首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The alkaline and neutral (or nondenaturing) filter elution assays are popular methods for the measurement of DNA strand breakage and its repair in eukaryotic cells. In both alkaline and neutral elution, it is recommended practice to wash the filter support after removal of the filter and to analyze the DNA recovered by this procedure together with that remaining on the filter as uneluted DNA, although it is not obvious why the DNA in the filter support wash should be so interpreted. We have observed that the sum of the DNA on the filter and that recovered in the filter support wash is approximately constant when the pH of the alkaline filter elution assay for total strand breaks is increased from 12.1 to 12.6, whereas the fraction on the filter itself is markedly smaller at the higher pH. This behavior characterized DNA elution from undamaged cells, as well as from cells treated with various DNA-damaging agents. These findings are consistent with the "tug-of-war" mechanism that has been proposed for alkaline elution, but are inconsistent with the simplest mechanism of the "sieve" class. In the neutral filter elution assay for double-strand breaks, by contrast, the distribution of DNA between the filter and the filter support wash is pH-independent. This suggests that single- and double-stranded DNA segments traverse a filter by different physical mechanisms. Our observations underscore the importance of carrying out the filter support wash and the analysis of the DNA it contains as uneluted DNA in alkaline elution, while indicating that a different analysis of this DNA might be appropriate for neutral elution.  相似文献   

2.
The major mammalian exonuclease TREX1 has been proposed to play a role in DNA repair and drug resistance. However, no cellular evidence substantiates this claim. Recent reports indicate TREX1's involvement in autoimmunity. To further understand its role, we studied TREX1 expression and functionality in anticancer drug-treated tumor cells. We report that the expression and localization of TREX1 are cell-type dependent. Camptothecin and other DNA damaging agents induced both TREX1 protein and its mRNA in a dose- and time-dependent manner. Using a TREX1-inducible cell line, we performed clonogenic assays and found no change in sensitivity of the cells to the agents upon TREX1 induction, suggesting that TREX1 may not play a role in DNA repair or drug sensitivity. Nevertheless, TREX1 serves as a key enzyme in the degradation of DNA from dying cells leading to less cellular DNA. Ubiquitously expressed in normal tissues, TREX1 may act in degrading DNA in all cell types undergoing a dying process before phagocytosis occurs.  相似文献   

3.
We used the filter elution technique to study DNA single- and double-strand scission under denaturing alkaline and nondenaturing conditions in X-irradiated 9L rat brain tumor cells. The amount of DNA damage determined by the alkaline elution assay was similar for different lysis conditions (sodium dodecyl sulfate and sarkosyl) and DNA fluorometric assays (Hoechst 33258 and 3,5-diaminobenzoic acid dyes). Therefore, results of the filter elution assay obtained with the various methods can be compared directly. Using these assays, we found that there was no significant change in the susceptibility to X-ray-induced DNA damage, measured either as single- or double-strand breaks, in 9L cells depleted of polyamines by treatment with alpha-difluoromethylornithine. Results obtained by filter elution are different from results obtained with viscoelastometry, which suggests that the two methods may resolve the effects of changes in DNA structure in different ways.  相似文献   

4.
Fanconi anemia (FA) is one of several genetic diseases with characteristic cellular hypersensitivity to DNA crosslinking agents which suggest that FA proteins may function as part of DNA repair processes. At the clinical level, FA is characterized by bone marrow failure that affects children at an early age. The clinical phenotype is heterogeneous and includes various congenital malformations as well as cancer predisposition. FA patients are distributed into eight complementation groups suggesting a complex molecular pathway. Three of the eight possible FA genes have been cloned, although their function(s) have not been identified. FA cells are highly sensitive to DNA crosslinking agents (mitomycin C (MMC) and diepoxybutane), with some variability between cell lines. Sensitivity to monofunctional alkylating agents has been reported in some cases, although these studies were performed with genetically unclassified FA cells. To further analyse and characterize the newly identified FA complementation groups, we tested their sensitivity to UV radiation, monofunctional and bifunctional alkylating agents and to the X-ray mimetic drug bleomycin. We found that FA complementation groups D to H show increased sensitivity to the X-ray mimetic drug bleomycin. Furthermore, the single known FA-H cell line shows increased sensitivity to ethylethane sulfonate (EMS), methylmethane sulfonate (MMS) in addition to the characteristic sensitivity to crosslinking agents, suggesting a broader spectrum of drug sensitivities in FA cells.  相似文献   

