratap Singh Tomar Pravindra Kumar Ashwani Kumar Sharma 《Proteins》2014,82(5):830-840
Murraya koenigii miraculin‐like protein (MKMLP) gradually precipitates below pH 7.5. Here, we explore the basis for this aggregation by identifying the aggregation‐prone regions via comparative analysis of crystal structures acquired at several pH values. The prediction of aggregation‐prone regions showed the presence of four short peptides either in beta sheets or loops on surface of the protein. These peptides were distributed in two patches far apart on the surface. Comparison of crystal structures of MKMLP, determined at 2.2 Å resolution in pH 7.0 and 4.6 in the present study and determined at 2.9 Å in pH 8.0 in an earlier reported study, reveal subtle conformational differences resulting in gradual exposure of aggregation‐prone regions. As the pH is lowered, there are alterations in ionic interactions within the protein interactions of the chain with water molecules and exposure of hydrophobic residues. The analysis of symmetry‐related molecular interfaces involving one patch revealed shortening of nonpolar intermolecular contacts as the pH decreased. In particular, a decrease in the intermolecular distance between Trp103 of the aggregation‐prone peptide WFITTG (103–108) unique to MLPs was observed. These results demonstrated that aggregation occurs due to the cumulative effect of the changes in interactions in two aggregation‐prone defined regions. Proteins 2014; 82:830–840. © 2013 Wiley Periodicals, Inc. 相似文献
2.
The coupling of the analysis of the absorption and circular dichroism (CD) spectra with that of the cholesteric mesophases induced in nematic liquid crystals indicated some interesting conformational features of bridged and nonbridged mono- and dialkylethers of optically active 2,2′-dihydroxy-1,1′-binaphthalene. Bridged derivatives are characterized by relatively small dihedral angles. Simple monoalkyl ethers are characterized by larger dihedral angles but they all assume an s-cis conformation, owing to the existence of intramolecular hydrogen bonds. Nonbridged dialkylethers prefer even larger dihedral angles and, depending on the bulkiness of the alkyl groups, the s-trans conformation can be found. Interestingly, the conformation of dialkylethers is strongly dependent on the structure of the liquid crystal solvent, because the intramolecular hydrogen bond is not possible there. © 1995 Wiley-Liss, Inc. 相似文献
3.
Alexander Genshaft Joe‐Ann S. Moser Edward L. D'Antonio Christine M. Bowman David W. Christianson 《Proteins》2013,81(6):1051-1057
The reversible acetylation of lysine to form N6‐acetyllysine in the regulation of protein function is a hallmark of epigenetics. Acetylation of the positively charged amino group of the lysine side chain generates a neutral N‐alkylacetamide moiety that serves as a molecular “switch” for the modulation of protein function and protein–protein interactions. We now report the analysis of 381 N6‐acetyllysine side chain amide conformations as found in 79 protein crystal structures and 11 protein NMR structures deposited in the Protein Data Bank (PDB) of the Research Collaboratory for Structural Bioinformatics. We find that only 74.3% of N6‐acetyllysine residues in protein crystal structures and 46.5% in protein NMR structures contain amide groups with energetically preferred trans or generously trans conformations. Surprisingly, 17.6% of N6‐acetyllysine residues in protein crystal structures and 5.3% in protein NMR structures contain amide groups with energetically unfavorable cis or generously cis conformations. Even more surprisingly, 8.1% of N6‐acetyllysine residues in protein crystal structures and 48.2% in NMR structures contain amide groups with energetically prohibitive twisted conformations that approach the transition state structure for cis‐trans isomerization. In contrast, 109 unique N‐alkylacetamide groups contained in 84 highly accurate small molecule crystal structures retrieved from the Cambridge Structural Database exclusively adopt energetically preferred trans conformations. Therefore, we conclude that cis and twisted N6‐acetyllysine amides in protein structures deposited in the PDB are erroneously modeled due to their energetically unfavorable or prohibitive conformations. Proteins 2013; © 2012 Wiley Periodicals, Inc. 相似文献
4.
