首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Dynamin, the founding member of a family of dynamin-like proteins (DLPs) implicated in membrane remodelling, has a critical role in endocytic membrane fission events. The use of complementary approaches, including live-cell imaging, cell-free studies, X-ray crystallography and genetic studies in mice, has greatly advanced our understanding of the mechanisms by which dynamin acts, its essential roles in cell physiology and the specific function of different dynamin isoforms. In addition, several connections between dynamin and human disease have also emerged, highlighting specific contributions of this GTPase to the physiology of different tissues.  相似文献   

2.
3.
Small GTPase 'Rop': molecular switch for plant defense responses   总被引:7,自引:0,他引:7  
Agrawal GK  Iwahashi H  Rakwal R 《FEBS letters》2003,546(2-3):173-180
The conserved Rho family of GTPases (Rho, Rac, and Cdc42) in fungi and mammals has emerged as a key regulator of diverse cellular activities, such as cytoskeletal rearrangements, programmed cell death, stress-induced signaling, and cell growth and differentiation. In plants, a unique class of Rho-like proteins, most closely related to mammalian Rac, has only been found and termed 'Rop' (Rho-related GTPase from plant [Li et al. (1998) Plant Physiol. 118, 407-417; Yang (2002) Plant Cell 14, S375-S388]). ROPs have been implicated in regulating various plant cellular responses including defense against pathogens. It has been shown that ROPs, like mammalian Rac, trigger hydrogen peroxide production and hence the 'oxidative burst', a crucial component associated with the cell death, most likely via activation of nicotinamide adenine dinucleotide phosphate oxidase in both monocotyledonous and dicotyledonous species. Recent studies have established that ROPs also function as a molecular switch for defense signaling pathway(s) linked with disease resistance. As discerning the defense pathway remains one of the priority research areas in the field of plant biology, this review is therefore particularly focused on recent progresses that have been made towards understanding the plant defense responses mediated by ROPs.  相似文献   