5.
The effects of the sulfhydryl-containing compound dithiothreitol (DTT) on radiation-induced DNA damage have been studied using two different assays: DNA unwinding hydroxyapatite chromatography and alkaline filter elution. DNA damage as measured by both assays for cells irradiated in air shows drug concentration-dependent radioprotection reaching high levels (dose reduction factor, DRF = 3) at high DTT concentrations. The pattern and degree of protection against DNA damage are the same as shown previously for cell survival. However, when cells are irradiated in hypoxia, DNA damage as measured by the unwinding technique is decreased less by low DTT concentrations than is survival, but DNA damage is decreased to a much greater extent (DRF = 3) at high concentrations of DTT (compared to DRF = 1.5 for cell survival). DNA damage as measured by the alkaline elution assay after hypoxic irradiation is decreased to a much greater extent at all concentrations of DTT with DRF = 1.6 at 1 mM and increasing to DRF = 4.5 at high levels of DTT. These results are discussed in terms of the different types of DNA damage produced in cells irradiated in air versus hypoxia and the differences in types of damage measured by the two different DNA assays and cell survival.  相似文献   

6.
We have critically evaluated various modifications of the alkaline elution methodology that were required to adapt the method for measuring DNA damage in cells from animal tissues treated in vivo. These modifications involved the use of a fluorometric assay for the eluted DNA using the dye Hoechst 33258, which in turn required the use of a different combination of filter and lysis conditions than those used in conventional assays. This protocol was compared with the conventional protocols by examining the DNA damage produced in cultured Chinese hamster ovary cells after treatment with three agents (gamma-rays, cis-dichlorodiammineplatinum (DDP) and trans-DDP) that differ widely in the type and repairability of the DNA lesions that they induce. For both gamma-rays and trans-DDP, the results obtained by the various protocols were equivalent with respect to the amount, type, and rate of repair of the DNA damage produced. On the other hand, for cis-DDP, where the repair time for DNA crosslinks was significantly long relative to the cell-cycle time, DNA replication appeared to be a potentially complicating factor in the measurement of crosslink repair. However, even after treatment of rapidly dividing cultured cells, where any discrepancy between the radioactivity and Hoechst assays due to DNA replication should be maximal, the resulting difference in the amount of repair measured using the two assays was relatively small. Finally, in experiments using cis-DDP and trans-DDP, the data suggested that when polycarbonate and polyvinyl chloride filters were compared using the same cell lysis conditions, their relative sensitivity to detect DNA-protein versus DNA-interstrand crosslinking were comparable. The modified alkaline elution protocol for the measurement of DNA damage in vivo therefore appears, in most cases, to produce results comparable with those obtained by the conventional protocols.  相似文献   

7.
A fluorometric procedure is described that can be used in the alkaline elution technique for the measurement of DNA damage in cells whose DNA is not, or cannot be, radioactively labeled. The procedure can be used for the measurement of DNA single-strand breaks, DNA-protein crosslinking, and DNA interstrand crosslinking, and possibly other DNA lesions produced in unlabeled cells. Although developed for the measurement of DNA damage in tissue-cultured cells, the technique is applicable to the measurement of DNA damage in cells isolated from tissues exposed to DNA damaging agents in vivo.  相似文献   