锌簇家族蛋白即Zn2Cys6类锌指蛋白,是真菌中特有的一类蛋白,它们属于转录因子类,广泛参与真菌中初级和次级代谢、胁迫应答和细胞分裂等生命活动的调控。锌簇蛋白主要包括N端的DNA结合结构域、中间的调节结构域和C端的酸性区域,其中DNA结合结构域包含锌指基序并负责结合靶基因的启动子。目前已经解析了多个锌簇家族转录因子DNA结合结构域的三维结构,并发现该家族中一些蛋白能够参与调控多个基因的表达,但缺乏对其结构、动力学和功能关系的全面分析。本文综合分析了不同锌簇蛋白与DNA结合的结构特征,总结其结构域与功能的关系,指出锌簇蛋白研究的重要方向,旨在为锌簇家族蛋白的深入研究提供思路。 相似文献
5.
Julius K. Demmer Haiyan Huang Shuning Wang Ulrike Demmer Rudolf K. Thauer Ulrich Ermler 《The Journal of biological chemistry》2015,290(36):21985-21995
NADH-dependent reduced ferredoxin:NADP oxidoreductase (NfnAB) is found in the cytoplasm of various anaerobic bacteria and archaea. The enzyme reversibly catalyzes the endergonic reduction of ferredoxin with NADPH driven by the exergonic transhydrogenation from NADPH onto NAD+. Coupling is most probably accomplished via the mechanism of flavin-based electron bifurcation. To understand this process on a structural basis, we heterologously produced the NfnAB complex of Thermotoga maritima in Escherichia coli, provided kinetic evidence for its bifurcating behavior, and determined its x-ray structure in the absence and presence of NADH. The structure of NfnAB reveals an electron transfer route including the FAD (a-FAD), the [2Fe-2S] cluster of NfnA and the FAD (b-FAD), and the two [4Fe-4S] clusters of NfnB. Ferredoxin is presumably docked onto NfnB close to the [4Fe-4S] cluster distal to b-FAD. NAD(H) binds to a-FAD and NADP(H) consequently to b-FAD, which is positioned in the center of the NfnAB complex and the site of electron bifurcation. Arg187 is hydrogen-bonded to N5 and O4 of the bifurcating b-FAD and might play a key role in adjusting a low redox potential of the FADH•/FAD pair required for ferredoxin reduction. A mechanism of FAD-coupled electron bifurcation by NfnAB is proposed. 相似文献
6.
The Interplay of Oxygen Functional Groups and Folded Texture in Densified Graphene Electrodes for Compact Sodium‐Ion Capacitors 下载免费PDF全文
Jun Zhang Wei Lv Dequn Zheng Qinghua Liang Da‐Wei Wang Feiyu Kang Quan‐Hong Yang 《Liver Transplantation》2018,8(11)
Sodium‐ion capacitors (SICs) can effectively combine high energy density with high power density, and are especially appropriate for high‐power demanding applications of large‐scale stationary energy storage. Surface‐induced pseudocapacitive charge storage based on porous or nano carbon materials is regarded as the most promising candidate for SICs. Unfortunately, their ultralow packing densities severely restrict their practical applications. A novel approach toward ultrafast high‐volumetric SICs based on folded‐graphene electrodes has already been demonstrated and showed quite competitive performance. In this work, it is further proved that oxygen functional groups and folded texture are two key elements for high‐volumetric sodium storage of folded‐graphene electrodes. Through a simple and controllable method, of thermal treatment in inert atmosphere, both the oxygen functional groups and folded texture can be quantitatively manipulated to better investigate the individual contribution and mutual interplay. It is illustrated that oxygen functional groups are crucial to superior capacitive sodium storage while folded texture is not only the origin for high‐volumetric sodium storage but also beneficial for both capacitive and additional diffusion‐controlled sodium storage. Inspired by above‐mentioned conclusion, more rational designs and effective preparation of advanced structure and novel materials can be realized to better promote the development of high‐volumetric SICs. 相似文献
7.