4.
Dynamin2 GTPase and Cortactin Remodel Actin Filaments   总被引:1,自引:0,他引:1  
The large GTPase dynamin, best known for its activities that remodel membranes during endocytosis, also regulates F-actin-rich structures, including podosomes, phagocytic cups, actin comet tails, subcortical ruffles, and stress fibers. The mechanisms by which dynamin regulates actin filaments are not known, but an emerging view is that dynamin influences F-actin via its interactions with proteins that interact directly or indirectly with actin filaments. We show here that dynamin2 GTPase activity remodels actin filaments in vitro via a mechanism that depends on the binding partner and F-actin-binding protein, cortactin. Tightly associated actin filaments cross-linked by dynamin2 and cortactin became loosely associated after GTP addition when viewed by transmission electron microscopy. Actin filaments were dynamically unraveled and fragmented after GTP addition when viewed in real time using total internal reflection fluorescence microscopy. Cortactin stimulated the intrinsic GTPase activity of dynamin2 and maintained a stable link between actin filaments and dynamin2, even in the presence of GTP. Filaments remodeled by dynamin2 GTPase in vitro exhibit enhanced sensitivity to severing by the actin depolymerizing factor, cofilin, suggesting that GTPase-dependent remodeling influences the interactions of actin regulatory proteins and F-actin. The global organization of the actomyosin cytoskeleton was perturbed in U2-OS cells depleted of dynamin2, implicating dynamin2 in remodeling actin filaments that comprise supramolecular F-actin arrays in vivo. We conclude that dynamin2 GTPase remodels actin filaments and plays a role in orchestrating the global actomyosin cytoskeleton.Controlled assembly and disassembly of actin filaments underlies movement, shape, division, trafficking of lipids and proteins of the cell and pathogenesis by infectious bacteria and viruses. Several proteins and signaling circuits modulate actin filament dynamics, including proteins that nucleate formation of new filaments, filament cross-linking proteins that stabilize branched and bundled filament arrays, and depolymerizing factors that promote filament disassembly (1). Studies with reconstituted systems show that a single actin nucleating factor, such as the Arp2/3 complex together with a nucleation-promoting factor, a barbed end capping protein to preserve the actin monomer pool and promote nucleation, and a filament disassembly factor, such as ADF/cofilin, are sufficient to establish a dynamic dendritic actin network in vitro that mimics many properties of actin networks at the leading edge of migrating cells (24). However, the mechanisms for coordinating the organization and dynamics of actin filaments associated with higher-order cellular structures such as the subcortical F-actin network, F-actin at focal adhesions, and actomyosin arrays are not as well understood.Considerable evidence indicates that the large GTPase dynamin, a key mediator of membrane remodeling and fission, also influences actin filaments (reviewed in Refs. 57). Although the mechanisms are unknown, dynamin could influence actin filaments via its interactions with a number of proteins that directly or indirectly regulate actin filament assembly, filament stability, or filament organization. For example, several protein scaffolds biochemically link dynamin and the Arp2/3 complex activating factor, N-WASP, suggesting that the machinery for de novo actin assembly may be targeted or activated by dynamin (6, 8, 9). Dynamin2 is associated with several dynamic F-actin-containing structures in vivo, including podosomes, F-actin comet tails, phagocytic cups, dynamic cortical ruffles, and pedestal structures elaborated by enteropathogenic Escherichia coli (1020). Cortactin, which directly binds both dynamin and actin filaments, is associated with many of the same dynamic actin structures as dynamin (5, 7) and is required for both clathrin-dependent and -independent endocytosis (21, 22). Thus, dynamin-cortactin interaction may be an important link between actin filaments and dynamin during formation or turnover of F-actin-rich structures.Considerable evidence supports the notion that GTP hydrolysis by dynamin catalyzes membrane fission activity via GTPase-dependent changes in conformation (23, 24) or via GTPase-dependent cycles of assembly and disassembly (25, 26). We hypothesize that GTPase-dependent changes in dynamin linked via its interacting proteins to actin filaments or actin regulators could similarly influence actin filaments. Overexpressed, dominant negative dynamin mutant proteins impaired in binding or hydrolyzing GTP (most often the dynamin-K44A mutation) perturb a variety of F-actin-rich cellular structures, including stress fibers and focal adhesions (27, 28), dendritic spines of neurons (29), podosomes (12, 30), actin comet tails (13, 14), phagocytic cups and bacteria-induced pedestal structures (16, 19), and dynamic cortical ruffles (15, 17). In addition, F-actin of stress fibers and overall cell morphology were perturbed in Clone9 cells expressing a mutant dynamin2 protein lacking the C-terminal proline-rich domain, the domain through which dynamin2 interacts with actin regulatory factors (11). Whereas existing data indicates that the specific effects of dynamin GTPase activity on F-actin structures are cell type- and structure-specific, a general conclusion is that dynamin GTPase activity influences the organization or turnover of a subset of actin filaments.To determine the mechanisms by which dynamin2 GTPase activity influences actin filaments, we developed biochemical and microscopic approaches to quantitatively assess and observe GTPase-dependent effects on actin filaments formed in vitro with Arp2/3 complex, cortactin, and dynamin2. The activities of dynamin2 on actin filaments in vivo were examined in cells with disrupted dynamin2 function using siRNA2-mediated suppression or pharmacologic inhibition. We report that dynamin2 GTPase, together with cortactin, functions as a dynamic actin filament remodeling complex that influences the global organization of the actomyosin cytoskeleton.  相似文献   

5.
Abstract: Synaptic vesicle recycling is a neuronal specialization of endocytosis that requires the GTPase activity of dynamin I and is triggered by membrane depolarization and Ca2+ entry. To establish the relationship between dynamin I GTPase activity and Ca2+, we used purified dynamin I and analyzed its interaction with Ca2+ in vitro. We report that Ca2+ bound to dynamin I and this was abolished by deletion of dynamin's C-terminal tail. Phosphorylation of dynamin I by protein kinase C promoted formation of a dynamin I tetramer and increased Ca2+ binding to the protein. Moreover, Ca2+ inhibited dynamin I GTPase activity after stimulation by phosphorylation or by phospholipids but not after stimulation with a GST-SH3 fusion protein containing the SH3 domain of phosphoinositide 3-kinase. These results suggest that in resting nerve terminals, phosphorylation of dynamin I by protein kinase C converts it to a tetramer that functions as a Ca2+-sensing protein. By binding to Ca2+, dynamin I GTPase activity is specifically decreased, possibly to regulate synaptic vesicle recycling.  相似文献   

6.
The GTPase activity of dynamin is obligatorily coupled, by a mechanism yet unknown, to the internalization of clathrin-coated endocytic vesicles. Dynamin oligomerizes in vitro and in vivo and both its mechanical and enzymatic activities appear to be mediated by this self-assembly. In this study we demonstrate that dynamin is characterized by a tetramer/monomer equilibrium with an equilibrium constant of 1.67 × 1017 M–3. Stopped-flow fluorescence experiments show that the association rate constant for 2(3)-O-N-methylanthraniloyl (mant)GTP is 7.0 × 10–5 M–1 s–1 and the dissociation rate constant is 2.1 s–1, whereas the dissociation rate constant for mantdeoxyGDP is 93 s–1. We also demonstrate the cooperativity of dynamin binding and GTPase activation on a microtubule lattice. Our results indicate that dynamin self-association is not a sufficient condition for the expression of maximal GTPase activity, which suggests that dynamin molecules must be in the proper conformation or orientation if they are to form an active oligomer.  相似文献   