8.
We have used the technique of alkaline elution to study DNA interstrand crosslinking in 9L rat brain tumor cells treated with combinations of 1,3-bis(2-chloroethyl)-1-nitrosourea (BCNU) and X rays. Irradiation with doses as low as 50 rad of X rays immediately or 6 hr after a 1-hr treatment with 60, 80, or 100 microM BCNU produced a significant increase in BCNU-induced DNA interstrand crosslinking. If cells were irradiated before BCNU treatment, the amount of crosslinking was not affected compared with BCNU alone. Cell survival experiments using 600 rad of X rays and 1-hr treatments with 0-30 microM BCNU were also performed. As found in the crosslinking studies, irradiation immediately or 6 hr after the BCNU treatment produced enhanced cell kill, but irradiation 6 hr before BCNU treatment did not produce enhanced cell kill. Therefore, the X-ray-mediated increase in BCNU-induced DNA interstrand crosslinking may be the mechanism through which cell kill is increased by combination treatment with the agents.  相似文献   

9.
10.
11.
Measurement of infrequent DNA double-strand breaks (DSB) in mammalian cells is essential for the understanding of cell damage by ionizing radiation and many DNA-reactive drugs. One of the most important assays for measuring DSB in cellular DNA is filter elution. This study is an attempt to determine whether standard concepts of fluid mechanics can yield a self-consistent model of this process. Major assumptions of the analysis are reptation through a channel formed by surrounding strands, with only strand ends captured by filter pores. Both viscosity and entanglement with surrounding strands are considered to determine the resistance to this motion. One important result is that the average elution time of a strand depends not only on its length, but also on the size distribution of the surrounding strands. This model is consistent with experimental observations, such as the dependence of elution kinetics upon radiation dose, but independence from the size of the DNA sample up to a critical filter loading, and possible overlap of elution times for strands of different length. It indicates how the dependence of elution time on the flow rate could reveal the relative importance of viscous and entanglement resistance, and also predicts the consequences of using different filters.  相似文献   

12.
Interaction of novel bis(platinum) complexes with DNA.   总被引:3,自引:2,他引:1       下载免费PDF全文
Bis(platinum) complexes [[cis-PtCl2(NH3)]2H2N(CH2)nNH2] are a novel series of potential anticancer agents in which two cis-diamine(platinum) groups are linked by an alkyldiamine of variable length. These complexes are potentially tetrafunctional, a unique feature in comparison with known anticancer agents. Studies of DNA interactions of bis(platinum) complexes in comparison with cisplatin demonstrate significant differences. Investigations of interstrand crosslink formation in which crosslinking of a short DNA fragment is detected by gel electrophoresis under denaturing conditions demonstrate that interstrand crosslinks are 250 fold more frequent among bis(platinum) adducts than among cisplatin-derived adducts under the conditions examined. These investigations indicate that bis(platinum) adducts contain a high frequency of structurally novel interstrand crosslinks formed through binding of the two platinum centers to opposite DNA strands. Unlike cisplatin, bis(platinum) complex binding does not unwind supercoiled DNA. Studies with the E. coli UvrABC nuclease complex demonstrate that both linear and supercoiled DNA containing bis(platinum) adducts are subject to incision by the repair enzyme complex. Initial studies using UvrABC nuclease as a probe to define the base and sequence specificity for bis(platinum) complex binding suggest that the specificity of the bis(platinum)s is similar, but not identical, to that of cisplatin.  相似文献   

13.
Chang CL  Lando DY  Fridman AS  Hu CK 《Biopolymers》2012,97(10):807-817
Although many anticancer drugs exert their biological activity by forming DNA interstrand crosslinks (ICLs), the thermodynamics of biologically relevant long crosslinked DNAs has not been intensively studied in contrast to short duplexes. Here, we carry out computer modeling of the shift of melting temperature of long DNAs caused by ICLs taking into account crosslinking effect in itself and concomitant local alterations in the free energy (δG) of the helix-coil transition at sites of ICLs. Depending on δG, DNA interstrand crosslinks at per nucleotide concentration r = 0.05 can change the melting temperature by value from -17 to +47°C, and the influence weakly depends on DNA sequence and GC content. A change in melting temperature caused by introduction of interstrand crosslinking in modified DNA at sites of modifications also depends on δG and varies from 0 to +12°C. Comparison with experiment for the three platinum crosslinking compounds demonstrates utility of the theoretical method for understanding how crosslinking compounds can influence the melting behavior. On the basis of the method, interdependence of local distortions and crosslinking in itself was studied for thermal effect of ICLs. A method for evaluating the nature of the structural alteration that produces a change in thermal stability for short crosslinked DNA is also proposed. The methods can be used for comparative thermodynamic characterization of various DNA crosslinking agents.  相似文献   