Both monomeric and dimeric NADP+-dependent isocitrate dehydrogenase (IDH) belong to the metal-dependent beta-decarboxylating dehydrogenase family and catalyze the oxidative decarboxylation from 2R,3S-isocitrate to yield 2-oxoglutarate, CO2, and NADPH. It is important to solve the structures of IDHs from various species to correlate with its function and evolutionary significance. So far, only two crystal structures of substrate/cofactor-bound (isocitrate/NADP) NADP+-dependent monomeric IDH from Azotobacter vinelandii (AvIDH) have been solved. Herein, we report for the first time the substrate/cofactor-free structure of a monomeric NADP+-dependent IDH from Corynebacterium glutamicum (CgIDH) in the presence of Mg2+. The 1.75 A structure of CgIDH-Mg2+ showed a distinct open conformation in contrast to the closed conformation of AvIDH-isocitrate/NADP+ complexes. Fluorescence studies on CgIDH in the presence of isocitrate/or NADP+ suggest the presence of low energy barrier conformers. In CgIDH, the amino acid residues corresponding to the Escherichia coli IDH phosphorylation-loop are alpha-helical compared with the more flexible random-coil region in the E. coli protein where IDH activation is controlled by phosphorylation. This more structured region supports the idea that activation of CgIDH is not controlled by phosphorylation. Monomeric NADP+-specific IDHs have been identified from about 50 different bacterial species, such as proteobacteria, actinobacteria, and planctomycetes, whereas, dimeric NADP+-dependent IDHs are diversified in both prokaryotes and eukaryotes. We have constructed a phylogenetic tree based on amino acid sequences of all bacterial monomeric NADP+-dependent IDHs and also another one with specifically chosen species which either contains both monomeric and dimeric NADP+-dependent IDHs or have monomeric NADP+-dependent, as well as NAD+-dependent IDHs. This is done to examine evolutionary relationships. 相似文献
8.
细胞色素P450超家族4种蛋白质晶体结构比较研究 总被引:2,自引:0,他引:2
通过二级结构特征比较、三维结构比较和疏水图分析阐明了4种P450晶体结构的保守性。尽管4种晶体蛋白的氨基酸序列等同率只有19% ̄26%,但是它们都有相同的13个α螺旋和β1 ̄β4四个片层结构。以P450血红素辅基中卟啉环碳原子作为叠合点叠合4种晶体结构,由叠合结构推导出4种蛋白质基于结构的序列联配。通过计算晶体结构各二线结构Cα原子之间均方根偏差,分类类聚分析法分析,发现P450蛋白三维结构可分为 相似文献
9.
T. V. Gogitidze V. P. Demushkin E. V. Zhavoronkova V. V. Kopytov N. S. Marchenkov 《Russian Journal of Bioorganic Chemistry》2006,32(3):240-247
The method of conformational analysis was applied to the spatial structures of peptide analogues of phytochelatins and some fragments of metallothioneins: (Cys-Gly)3, (Cys-Gly)3-Asp, (Cys-Gly)3-Glu, (Cys-βAla)3, (Cys-γGlu)3, and (Cys-Gly-Gly)3. All the possible low-energy conformations of the molecules were revealed and the role of intra-and interresidual interactions in the formation of their spatial structures was determined. A different tendency of the molecules under study for acceptance of conformations favorable for binding bismuth ions was shown. Low-energy structures providing an optimum binding of bismuth ion were shown to be most frequent for (Cys-βAla)3 peptide. Among the analogues of peptide fragments of the metallothioneins, lacking in natural peptides, low-energy pentapeptide CCXXC fragments (where X = Gln, Asn, Phe, Tyr, or Gly) were revealed. In the α-helical conformations of these pentapeptides, the distance between the sulfur atoms corresponds to that in Bi2S3. 相似文献
10.