7.
The EngA subfamily of essential bacterial GTPases has a unique domain structure consisting of two adjacent GTPase domains (GD1 and GD2) and a C-terminal domain. The structure of Thermotoga maritima Der bound to GDP determined at 1.9 A resolution reveals a novel domain arrangement in which the GTPase domains pack at either side of the C-terminal domain. Unexpectedly, the C-terminal domain resembles a KH domain, missing the distinctive RNA recognition elements. Conserved motifs of the nucleotide binding site of GD1 are integral parts of the GD1-KH domain interface, suggesting the interactions between these two domains are directly influenced by the GTP/GDP cycling of the protein. In contrast, the GD2-KH domain interface is distal to the GDP binding site of GD2.  相似文献   

8.
The GTPase dynamin is essential for clathrin-mediated endocytosis. Unlike most GTPases, dynamin has a low affinity for nucleotide, a high rate of GTP hydrolysis, and can self-assemble, forming higher order structures such as rings and spirals that exhibit up to 100-fold stimulated GTPase activity. The role(s) of GTP binding and/or hydrolysis in endocytosis remain unclear because mutations in the GTPase domain so far studied impair both. We generated a new series of GTPase domain mutants to probe the mechanism of GTP hydrolysis and to further test the role of GTP binding and/or hydrolysis in endocytosis. Each of the mutations had parallel effects on assembly-stimulated and basal GTPase activities. In contrast to previous reports, we find that mutation of Thr-65 to Ala (or Asp or His) dramatically lowered both the rate of assembly-stimulated GTP hydrolysis and the affinity for GTP. The assemblystimulated rate of hydrolysis was lowered by the mutation of Ser-61 to Asp and increased by the mutation of Thr-141 to Ala without significantly altering the Km for GTP. For some mutants and to a lesser extent for WT dynamin, self-assembly dramatically altered the Km for GTP, suggesting that conformational changes in the active site accompany self-assembly. Analysis of transferrin endocytosis rates in cells overexpressing mutant dynamins revealed a stronger correlation with both the basal and assembly-stimulated rates of GTP hydrolysis than with the calculated ratio of dynamin-GTP/free dynamin, suggesting that GTP binding is not sufficient, and GTP hydrolysis is required for clathrin-mediated endocytosis in vivo.  相似文献   

9.
Epigenetic mechanisms regulate genome activation in diverse events, including normal development and cancerous transformation. Centromeres are epigenetically designated chromosomal regions that maintain genomic stability by directing chromosome segregation during cell division. The histone H3 variant CENP-A resides specifically at centromeres, is fundamental to centromere function and is thought to act as the epigenetic mark defining centromere loci. Mechanisms directing assembly of CENP-A nucleosomes have recently emerged, but how CENP-A is maintained after assembly is unknown. Here, we show that a small GTPase switch functions to maintain newly assembled CENP-A nucleosomes. Using functional proteomics, we found that MgcRacGAP (a Rho family GTPase activating protein) interacts with the CENP-A licensing factor HsKNL2. High-resolution live-cell imaging assays, designed in this study, demonstrated that MgcRacGAP, the Rho family guanine nucleotide exchange factor (GEF) Ect2, and the small GTPases Cdc42 and Rac, are required for stability of newly incorporated CENP-A at centromeres. Thus, a small GTPase switch ensures epigenetic centromere maintenance after loading of new CENP-A.  相似文献   

10.
Dynamin is a 100 kDa GTPase required for endocytic-coated vesicle formation. Recombinant human neuronal dynamin (dynamin-1) was used for monoclonal antibody (mAb) production. Two mAbs, designated hudy-2 (for human dynamin) and hudy-4, were chosen for further study based on their differential ability to recognize dynamin-1 and its non-neuronal isoform, dynamin-2. Both bind to the proline-rich C-terminal domain (PRD) of dynamin and inhibit the ability of microtubules and grb2 to stimulate GTPase activity. Hudy-4 binds to an epitope within the last 20 amino acids of dynamin-1 and has no effect on its intrinsic GTPase activity. Hudy-2 binds to an epitope within amino acids 822-838 that is common to dynamin-1 and dynamin-2. Hudy-2 stimulates dynamin's intrinsic GTPase activity in a manner proportional to the valency of the immunoglobulin (Ig) G. Crosslinking IgGs with secondary antibodies caused a 2-fold increase in GTPase activity, while F(ab)s were inactive. Importantly, our findings suggest that the stimulation of dynamin GTPase activity by multivalent proteins which bind in vitro to the PRD may not be a valid criterion on its own for assessing the in vivo functional significance of these interactions.  相似文献   