14.
The formation and disappearance of DNA single-strand breaks (SSB) produced by 4-demethoxydaunorubicin (4-dmDR) in P388 murine leukemia cells and in a resistant subline were examined by alkaline elution methods in relation to cellular pharmacokinetics. DNA strand breaks produced by this intercalating agent were essentially DNA lesions mediated by topoisomerase II, even at very high drug concentrations, since they were detected as protein-associated breaks by filter elution. Similarly, the appearance of delayed DNA breaks in cells exposed to high concentrations, following drug removal, showed predominance of protein-associated breaks, thus supporting a similar mechanism of breakage induction. This finding indirectly suggests that, in this experimental model, free radical production makes little (if any) contribution to DNA damage, and also that DNA effects are not the consequence of early cell death. In contrast to a rapid disappearance of protein-associated strand breaks produced by intercalating agents and topoisomerase II inhibitors of different classes, DNA breaks induced by low concentrations of the anthracycline derivative are only partially reversible following drug removal, but they persisted and even increased with high concentrations. Thus, not only the extent of DNA breaks but also their persistence may contribute to the cytotoxic potency of anthracyclines. The importance of DNA lesions to cytotoxic action of the anthracycline is also emphasized by drug effect on the resistant line. A negligible effect on DNA of resistant cells was detected at drug concentrations lethal to sensitive cells. However, exposure to equitoxic drug concentrations resulted in a comparable amount of DNA breaks in sensitive and resistant cells. Although faster DNA rejoining in resistant cells may be in part attributable to increased efflux of drug, no correlation exists between cell drug accumulation and extent of DNA lesions. With equitoxic drug concentrations cellular drug content was higher in resistant cells, suggesting an intrinsic insensitivity of this variant to DNA cleavage effects of the anthracycline.  相似文献   

15.
Berdis AJ 《Biochemistry》2008,47(32):8253-8260
Numerous pathological states, including cancer, autoimmune diseases, and viral/bacterial infections, are often attributed to uncontrollable DNA replication. Inhibiting this essential biological process provides an obvious therapeutic target against these diseases. A logical target is the DNA polymerase, the enzyme responsible for catalyzing the addition of mononucleotides to a growing polymer using a DNA or RNA template as a guide for directing each incorporation event. This review provides a summary of therapeutic agents that target polymerase activity. A discussion of the biological function and mechanism of polymerases is first provided to illustrate the strategy for therapeutic intervention as well as the rational design of various nucleoside analogues that inhibit various polymerases associated with viral infections and cancer. The development of nucleoside and non-nucleoside inhibitors as antiviral agents is discussed with particular emphasis on their mechanism of action, structure-activity relationships, toxicity, and mechanism of resistance. In addition, commonly used anticancer agents are described to illustrate the similarities and differences associated with various nucleoside analogues as therapeutic agents. Finally, new therapeutic approaches that include the inhibition of selective polymerases involved in DNA repair and/or translesion DNA synthesis as anticancer agents are discussed.  相似文献   

16.
Kingma PS  Burden DA  Osheroff N 《Biochemistry》1999,38(12):3457-3461
Despite the prevalence of topoisomerase II-targeted drugs in cancer chemotherapy and the impact of drug resistance on the efficacy of treatment, interactions between these agents and topoisomerase II are not well understood. Therefore, to further define interactions between anticancer drugs and the type II enzyme, a nitrocellulose filter assay was used to characterize the binding of etoposide to yeast topoisomerase II. Results indicate that etoposide binds to the enzyme in the absence of DNA. The apparent Kd value for the interaction was approximately 5 microM drug. Etoposide also bound to ytop2H1012Y, a mutant yeast type II enzyme that is approximately 3-4-fold resistant to etoposide. However, the apparent Kd value for the drug (approximately 16 microM) was approximately 3 times higher than that determined for wild-type topoisomerase II. Although it has been widely speculated that resistance to topoisomerase II-targeted anticancer agents results from a decreased drug-enzyme binding affinity, these data provide the first direct evidence in support of this hypothesis. Finally, the ability of yeast topoisomerase II to bind etoposide was dependent on the presence of the hydroxyl moiety of Tyr783, suggesting specific interactions between etoposide and the active site residue that is involved in DNA scission.  相似文献   

