首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The voltage-dependent anion channel (VDAC) is the most abundant protein in the mitochondrial outer membrane (MOM). Due to its localization, VDAC is involved in a wide range of processes, such as passage of ATP out of mitochondria, and particularly plays a central role in apoptosis. Importantly, the assembly of VDAC provides interaction with a wide range of proteins, some implying oligomerization. However, many questions remain as to the VDAC structure, its supramolecular assembly, packing density, and oligomerization in the MOM is unknown. Here we report the so far highest resolution view of VDAC and its native supramolecular assembly. We have studied yeast MOM by high-resolution atomic force microscopy (AFM) in physiological buffer and found VDAC in two distinct types of membrane domains. We found regions where VDAC was packed at high density (approximately 80%), rendering the membrane a voltage-dependent molecular sieve. In other domains, VDAC has a low surface density (approximately 20%) and the pore assembly ranges from single molecules to groups of up to 20. We assume that these groups are mobile in the lipid bilayer and allow association and dissociation with the large assemblies. VDAC has no preferred oligomeric state and no long-range order was observed in densely packed domains. High-resolution topographs show an eye-shaped VDAC with 3.8 nm x 2.7 nm pore dimensions. Based on the observed VDAC structure and the pair correlation function (PCF) analysis of the domain architectures, we propose a simple model that could explain the phase behavior of VDAC, and illustrates the sensitivity of the molecular organization to conditions in the cell, and the possibility for modulation of its assembly. The implication of VDAC in cytochrome c release from the mitochondria during cell apoptosis has made it a target in cancer research.  相似文献   

2.
We investigated supramolecular assemblies of various hydrophobic helical peptides. The assemblies were formed at the air/water interface or in aqueous medium. The hexadecapeptide, Boc-(Ala-Aib)8-OMe (BA16M), was reported to take α-helical structure by X-ray analysis. Several derivatives were prepared, which have the repeating sequence of Ala-Aib, Lys(Z)-Aib or Leu-Aib, or have the terminal chemically modified. CD spectra of the peptides indicated helical conformation in ethanol solution. The surface pressure-area isotherms of the peptide monolayers showed an inflection at the surface area corresponding to the cross section along the helix axis, and the monolayers were collapsed by further compression. All the helical peptides oriented their helix axis parallel to the air/water interface on the basis of the results of transmission IR spectra and RAS of the monolayers transferred onto substrates.A small mound was observed in the isotherm of BA16M and other derivatives, which was ascribed to the phase transition from the liquid state to the solid state. One mol% of FITC-labeled peptide was mixed into the monolayers to visualize the phase separation of the solid and liquid states at the surface pressure of the coexisting region. Various shapes of the dark domain were observed at the top of the mound in the isotherms by fluorescence microscopy. The helical peptides formed two-dimensional crystals at the air/water interface when they were compressed to the solid state.An amino-terminated helical peptide, HA16B, was suspended in an aqueous medium by a sonication method and transparent dispersion was obtained. The dynamic light scattering measurement of the dispersion revealed the particle size of 75 nm with a narrow size distribution. The molecular assembly of the helical peptide in water was called “Peptosome”, because it takes a vesicular structure.  相似文献   

3.
Molecular architecture of basement membranes   总被引:49,自引:0,他引:49  
Basement membranes are specialized extracellular matrices with support, sieving, and cell regulatory functions. The molecular architectures of these matrices are created through specific binding interactions between unique glycoprotein and proteoglycan protomers. Type IV collagen chains, using NH2-terminal, COOH-terminal, and lateral association, form a covalently stabilized polygonal framework. Laminin, a four-armed glycoprotein, self-assembles through terminal-domain interactions to form a second polymer network, Entactin/nidogen, a dumbbell-shaped sulfated glycoprotein, binds laminin near its center and interacts with type IV collagen, bridging the two. A large heparan sulfate proteoglycan, important for charge-dependent molecular sieving, is firmly anchored in the basement membrane and can bind itself through a core-protein interaction to form dimers and oligomers and bind laminin and type IV collagen through its glycosaminoglycan chains. Heterogeneity of structure and function occur in different tissues, in development, and in response to different physiological needs. The molecular architecture of these matrices may be regulated during or after primary assembly through variations in compositions, isoform substitutions, and the modifying influence of exogenous macromolecules such as heparin and heparan sulfate.  相似文献   