11.
Abundant evidence has shown that the GTPase dynamin is required for receptor-mediated endocytosis, but its exact role in endocytic clathrin-coated vesicle formation remains to be established. Whereas dynamin GTPase domain mutants that are defective in GTP binding and hydrolysis are potent dominant-negative inhibitors of receptor-mediated endocytosis, overexpression of dynamin GTPase effector domain (GED) mutants that are selectively defective in assembly-stimulated GTPase-activating protein activity can stimulate the formation of constricted coated pits and receptor-mediated endocytosis. These apparently conflicting results suggest that a complex relationship exists between dynamin's GTPase cycle of binding and hydrolysis and its role in endocytic coated vesicle formation. We sought to explore this complex relationship by generating dynamin GTPase mutants predicted to be defective at distinct stages of its GTPase cycle and examining the structural intermediates that accumulate in cells overexpressing these mutants. We report that the effects of nucleotide-binding domain mutants on dynamin's GTPase cycle in vitro are not as predicted by comparison to other GTPase superfamily members. Specifically, GTP and GDP association was destabilized for each of the GTPase domain mutants we analyzed. Nonetheless, we find that overexpression of dynamin mutants with subtle differences in their GTPase properties can lead to the accumulation of distinct intermediates in endocytic coated vesicle formation.  相似文献   

12.
The major cellular inhibitors of the small GTPases of the Ras superfamily are the GTPase-activating proteins (GAPs), which stimulate the intrinsic GTP hydrolyzing activity of GTPases, thereby inactivating them. The catalytic activity of several GAPs is reportedly inhibited or stimulated by various phospholipids and fatty acids in vitro, indicating a likely physiological role for lipids in regulating small GTPases. We find that the p190 RhoGAP, a potent GAP for the Rho and Rac GTPases, is similarly sensitive to phospholipids. Interestingly, however, several of the tested phospholipids were found to effectively inhibit the RhoGAP activity of p190 but stimulate its RacGAP activity. Thus, phospholipids have the ability to "switch" the GTPase substrate preference of a GAP, thereby providing a novel regulatory mechanism for the small GTPases.  相似文献   

13.
14.
Cell polarity is fundamentally important to plant growth and development, yet the mechanism governing its development is understood poorly. Several studies have revealed a role for Rop GTPases in pollen polar tip growth. Rop is also localized to the future site of root hair development and the tip of root hairs, and expression of constitutively active Rop mutants impacts on the morphogenesis of tip-growing root hairs as well as on non-tip-growing cells. These findings highlight the importance of Rop as a common switch in cell polarity control in plants.  相似文献   

15.
Sordella R  Jiang W  Chen GC  Curto M  Settleman J 《Cell》2003,113(2):147-158
Mature adipocytes and myocytes are derived from a common mesenchymal precursor. While IGF-1 promotes the differentiation of both cell types, the signaling pathways that specify the distinct cell fates are largely unknown. Here, we show that the Rho GTPase and its regulator, p190-B RhoGAP, are components of a critical switch in the adipogenesis-myogenesis "decision." Cells derived from embryos lacking p190-B RhoGAP exhibit excessive Rho activity, are defective for adipogenesis, but undergo myogenesis in response to IGF-1 exposure. In vitro, activation of Rho-kinase by Rho inhibits adipogenesis and is required for myogenesis. The activation state of Rho following IGF-1 signaling is determined by the tyrosine-phosphorylation status of p190-B RhoGAP and its resulting subcellular relocalization. Moreover, adjusting Rho activity is sufficient to alter the differentiation program of adipocyte and myocyte precursors. Together, these results identify the Rho GTPase as an essential modulator of IGF-1 signals that direct the adipogenesis-myogenesis cell fate decision.  相似文献   