17.
The synthesis of 1,3-bis-[3,4,5,6-tetrahydroxyazepane-N-p-phenoxy] and 1,3-bis-[3,4,5,6-tetrahydroxyazepane-N-p-benzyloxy] propanes is reported. These compounds have been prepared to investigate the potential of incorporating iminosugars as useful recognition elements in DNA minor groove binding agents. The compounds were shown to have very moderate binding affinities for DNA in thermal denaturation and ethidium bromide displacement assays when compared with propamidine. They were also found to possess some in vitro anticancer activity that did not correlate with their DNA binding affinity.  相似文献   

18.
Chinese hamster ovary cells were irradiated with 250 kVp X rays and analyzed for the presence of DNA double-strand breaks using either polycarbonate filter elution or pulsed-field agarose gel electrophoresis at neutral pH. Reduction in DNA length detected by filter elution was produced as a nonlinear function of increasing radiation dose, with a quasi-threshold at low total dose, and as a first-order function of increasing radiation dose as detected by gel electrophoresis. The quasi-threshold observed with filter elution was eliminated when nuclei were isolated from irradiated cells and their chromatin relaxed in a buffer containing low-molarity monovalent cation prior to analysis by filter elution. The results suggest either that the chemical structure of the DNA double-strand breaks produced by low-LET radiation necessitates a DNA relaxation step before they can be detected accurately by filter elution, or that at low total radiation dose a DNA complex forms on the polycarbonate filter.  相似文献   

19.
MicroRNAs (miRNAs) are endogenous small non-coding RNAs (ncRNAs) which play important regulatory roles in physiological processes such as cellular differentiation, proliferation, development, apoptosis and stem cell self-renewal. An increasing number of papers have clearly claimed their involvement in cancer, providing, in some cases, also the molecular mechanisms implicated. Several studies led to the conclusion that miRNAs can be effectively used as anticancer agents alone or in combination with existing anticancer drugs. In particular, miRNAs can be effectively used to overcome drug resistance, one of the main factors responsible for anticancer treatment insuccess. One of the main questions remains how to modulate the expression of miRNAs in cancer cells. Interestingly, a few studies have shown that the expression of miRNAs is affected by drugs (including some drugs currently used as anticancer agents), therefore providing the rationale for an intertwined scenario in which miRNAs can be modulated by drugs and, in turn, can affect drug sensitivity of cancer cells.  相似文献   

20.
On the basis of qualitative assays, quiescent lymphocytes have previously been reported to have numerous DNA strand breaks, which are thought to be repaired after mitogenic stimulation by a process associated with poly(ADP-ribosyl)ation. Using alkaline elution, a very sensitive assay for quantifying DNA single-strand breakage, we found no evidence for a high frequency of DNA strand breaks in unstimulated human peripheral blood lymphocytes. No differences in elution profiles were observed between unstimulated lymphocytes and lymphocytes 4 or 48 h after addition of the mitogen phytohemagglutinin (PHA). Furthermore, addition of 3-aminobenzamide (3AB), an inhibitor of poly(ADP-ribose) synthetase, or aphidicolin, an inhibitor of DNA polymerase alpha, did not increase the amount of DNA eluting from the filter after PHA stimulation. In contrast to reported studies of mouse splenic lymphocytes, we found that human lymphocytes were able to replicate and divide in the presence of the ADP-ribosylation inhibitor. Human lymphocytes were also capable of proliferating in nicotinamide-free medium, with or without 3AB, indicating that ADP-ribosylation is not a requirement for lymphocyte differentiation. We therefore consider it unlikely that peripheral human lymphocytes contain significant numbers of strand breaks that play any role in their stimulation or differentiation in response to PHA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号