首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We tested the hypothesis that decreasing nasal air volume (i.e., increasing nasal turbinate blood volume) improves nasal air conditioning. We performed a randomized, two-way crossover study on the conditioning capacity of the nose in six healthy subjects in the supine and upright position. Cold, dry air (CDA) was delivered to the nose via a nasal mask, and the temperature and humidity of air were measured before it entered and after it exited the nasal cavity. The total water gradient (TWG) across the nose was calculated and represents the nasal conditioning capacity. Nasal volume decreased significantly from baseline without changing the mucosal temperature when subjects were placed in the supine position (P < 0.01). TWG in supine position was significantly lower than that in upright position (P < 0.001). In the supine position, nasal mucosal temperature after CDA exposure was significantly lower than that in upright position (P < 0.01). Our data show that placing subjects in the supine position decreased the ability of the nose to condition CDA compared with the upright position, in contrast to our hypothesis.  相似文献   

2.
Obesity alters regional ventilation in lateral decubitus position   总被引:1,自引:0,他引:1  
Alterations of regional ventilation were determined as a function of body position in five morbidly obese subjects using 81mKr to assess ventilation (V) and 127Xe at equilibrium to determine lung volume (V). With subjects in seated and supine positions, the left lung contributed an average of 43% of the total V/V. When the apical-basal gradient within each lung was examined in subjects in the seated position, V/V was greatest in the dependent (basal) regions in half of the subjects, whereas the others showed greater V/V near the upper lung regions. All obese subjects preferentially ventilated the nondependent lung in both the left and right lateral decubitus positions. In a control group of three nonobese subjects, V/V was found to be equally distributed between left and right lungs in both the seated and supine positions. In contrast with the results in the obese group, V/V was slightly greater in the dependent lung in both lateral decubitus positions. Although the combination of 127Xe images and He-dilution measurement of functional residual capacity in the lateral decubitus positions indicated a reduction in the volume of the dependent lung of the obese when compared with values in the seated position, other factors affecting the mechanical function of either the diaphragm or the intercostal muscles could also have produced these positional alterations of ventilation.  相似文献   

3.
Abdominal muscle activity was investigated during resting tidal breathing and speech production in upright and supine body positions in five male and five female young adult subjects. Results showed that patterns of abdominal electromyographic (EMG) activity were highly dependent on body position. Data for resting tidal breathing resembled those of previous investigations and revealed one sex-related finding. Data for speech production indicated that the lateral region of the abdomen was highly active in the upright position and occasionally active in the supine position. In the upright position, lateral EMG levels during speech production were characterized by generally higher levels in the lower than upper lateral sites and were almost always higher than during resting tidal breathing. In the supine position, EMG levels during speech production occasionally exceeded those associated with resting tidal breathing but were substantially lower than those associated with upright speech production. Abdominal EMG activity was most prevalent during loud speech production and during speech produced at low lung volumes. Findings are discussed in relation to current knowledge of respiratory mechanics and neural control.  相似文献   

4.
The exact role of boron in humans is not known although its supplementation causes several important metabolic and inflammatory changes. The objective of this study is to evaluate the possibility of an association between blood boron level and obesity in normal, overweight, obese, and morbidly obese subjects. A total number of 80 subjects, categorized into four groups based on their body mass index as normal, overweight, obese, and morbidly obese, were enrolled in this study. Age, sex, body mass index, and blood boron levels were recorded for each subject. Although the distribution of female and male subjects and blood boron levels were similar between groups, the mean age of normal subjects was significantly lower than the others (p?=?0.002). There was a significant relationship between age and quantitative values of body mass index for each subject (β?=?0.24; p?=?0.003). In addition, between blood boron levels and quantitative values of body mass index for each subject, a significant reverse relationship was detected (β?=??0.16; p?=?0.043). Although age seemed to be an important variable for blood boron level and body mass index, blood boron levels were shown to be lower in obese subjects in comparison to non-obese subjects.  相似文献   