4.
The relationship between primary sequence and collagen triple-helix formation is relatively well characterized, while higher levels of structural assembly from these sequences is poorly understood. To address this gap, a new collagen-like triblock peptide design was used to study the relationship between amino acid sequence and supramolecular assembly. Four collagen-like peptides with the sequence (Glu)(5)(Gly-Xaa-Hyp-Gly-Pro-Hyp)(6)(Glu)(5) and corresponding to Xaa = alanine, proline, serine, or valine, and an analogous peptide without the glutamic acid end blocks, were solubilized in water at high concentrations (20-150 mg/mL) and analyzed in optical polarizing microscopy and transmission electron microscopy. Some of the peptides self-assembled into supramolecular structures, the nature of which was determined by the core collagen-like sequence. The globular end blocks appeared necessary for these short triple-helix-forming peptides to spontaneously organize into supramolecular structures in solution and also provided enhanced thermal stability based on CD analysis. The results indicate a strong dependence of the peptide triblock assembly behavior on the identity of the guest residue Xaa; nematic order when Xaa was valine, no organization when Xaa was serine, and banded spherulites displaying a cholesteric-like twist when Xaa was proline or alanine. According to these results, the identity of the amino acid in position Xaa of the triplet Gly-Xaa-Yaa dramatically determined the type of supramolecular assembly formed by short triple helices based on collagen-triblock like sequences. Moreover, the structural organization observed for these collagen-triblock peptides was analogous to some assemblies observed for native collagen in vivo and in vitro. The amino acid sequence in the native collagen proteins may therefore be a direct determinant of the different supramolecular architectures found in connective tissues.  相似文献   

5.
The heterotrimeric laminins are a defining component of all basement membranes and self-assemble into a cell-associated network. The three short arms of the cross-shaped laminin molecule form the network nodes, with a strict requirement for one α, one β and one γ arm. The globular domain at the end of the long arm binds to cellular receptors, including integrins, α-dystroglycan, heparan sulfates and sulfated glycolipids. Collateral anchorage of the laminin network is provided by the proteoglycans perlecan and agrin. A second network is then formed by type IV collagen, which interacts with the laminin network through the heparan sulfate chains of perlecan and agrin and additional linkage by nidogen. This maturation of basement membranes becomes essential at later stages of embryo development.  相似文献   

6.
7.
Type IV collagen, which is present in all metazoan, exists as a family of six homologous alpha(IV) chains, alpha1-alpha6, in mammals. The six chains assemble into three different triple helical protomers and self-associate as three distinct networks. The network underlies all epithelia as a component of basement membranes, which play important roles in cell adhesion, growth, differentiation, tissue repair and molecular ultrafiltration. The specificity of both protomer and network assembly is governed by amino acid sequences of the C-terminal noncollagenous (NC1) domain of each chain. In this study, the structural basis for protomer and network assembly was investigated by determining the crystal structure of the ubiquitous [(alpha1)(2).alpha2](2) NC1 hexamer of bovine lens capsule basement membrane at 2.0 A resolution. The NC1 monomer folds into a novel tertiary structure. The (alpha1)(2).alpha2 trimer is organized through the unique three-dimensional domain swapping interactions. The differences in the primary sequences of the hypervariable region manifest in different secondary structures, which determine the chain specificity at the monomer-monomer interfaces. The trimer-trimer interface is stabilized by the extensive hydrophobic and hydrophilic interactions without a need for disulfide cross-linking.  相似文献   

8.
Structure and function of basement membranes   总被引:2,自引:0,他引:2  
Basement membranes (BMs) are present in every tissue of the human body. All epithelium and endothelium is in direct association with BMs. BMs are a composite of several large glycoproteins and form an organized scaffold to provide structural support to the tissue and also offer functional input to modulate cellular function. While collagen I is the most abundant protein in the human body, type IV collagen is the most abundant protein in BMs. Matrigel is commonly used as surrogate for BMs in many experiments, but this is a tumor-derived BM-like material and does not contain all of the components that natural BMs possess. The structure of BMs and their functional role in tissues are unique and unlike any other class of proteins in the human body. Increasing evidence suggests that BMs are unique signal input devices that likely fine tune cellular function. Additionally, the resulting endothelial and epithelial heterogeneity in human body is a direct contribution of cell-matrix interaction facilitated by the diverse compositions of BMs.  相似文献   