Fusidic acid (FA) is a steroid antibiotic commonly used against Gram positive bacterial infections. It inhibits protein synthesis by stalling elongation factor G (EF-G) on the ribosome after translocation. A significant number of the mutations conferring strong FA resistance have been mapped at the interfaces between domains G, III and V of EF-G. However, direct information on how such mutations affect the structure has hitherto not been available. Here we present the crystal structures of two mutants of Thermus thermophilus EF-G, G16V and T84A, which exhibit FA hypersensitivity and resistance in vitro, respectively. These mutants also have higher and lower affinity for GTP respectively than wild-type EF-G. The mutations cause significant conformational changes in the switch II loop that have opposite effects on the position of a key residue, Phe90, which undergoes large conformational changes. This correlates with the importance of Phe90 in FA sensitivity reported in previous studies. These structures substantiate the importance of the domain G/domain III/domain V interfaces as a key component of the FA binding site. The mutations also cause subtle changes in the environment of the "P-loop lysine", Lys25. This led us to examine the conformation of the equivalent residue in all structures of translational GTPases, which revealed that EF-G and eEF2 form a group separate from the others and suggested that the role of Lys25 may be different in the two groups. 相似文献
11.
The three-dimensional organization and conformational properties of NmU-8 neuropeptide and its modified analogs have been studied by modeling and compared with the available data on their biological activity. The effect of single amino acids substitutions on conformational states of the native neuropeptide is discussed. The low-energy conformations responsible for its contractile activity have been revealed. 相似文献
12.
Solution structure of inhibitor-free human metalloelastase (MMP-12) indicates an internal conformational adjustment 总被引:1,自引:0,他引:1
Bhaskaran R Palmier MO Bagegni NA Liang X Van Doren SR 《Journal of molecular biology》2007,374(5):1333-1344
Macrophage metalloelastase or matrix metalloproteinase-12 (MMP-12) appears to exacerbate atherosclerosis, emphysema, aortic aneurysm, rheumatoid arthritis, and inflammatory bowel disease. An inactivating E219A mutation, validated by crystallography and NMR spectra, prevents autolysis of MMP-12 and allows us to determine its NMR structure without an inhibitor. The structural ensemble of the catalytic domain without an inhibitor is based on 2813 nuclear Overhauser effects (NOEs) and has an average RMSD to the mean structure of 0.25 Å for the backbone and 0.61 Å for all heavy atoms for residues Trp109-Gly263. Compared to crystal structures of MMP-12, helix B (hB) at the active site is unexpectedly more deeply recessed under the β-sheet. This opens a pocket between hB and β-strand IV in the active-site cleft. Both hB and an internal cavity are shifted toward β-strand I, β-strand III, and helix A on the back side of the protease. About 25 internal NOE contacts distinguish the inhibitor-free solution structure and indicate hB's greater depth and proximity to the sheet and helix A. Line broadening and multiplicity of amide proton NMR peaks from hB are consistent with hB undergoing a slow conformational exchange among subtly different environments. Inhibitor-binding-induced perturbations of the NMR spectra of MMP-1 and MMP-3 map to similar locations across MMP-12 and encompass the internal conformational adjustments. Evolutionary trace analysis suggests a functionally important network of residues that encompasses most of the locations adjusting in conformation, including 18 residues with NOE contacts unique to inhibitor-free MMP-12. The conformational change, sequence analysis, and inhibitor perturbations of NMR spectra agree on the network they identify between structural scaffold and the active site of MMPs. 相似文献
13.
Structures of an unliganded neurophysin and its vasopressin complex: implications for binding and allosteric mechanisms 下载免费PDF全文
Wu CK Hu B Rose JP Liu ZJ Nguyen TL Zheng C Breslow E Wang BC 《Protein science : a publication of the Protein Society》2001,10(9):1869-1880
The structures of des 1-6 bovine neurophysin-II in the unliganded state and as its complex with lysine vasopressin were determined crystallographically at resolutions of 2.4 A and 2.3 A, respectively. The structure of the protein component of the vasopressin complex was, with some local differences, similar to that determined earlier of the full-length protein complexed with oxytocin, but relatively large differences, probably intrinsic to the hormones, were observed between the structures of bound oxytocin and bound vasopressin at Gln 4. The structure of the unliganded protein is the first structure of an unliganded neurophysin. Comparison with the liganded state indicated significant binding-induced conformational changes that were the largest in the loop region comprising residues 50-58 and in the 7-10 region. A subtle binding-induced tightening of the subunit interface of the dimer also was shown, consistent with a role for interface changes in neurophysin allosteric mechanism, but one that is probably not predominant. Interface changes are suggested to be communicated from the binding site through the strands of beta-sheet that connect these two regions, in part with mediation by Gly 23. Comparison of unliganded and liganded states additionally reveals that the binding site for the hormone alpha-amino group is largely preformed and accessible in the unliganded state, suggesting that it represents the initial site of hormone protein recognition. The potential molecular basis for its thermodynamic contribution to binding is discussed. 相似文献
14.