5.
Effect of position and lung volume on upper airway geometry   总被引:7,自引:0,他引:7  
The occurrence of upper airway obstruction during sleep and with anesthesia suggests the possibility that upper airway size might be compromised by the gravitational effects of the supine position. We used an acoustic reflection technique to image airway geometry and made 180 estimates of effective cross-sectional area as a function of distance along the airway in 10 healthy volunteers while they were supine and also while they were seated upright. We calculated z-scores along the airway and found that pharyngeal cross-sectional area was smaller in the supine than in the upright position in 9 of the 10 subjects. For all subjects, pharyngeal cross-sectional area was 23 +/- 8% smaller in the supine than in the upright position (P less than or equal to 0.05), whereas glottic and tracheal areas were not significantly altered. Because changing from the upright to the supine position causes a decrease in functional residual capacity (FRC), six of these subjects were placed in an Emerson cuirass, which was evacuated producing a positive transrespiratory pressure so as to restore end-expiratory lung volume to that seen before the position change. In the supine posture an increase in end-expiratory lung volume did not change the cross-sectional area at any point along the airway. We conclude that pharyngeal cross-sectional area decreases as a result of a change from the upright to the supine position and that the mechanism of this change is independent of the change in FRC.  相似文献   

6.
Objective: To evaluate interactions among leptin, adiponectin, resistin, ghrelin, and proinflammatory cytokines [tumor necrosis factor receptors (TNFRs), interleukin‐6 (IL‐6)] in nonmorbid and morbid obesity. Research Methods and Procedures: We measured these hormones by immunoenzyme or radiometric assays in 117 nonmorbid and 57 morbidly obese patients, and in a subgroup of 34 morbidly obese patients before and 6 months after gastric bypass surgery. Insulin resistance by homeostasis model assessment, lipid profile, and anthropometrical measurements were also performed in all patients. Results: Average plasma lipids in morbidly obese patients were elevated. IL‐6, leptin, adiponectin, and resistin were increased and ghrelin was decreased in morbidly obese compared with nonmorbidly obese subjects. After adjusting for age, gender, and BMI in nonmorbidly obese, adiponectin was positively associated with HDLc and gender and negatively with weight (β = ?0.38, p < 0.001). Leptin and resistin correlated positively with soluble tumor necrosis factor receptor (sTNFR) 1 (β = 0.24, p = 0.01 and β = 0.28, p = 0.007). In the morbidly obese patients, resistin and ghrelin were positively associated with sTNFR2 (β = 0.39, p = 0.008 and β = 0.39, p = 0.01). In the surgically treated morbidly obese group, body weight decreased significantly and was best predicted by resistin concentrations before surgery (β = 0.45, p = 0.024). Plasma lipids, insulin resistance, leptin, sTNFR1, and IL‐6 decreased and adiponectin and ghrelin increased significantly. Insulin resistance improved after weight loss and correlated with high adiponectin levels. Discussion: TNFα receptors were involved in the regulatory endocrine system of body adiposity independently of leptin and resistin axis in nonmorbidly obese patients. Our results suggest coordinated roles of adiponectin, resistin, and ghrelin in the modulation of the obesity proinflammatory environment and that resistin levels before surgery treatment are predictive of the extent of weight loss after bypass surgery.  相似文献   

7.
Objective: To assess the main determinant of serum leptin concentration changes in morbidly obese patients treated by banded vertical gastroplasty. Research Methods and Procedures: Serum leptin and insulin concentrations, insulin resistance, BMI, body weight, and body fat mass in 18 obese women and 8 obese men treated by vertical banded gastroplasty were studied. Lean women and men subjects were used as controls. Results: Before surgery, serum leptin and insulin concentrations and insulin resistance index were significantly higher in morbidly obese patients than in control subjects. BMI, body fat mass, and serum triacylglycerol concentrations were also significantly higher in obese than in lean subjects. All of these parameters gradually decreased during 50 weeks after surgery. Univariate regression analysis displayed significant correlations between the following: serum leptin concentration and BMI (and body fat mass), serum leptin concentration and serum insulin concentration, and serum leptin concentration and insulin resistance index. Multivariate regression analysis indicated that only BMI was independently correlated with the decrease in serum leptin concentration. Discussion: Obtained data suggest the following: 1) vertical banded gastroplasty causes reduction of body weight, serum leptin and insulin concentration, insulin resistance, and serum triacylglycerol concentration; and 2) BMI is the main determinant of the circulating leptin concentration in morbidly obese women after anti‐obesity surgery.  相似文献   