9.
Basement membranes are sheets of extracellular matrix that separate epithelia from connective tissues and outline muscle fibers and the endothelial lining of blood vessels. A major function of basement membranes is to establish and maintain stable tissue borders, exemplified by frequent vascular breaks and a disrupted pial and retinal surface in mice with mutations or deletions of basement membrane proteins. To directly measure the biomechanical properties of basement membranes, chick and mouse inner limiting membranes were examined by atomic force microscopy. The inner limiting membrane is located at the retinal-vitreal junction and its weakening due to basement membrane protein mutations leads to inner limiting membrane rupture and the invasion of retinal cells into the vitreous. Transmission electron microscopy and western blotting has shown that the inner limiting membrane has an ultrastructure and a protein composition typical for most other basement membranes and, thus, provides a suitable model for determining their biophysical properties. Atomic force microscopy measurements of native chick basement membranes revealed an increase in thickness from 137 nm at embryonic day 4 to 402 nm at embryonic day 9, several times thicker that previously determined by transmission electron microscopy. The change in basement membrane thickness was accompanied by a large increase in apparent Young's modulus from 0.95 MPa to 3.30 MPa. The apparent Young's modulus of the neonatal and adult mouse retinal basement membranes was in a similar range, with 3.81 MPa versus 4.07 MPa, respectively. These results revealed that native basement membranes are much thicker than previously determined. Their high mechanical strength explains why basement membranes are essential in stabilizing blood vessels, muscle fibers and the pial border of the central nervous system.  相似文献   

10.
Laminin--a glycoprotein from basement membranes.   总被引:194,自引:0,他引:194  
We have isolated a large noncollagenous glycoprotein, laminin, from a mouse tumor that produces basement membrane. The protein consists of at least two polypeptide chains (Mr = 220,000 and Mr = 440,000) joined to each other by disulfide bonds. Laminin and type IV collagen are major constituents of the tumor. Laminin is distinctly different from fibronectin, another component of basement membranes, in amino acid composition and immunological reactivity. Pepsin digestion of laminin releases a large, cystine-rich fragment which retains most of the antigenicity of the original protein. Immunological studies using purified antibody against laminin show that it is produced by a variety of cultured cells. In addition, these antibodies react with the basement membranes of normal tissues, suggesting that this protein or an immunologically related protein is a constituent of the basement membranes of these tissues.  相似文献   

11.
Laminin: the crux of basement membrane assembly   总被引:7,自引:0,他引:7  
Laminin-1 is emerging as the key molecule in early embryonic basement membrane assembly. Here we review recent insights into its functions gained from the synergistic application of genetic and structural methods.  相似文献   

12.
Supramolecular assembly and acid resistance of Helicobacter pylori urease   总被引:5,自引:0,他引:5  
Helicobacter pylori, an etiologic agent in a variety of gastroduodenal diseases, produces a large amount of urease, which is believed to neutralize gastric acid by producing ammonia for the survival of the bacteria. Up to 30% of the enzyme associates with the surface of intact cells upon lysis of neighboring bacteria. The role of the enzyme at the extracellular location has been a subject of controversy because the purified enzyme is irreversibly inactivated below pH 5. We have determined the crystal structure of H. pylori urease, which has a 1.1 MDa spherical assembly of 12 catalytic units with an outer diameter of approximately 160 A. Under physiologically relevant conditions, the activity of the enzyme remains unaffected down to pH 3. Activity assays under different conditions indicated that the cluster of the 12 active sites on the supramolecular assembly may be critical for the survival of the enzyme at low pH. The structure provides a novel example of a molecular assembly adapted for acid resistance that, together with the low Km value of the enzyme, is likely to enable the organism to inhabit the hostile niche.  相似文献   