Leung AK Lucile White E Ross LJ Reynolds RC DeVito JA Borhani DW 《Journal of molecular biology》2004,342(3):953-970
We report three crystal structures of the Mycobacterium tuberculosis cell division protein FtsZ, as the citrate, GDP, and GTPgammaS complexes, determined at 1.89, 2.60, and 2.08A resolution. MtbFtsZ crystallized as a tight, laterally oriented dimer distinct from the longitudinal polymer observed for alphabeta-tubulin. Mutational data on Escherichia coli FtsZ suggest that this dimer interface is important for proper protofilament and "Z-ring" assembly and function. An alpha-to-beta secondary structure conformational switch at the dimer interface is spatially analogous to, and has many of the hallmarks of, the Switch I conformational changes exhibited by G-proteins upon activation. The presence of a gamma-phosphate in the FtsZ active site modulates the conformation of the "tubulin" loop T3 (spatially analogous to the G-protein Switch II); T3 switching upon gamma-phosphate ligation is directly coupled to the alpha-to-beta switch by steric overlap. The dual conformational switches observed here for the first time in an FtsZ link GTP binding and hydrolysis to FtsZ (and tubulin) lateral assembly and Z-ring contraction, and they are suggestive of an underappreciated functional analogy between FtsZ, tubulin and G-proteins. 相似文献
15.
16.
Published results on the immunochemical reactivities of fibrinogen and fibrinogen fragments with fibrinogen-elicited antibodies that had been fractionated on the basis of preferential interaction with A [Nagy, J. A., Meinwald, Y. C., and Scheraga, H. A. (1982),Biochemistry
21, 1794–1806] and B [Nagy, J. A., Meinwald, Y. C., and Scheraga, H. A. (1985)Biochemistry
24, 882–887] peptides of this bivalent antigen have been reinterpreted. First, the multivalent counterpart of the Scatchard analysis has been used to determine the intrinsic association constant for the interaction of antibody with [125I]fibrinogen, the radiolabeled ligand used in subsequent competitive binding studies. Second, the corresponding affinity constant for native fibrinogen has been evaluated from the relevant competitive radioimmunoassays by means of a quantitative analysis that takes into account the bivalency of both the radiolabeled and native fibrinogen molecules. Finally, affinity constants for the interactions of various fibrinogen fragments with antibody are also obtained by the procedure, and their magnitudes rationalized in terms of the equilibrium coexistence of unreactive (disordered) and native (functional) states of the fibrinogen peptides. 相似文献
17.
Ettore Benedetti Michele Saviano Rosa Iacovino Carlo Pedone Antonello Santini Marco Crisma Fernando Formaggio Claudio Toniolo Quirinus B. Broxterman Johan Kamphuis 《Biopolymers》1998,46(7):433-443
The crystal-state preferred conformations of six Nα-blocked pentapeptide esters, each containing four helicogenic, achiral α-aminoisobutyric acid (Aib) residues followed by one chiral L -valine (L -Val) or Cα-methyl-L -valine [(αMe)Val] residue at the C-terminus, have been assessed by x-ray diffraction analysis. In all of the compounds the (Aib)4 sequence is folded in a regular 310-helical conformation. In the four pentapeptides characterized by the L -(αMe)Val residue two conformationally distinct molecules occur in the asymmetric unit. Conversely, only one molecule is observed in the asymmetric unit of two pentapeptides with the C-terminal L -Val residue. In the L -Val based peptides the helical screw sense of the (Aib)4 sequence is right-handed, whereas in the L (αMe)Val analogues both right- and left-handed helical screw senses concomitantly occur in the two crystallographically independent molecules. © 1998 John Wiley & Sons, Inc. Biopoly 46: 433–443, 1998 相似文献
18.