8.
Morbidly obese individuals may have altered pulmonary diffusion during exercise. The purpose of this study was to examine pulmonary diffusing capacity for nitric oxide (DLNO) and carbon monoxide (DLCO) during exercise in these subjects. Ten morbidly obese subjects (age = 38 +/- 9 years, BMI = 47 +/- 7 kg/m(2), peak oxygen consumption or VO(2peak) = 2.4 +/- 0.4 l/min) and nine nonobese controls (age = 41 +/- 9 years, BMI = 23 +/- 2 kg/m(2), VO(2peak) = 2.6 +/- 0.9 l/min) participated in two sessions: the first measured resting O(2) and VO(2peak) for determination of wattage equating to 40, 75, and 90% oxygen uptake reserve (VO(2)R). The second session measured pulmonary diffusion from single-breath maneuvers of 5 s each, as well as heart rate (HR) and VO(2) over three workloads. DLNO, DLCO, and pulmonary capillary blood volume were larger in obese compared to nonobese groups (P 0.10). The morbidly obese have increased pulmonary diffusion per unit increase in VA compared with nonobese controls which may be due to a lower rise in VA per unit increase in VO(2) in the obese during exercise.  相似文献   

9.
We tested the hypothesis that peripheral vascular responses (in the lower and upper limbs) to application of lower body positive pressure (LBPP) are dependent on the posture of the subjects. We measured heart rate, stroke volume, mean arterial pressure, leg and forearm blood flow (using the Doppler ultrasound technique), and leg (LVC) and forearm (FVC) vascular conductance in 11 subjects (9 men, 2 women) without and with LBPP (25 and 50 mmHg) in supine and upright postures. Mean arterial pressure increased in proportion to increases in LBPP and was greater in supine than in upright subjects. Heart rate was unchanged when LBPP was applied to supine subjects but was reduced in upright ones. Leg blood flow and LVC were both reduced by LBPP in supine subjects [LVC: 4.8 (SD 4.0), 3.6 (SD 3.5), and 1.4 (SD 1.8) ml.min(-1).mmHg(-1) before LBPP and during 25 and 50 mmHg LBPP, respectively; P < 0.05] but were increased in upright ones [LVC: 2.0 (SD 1.2), 3.4 (SD 3.4), and 3.0 (SD 2.0) ml.min(-1).mmHg(-1), respectively; P < 0.05]. Forearm blood flow and FVC both declined when LBPP was applied to supine subjects [FVC: 1.3 (SD 0.6), 1.0 (SD 0.4), and 0.9 (SD 0.6) ml. min(-1).mmHg(-1), respectively; P < 0.05] but remained unchanged in upright ones [FVC: 0.7 (SD 0.4), 0.7 (SD 0.4), and 0.6 (SD 0.5) ml.min(-1).mmHg(-1), respectively]. Together, these findings indicate that the leg vascular response to application of LBPP is posture dependent and that the response differs in the lower and upper limbs when subjects assume an upright posture.  相似文献   

10.
This study used alterations in body position to identify differences in hemodynamic responses to passive exercise. Central and peripheral hemodynamics were noninvasively measured during 2 min of passive knee extension in 14 subjects, whereas perfusion pressure (PP) was directly measured in a subset of 6 subjects. Movement-induced increases in leg blood flow (LBF) and leg vascular conductance (LVC) were more than twofold greater in the upright compared with supine positions (LBF, supine: 462 ± 6, and upright: 1,084 ± 159 ml/min, P < 0.001; and LVC, supine: 5.3 ± 1.2, and upright: 11.8 ± 2.8 ml·min?1 ·mmHg?1, P < 0.002). The change in heart rate (HR) from baseline to peak was not different between positions (supine: 8 ± 1, and upright: 10 ± 1 beats/min, P = 0.22); however, the elevated HR was maintained for a longer duration when upright. Stroke volume contributed to the increase in cardiac output (CO) during the upright movement only. CO increased in both positions; however, the magnitude and duration of the CO response were greater in the upright position. Mean arterial pressure and PP were higher at baseline and throughout passive movement when upright. Thus exaggerated central hemodynamic responses characterized by an increase in stroke volume and a sustained HR response combined to yield a greater increase in CO during upright movement. This greater central response coupled with the increased PP and LVC explains the twofold greater and more sustained increase in movement-induced hyperemia in the upright compared with supine position and has clinical implications for rehabilitative medicine.  相似文献   