13.
The ultrastructure of basement membranes has a homogeneous appearance. The enormous cell biological importance of basement membranes and their components for cell proliferation, migration and differentiation implies that their composition is more complex than their structure suggests. To elucidate the molecular composition of basement membranes in vivo, we optimised immunogold histochemistry to allow the determination of the molecular arrangement of matrix molecules. Basically, we apply a mild fixation and embed the tissues in the hydrophilic LR-Gold. This preserves the basement membrane with a quality similar to freeze substitution. The application of two antibodies directed toward the C- and N-terminal ends of a molecule and coupled to gold particles of different sizes allows determination of the orientation of a molecule within the basement membrane. We were able to demonstrate that the molecular orientation of the laminin-1 molecule changes in the basement membrane according to cell biological needs. We also showed that ultrastructurally identical basement membranes like the ones of the proximal and distal tubules of the kidney have a differing molecular arrangement. Integrin alpha7 influences the molecular composition of the basement membranes at the myotendinous junction. With the help of double labelling at the ultrastructural level we could show that nidogen-1 is co-localised with laminin-1 and only found in fully developed, mature basement membranes. In general, laminin-1, nidogen-1 and collagen type IV are localised over the entire width of basement membranes, with laminin-1 and nidogen-1 co-localised, in accordance with the current basement membrane models. Incidentally, our investigations warn us, that not every matrix protein found at the light microscopic level as a linear staining pattern underneath an epithelium (basement membrane zone) is a real basement membrane component when investigated at the ultrastructural level. Instead, one and the same molecule, e.g. endostatin, can be a basement membrane component in one organ and a matrix molecule in another.  相似文献   

14.
Structural components of epithelial and endothelial basement membranes   总被引:17,自引:0,他引:17  
  相似文献   

15.
16.
17.
Structure, composition, and assembly of basement membrane   总被引:3,自引:0,他引:3  
Basement membranes are thin layers of matrix separating parenchymal cells from connective tissue. Their ultrastructure consists of a three-dimensional network of irregular, fuzzy strands referred to as "cords"; the cord thickness averages 3-4 nm. Immunostaining reveals that the cords are composed of at least five substances: collagen IV, laminin, heparan sulfate proteoglycan, entactin, and fibronectin. Collagen IV has been identified as a filament of variable thickness persisting after the other components have been removed by plasmin digestion or salt extraction. Heparan sulfate proteoglycan appears as sets of two parallel lines, referred to as "double tracks," which run at the surface of the cords. Laminin is detected in the cords as diffuse material within which thin wavy lines may be distinguished. The entactin and fibronectin present within the cords have not been identified as visible structures. The ability of laminin, heparan sulfate proteoglycan, fibronectin, and entactin to bind to collagen IV has been demonstrated by visualization with rotary shadowing and/or biochemical studies. Incubation of three of these substances-collagen IV, laminin (with small entactin contamination), and proteoglycan-at 35 degrees C for 1 hr resulted in a precipitate that was sectioned for electron microscopic examination and processed for gold immunolabeling for each of the three incubated substances. Three structures are present in the precipitate: 1) a lacework, exclusively composed of heparan sulfate proteoglycan in the form of two parallel lines, similar to double tracks; 2) semi-solid, irregular accumulations, composed of the three initial substances distributed on a cord network; and 3) convoluted sheets, which are also composed of the three initial substances distributed on a cord network but which, in addition, have the uniform appearance and thickness of the lamina densa of basement membrane. Hence these sheets are closely similar to the main component of authentic basement membranes.  相似文献   

18.
Tubulin in high-speed supernatants of brain undergoes an alternate form of polymerization into structures that resemble membranes rather than microtubules. The reaction required elevated temperature (37°C) and was prevented by 1mM CaCl2 or 10?4 M maytansine. The membraneous material was composed of tubulin (80%) and microtubule-associated proteins (8%) and contained phospholipids. The tubulin was identified on the basis of comigration in two-dimensional gel electrophoresis and colchicine-binding activity.  相似文献   

19.
Summary The following basement membranes (BMs) from representative species of the main vertebrate classes were studied by the Picrosirius-polarization method: lens capsule, Reichert's membrane and glomerular BMs. A distinct birefringence was consistently observed in all BMs from all species studied by this method. The results reported provide a strong evidence for collagen macromolecular orientation in BMs. Heparitin sulphate was the only glycosaminoglycan detected in dog lens capsules.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号