Lipoxygenases (LOXs) are a family of nonheme iron dioxygenases that catalyze the regioselective and stereospecific hydroperoxidation of polyunsaturated fatty acids, and are involved in a variety of inflammatory diseases and cancers. The crystal structure of rabbit 15S-LOX1 that was reported by Gillmor et al. in 1997 has played key roles for understanding the properties of mammalian LOXs. In this structure, three segments, including 12 residues in the superficial alpha2 helix, are absent and have usually been described as "disordered." By reinterpreting the original crystallographic data we were able to elucidate two different conformations of the molecule, both having well ordered alpha2 helices. Surprisingly, one molecule contained an inhibitor and the other did not, thereby adopting a closed and an open form, respectively. They differed in the conformation of the segments that were absent in the original structure, which is highlighted by a 12 A movement of alpha2. Consequently, they showed a difference in the size and shape of the substrate-binding cavity. The new model should provide new insight into the catalytic mechanism involving induced conformational change of the binding pocket. It may also be helpful for the structure-based design of LOX inhibitors. 相似文献
19.
Folded conformations of antigenic peptides from riboflavin carrier protein in aqueous hexafluoroacetone. 下载免费PDF全文
S. Bhattacharjya S. K. Awasthi P. R. Adiga P. Balaram 《Protein science : a publication of the Protein Society》1998,7(1):123-131
Riboflavin carrier protein (RCP) plays an important role in transporting vitamin B2 across placental membranes, a process critical for maintenance of pregnancy. Association of the vitamin with the carrier protein ensures optimal bioavailability, facilitating transport. The conformations of three antigenic peptide fragments encompassing residues 4-23 (N21), 170-186 (R18), and 200-219 (Y21) from RCP, which have earlier been studied as potential leads toward a synthetic peptide-based contraceptive vaccine, have been investigated using CD and NMR spectroscopy in aqueous solution and in the presence of the structure-stabilizing cosolvent hexafluoroacetone trihydrate (HFA). In aqueous solution at pH 3.0, all three peptides are largely unstructured, with limited helical population for the peptides R18 and Y21. The percentage of helicity estimated from CD experiments is 10% for both the peptides. A dramatic structural transition from an unstructured state to a helical state is achieved with addition of HFA, as evidenced by intensification of CD bands at 222 nm and 208 nm for Y21 and R18. The structural transition is completed at 50% HFA (v/v) with 40% and 35% helicity for R18 and Y21, respectively. No structural change is evident for the peptide N21, even in the presence of HFA. NMR analysis of the three peptides in 50% HFA confirms a helical conformation of R18 and Y21, as is evident from upfield shifts of CalphaH resonances and the presence of many sequential NH/NH NOEs with many medium-range NOEs. The helical conformation is well established at the center of the sequence, with substantial fraying at the termini for both the peptides. An extended conformation is suggested for the N21 peptide from NMR studies. The helical region of both the peptides (R18, Y21) comprises the core epitopic sequence recognized by the respective monoclonal antibodies. These results shed some light on the issue of structure and folding of antigenic peptides. 相似文献
20.
《MABS-AUSTIN》2013,5(6):1077-1088
ABSTRACTWe analyzed pairs of protein-binding, peptide-binding and hapten-binding antibodies crystallized as complex and in the absence of the antigen with and without conformational differences upon binding in the complementarity-determining region (CDR)-H3 loop. Here, we introduce a molecular dynamics-based approach to capture a diverse conformational ensemble of the CDR-H3 loop in solution. The results clearly indicate that the inherently flexible CDR-H3 loop indeed needs to be characterized as a conformational ensemble. The conformational changes of the CDR-H3 loop in all antibodies investigated follow the paradigm of conformation selection, because we observe the experimentally determined binding competent conformation without the presence of the antigen within the ensemble of pre-existing conformational states in solution before binding. We also demonstrate for several examples that the conformation observed in the antibody crystal structure without antigen present is actually selected to bind the carboxyterminal tail region of the antigen-binding fragment (Fab). Thus, special care must be taken when characterizing antibody CDR-H3 loops by Fab X-ray structures, and the possibility that pre-existing conformations are present should always be considered. 相似文献