11.
Reduction in total lung capacity (TLC) in obese men is associated with restricted expansion of the thoracic cavity at full inflation. We hypothesized that thoracic expansion was reduced by the load imposed by increased total trunk fat volume or its distribution. Using MRI, we measured internal and subcutaneous trunk fat and total abdominal and thoracic volumes at full inflation in 14 obese men [mean age: 52.4 yr, body mass index (BMI): 38.8 (range: 36-44) kg/m(2)] and 7 control men [mean age: 50.1 yr, BMI: 25.0 (range: 22-27.5) kg/m(2)]. TLC was measured by multibreath helium dilution and was restricted (<80% of the predicted value) in six obese men (the OR subgroup). All measurements were made with subjects in the supine position. Mean total trunk fat volume was 16.65 (range: 12.6-21.8) liters in obese men and 6.98 (range: 3.0-10.8) liters in control men. Anthropometry and mean total trunk fat volumes were similar in OR men and obese men without restriction (the ON subgroup). Mean total intraabdominal volume was 9.41 liters in OR men and 11.15 liters in ON men. In obese men, reduced thoracic expansion at full inflation and restriction of TLC were not inversely related to a large volume of 1) intra-abdominal or total abdominal fat, 2) subcutaneous fat volume around the thorax, or 3) total trunk fat volume. In addition, trunk fat volumes in obese men were not inversely related to gas volume or estimated intrathoracic volume at supine functional residual capacity. In conclusion, this study failed to support the hypotheses that restriction of TLC or impaired expansion of the thorax at full inflation in middle-aged obese men was simply a consequence of a large abdominal volume or total trunk fat volume or its distribution.  相似文献   

12.

Background  

Obesity is a common disorder with a negative impact on IVF treatment outcome. It is not clear whether morbidly obese women (BMI >= 35 kg/m2) respond to treatment differently as compared to obese women (BMI = 30–34.9 kg/m2) in IVF. Our aim was to compare the outcome of IVF or ICSI treatments in obese patients to that in morbidly obese patients.  相似文献   

13.
Breast shape is best evaluated while the patient is in an upright position. However, many surgeons are reluctant to have a patient sit upright during surgery because of concerns over the patient's hemodynamic instability. Therefore, the purpose of this study was to prospectively measure cardiovascular parameters, including heart rate and mean arterial pressure, in a series of 30 patients who were placed upright during various aesthetic and reconstructive breast procedures. Data regarding the number of times the patient was placed upright and the amount of time spent in the upright position were also recorded. Measurements were obtained immediately before and after elevating the head of the bed to 80 to 90 degrees during the procedure. The average supine mean arterial pressure was 73 +/- 3 mmHg and that for an upright position was 70 +/- 3 mmHg. The average supine heart rate was 73 +/- 4 beats per minute and that for an upright position was 76 +/- 4 beats per minute. Although the difference between these results is statistically significant (p < 0.05), there was no clinical significance to placing patients in an upright seated position in this study, and no patient had to be laid back down because of hemodynamic instability. Therefore, the upright seated position is strongly advocated for intraoperative evaluation of breast shape, and a safe and effective method to accomplish this is described.  相似文献   

14.
15.
End-diastolic volume and left ventricular stroke volume are increased in the supine compared with upright position, but the contribution of long-axis (LAS) and short-axis shortening (SAS) to these changes with change in posture has not been established. We examined long- and short-axis motion and dimensions with echocardiography in 10 healthy subjects in the upright and supine position. Long-axis length at end diastole was almost identical, whereas the diastolic short-axis diameter was increased in the supine position. At end systole, there was a decreased long-axis length and increased short-axis length in the supine vs. upright position. Both LAS and SAS were enhanced in supine vs. upright positions [LAS: 9.3 +/- 2.2 vs. 15.1 +/- 3.1 mm (P < 0.001); SAS: 12.7 +/- 3.2 vs. 16.3 +/- 2.8 mm (P < 0.001)], presumably via Starling mechanisms. LAS increased more in the lateral part of the mitral annulus than in the septal part [7.7 +/- 2.6 vs. 4.0 +/- 2.8 mm (P < 0.006)], which implies that the more spherical form, in the supine position, induces more stretch at the lateral free wall than in the ventricular septum. These findings support the notion that Starling mechanisms affect systolic LAS.  相似文献   