16.
The large GTPase dynamin has an important membrane scission function in receptor‐mediated endocytosis and other cellular processes. Self‐assembly on phosphoinositide‐containing membranes stimulates dynamin GTPase activity, which is crucial for its function. Although the pleckstrin‐homology (PH) domain is known to mediate phosphoinositide binding by dynamin, it remains unclear how this promotes activation. Here, we describe studies of dynamin PH domain mutations found in centronuclear myopathy (CNM) that increase dynamin's GTPase activity without altering phosphoinositide binding. CNM mutations in the PH domain C‐terminal α‐helix appear to cause conformational changes in dynamin that alter control of the GTP hydrolysis cycle. These mutations either ‘sensitize’ dynamin to lipid stimulation or elevate basal GTPase rates by promoting self‐assembly and thus rendering dynamin no longer lipid responsive. We also describe a low‐resolution structure of dimeric dynamin from small‐angle X‐ray scattering that reveals conformational changes induced by CNM mutations, and defines requirements for domain rearrangement upon dynamin self‐assembly at membrane surfaces. Our data suggest that changes in the PH domain may couple lipid binding to dynamin GTPase activation at sites of vesicle invagination.  相似文献   

17.
Synaptic plasticity: a molecular memory switch   总被引:5,自引:0,他引:5  
Recent work shows that two molecules with major roles in synaptic plasticity--CaMKII and the NMDA receptor--bind to each other. This binding activates CaMKII and triggers its autophosphorylation. In this state, it may act as a memory switch and strengthen synapses through enzymatic and structural processes.  相似文献   

18.
Apolipophorin III (apoLp-III) is a low molecular weight exchangeable apolipoprotein that plays an important role in the enhanced neutral lipid transport during insect flight. The protein exists in lipid-free and lipid-bound states. The lipid-bound state is the active form of the protein and occurs when apoLp-III associates with lipid-enriched lipophorins. ApoLp-III is well characterized in two evolutionally divergent species: Locusta migratoria and Manduca sexta. The two apolipoproteins interact in a similar manner with model phospholipid vesicles, and transform them into discoidal particles. Their low intrinsic stability in the lipid-free state likely facilitates interaction with lipid surfaces. Low solution pH also favors lipid binding interaction through increased exposure of hydrophobic surfaces on apoLp-III. While secondary structure is maintained under acidic conditions, apoLp-III tertiary structure is altered, adopting molten globule-like characteristics. In studies of apoLp-III interaction with natural lipoproteins, we found that apoLp-III is readily displaced from the surface of L. migratoria low-density lipophorin by recombinant apoLp-III proteins from either L. migratoria or M. sexta. Thus, despite important differences between these two apoLp-IIIs (amino acid sequence, presence of carbohydrate), their functional similarity is striking. This similarity is also illustrated by the recently published NMR solution structure of M. sexta apoLp-III wherein its molecular architecture closely parallels that of L. migratoria apoLp-III.  相似文献   

19.
Caenorhabditis elegans dynamin is expressed at high levels in neurons and at lower levels in other cell types, consistent with the important role that dynamin plays in the recycling of synaptic vesicles. Indirect immunofluorescence showed that dynamin is concentrated along the dorsal and ventral nerve cords and in the synapse-rich nerve ring. Green fluorescent protein (GFP) fused to the N terminus of dynamin is localized to synapse-rich regions. Furthermore, this chimera was detected along the apical membrane of intestinal cells, in spermathecae, and in coelomocytes. Dynamin localization was not affected by disrupting axonal transport of synaptic vesicles in the unc-104 (kinesin) mutant. To investigate the alternative mechanisms that dynamin might use for translocation to the synapse, we systematically tested the localization of different protein domains by fusion to GFP. Localization of each chimera was measured in one specific neuron, the ALM. The GTPase, a middle domain, and the putative coiled coil each contribute to synaptic localization. Surprisingly, the pleckstrin homology domain and the proline-rich domain, which are known to bind to coated-pit constituents, did not contribute to synaptic localization. The GFP-GTPase chimera was most strongly localized, although the GTPase domain has no known interactions with proteins other than with dynamin itself. Our results suggest that different dynamin domains contribute to axonal transport and the sequestration of a pool of dynamin molecules in synaptic cytosol.  相似文献   

20.
The Rop GTPase: an emerging signaling switch in plants   总被引:23,自引:0,他引:23  
G proteins are ubiquitous molecular switches in eukaryotic signal transduction, but their roles in plant signal transduction had not been clearly established until recent studies of the plant-specific Rop subfamily of RHO GTPases. Rop participates in signaling to an array of physiological processes including cell polarity establishment, cell growth, morphogenesis, actin dynamics, H2O2 generation, hormone responses, and probably many other cellular processes in plants. Evidence suggests that plants have developed unique molecular mechanisms to control this universal molecular switch through novel GTPase-activating proteins and potentially through a predominant class of plant receptor-like serine/threonine kinases. Furthermore, the mechanism by which Rop regulates specific processes may also be distinct from that for other GTPases. These advances have raised the exciting possibility that the elucidation of Rop GTPase signaling may lead to the establishment of a new paradigm for G protein-dependent signal transduction in plants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号