16.
Central venous pressure in humans during short periods of weightlessness   总被引:1,自引:0,他引:1  
Central venous pressure (CVP) was measured in 14 males during 23.3 +/- 0.6 s (mean +/- SE) of weightlessness (0.00 +/- 0.05 G) achieved in a Gulfstream-3 jet aircraft performing parabolic flight maneuvers and during either 60 or 120 s of +2 Gz (2.0 +/- 0.1 Gz). CVP was obtained using central venous catheters and strain-gauge pressure transducers. Heart rate (HR) was measured simultaneously in seven of the subjects. Measurements were compared with values obtained inflight at 1 G with the subjects in the supine (+1 Gx) and upright sitting (+1 Gz) positions, respectively. CVP was 2.6 +/- 1.5 mmHg during upright sitting and 5.0 +/- 0.7 mmHg in the supine position. During weightlessness, CVP increased significantly to 6.8 +/- 0.8 mmHg (P less than 0.005 compared with both upright sitting and supine inflight). During +2 Gz, CVP was 2.8 +/- 1.4 mmHg and only significantly lower than CVP during weightlessness (P less than 0.05). HR increased from 65 +/- 7 beats/min at supine and 70 +/- 5 beats/min during upright sitting to 79 +/- 7 beats/min (P less than 0.01 compared with supine) during weightlessness and to 80 +/- 6 beats/min (P less than 0.01 compared with upright sitting and P less than 0.001 compared with supine) during +2 Gz. We conclude that the immediate onset of weightlessness induces a significant increase in CVP, not only compared with the upright sitting position but also compared with the supine position at 1 G.  相似文献   

17.
《Endocrine practice》2015,21(2):107-114
ObjectiveThis study evaluated changes in thyroid compartment incision site locations with patient positioning to define a reliable method for placing the scar in the optimal vertical location.MethodsThe optimal incision location was marked with the patient sitting upright before surgery. The distance from the sternal notch to this mark was measured with the patient in the upright, supine, and final surgical positions.ResultsComplete data were available for 104 procedures. The mean distances from the sternal notch to the incision site were 4.8, 21.5, and 31.9 mm in the sitting, supine, and surgical positions, respectively. Each of these distances were significantly different from one another (P < .0001) and were independent of patient age, sex, body mass index (BMI), or height.ConclusionsCutaneous cervical landmarks migrate significantly during patient positioning. Marking the thyroid compartment incision site while the patient is in an upright position results in a more predictable final scar location. (Endocr Pract. 2015;21:107-114)  相似文献   

18.
We measured the regional distribution of pulmonary extravascular and interstitial water to examine the possibility that regional differences in microvascular pressure or tissue stress may cause regional differences in lung water. We placed chloralose-anesthetized dogs in an upright (n = 6) or supine (n = 7) position for 180 min. We injected 51Cr-labeled EDTA to equilibrate to the extracellular space and 125I-labeled albumin to equilibrate with plasma. At the end of the experiment, the lungs were removed, passively drained of blood, and inflated before rapid freezing. Lungs were divided into horizontal slices, and extravascular, interstitial, and plasma water, red cell volume, and dry lung weight were determined for each slice. We found that regional extravascular and interstitial water were constant throughout the lungs in both groups and that there were no significant differences between upright and supine dogs. There were no significant differences in hematocrit between slices. We conclude that gravity and body position have no measurable effect on either the total size of the extravascular and interstitial compartments or their regional distribution.  相似文献   

19.
We hypothesized that the performance of prior heavy exercise would speed the phase 2 oxygen consumption (VO2) kinetics during subsequent heavy exercise in the supine position (where perfusion pressure might limit muscle O2 supply) but not in the upright position. Eight healthy men (mean +/- SD age 24 +/- 7 yr; body mass 75.0 +/- 5.8 kg) completed a double-step test protocol involving two bouts of 6 min of heavy cycle exercise, separated by a 10-min recovery period, on two occasions in each of the upright and supine positions. Pulmonary O2 uptake was measured breath by breath and muscle oxygenation was assessed using near-infrared spectroscopy (NIRS). The NIRS data indicated that the performance of prior exercise resulted in hyperemia in both body positions. In the upright position, prior exercise had no significant effect on the time constant tau of the VO2 response in phase 2 (bout 1: 29 +/- 10 vs. bout 2: 28 +/- 4 s; P = 0.91) but reduced the amplitude of the VO2 slow component (bout 1: 0.45 +/- 0.16 vs. bout 2: 0.22 +/- 0.14 l/min; P = 0.006) during subsequent heavy exercise. In contrast, in the supine position, prior exercise resulted in a significant reduction in the phase 2 tau (bout 1: 38 +/- 18 vs. bout 2: 24 +/- 9 s; P = 0.03) but did not alter the amplitude of the VO2 slow component (bout 1: 0.40 +/- 0.29 vs. bout 2: 0.41 +/- 0.20 l/min; P = 0.86). These results suggest that the performance of prior heavy exercise enables a speeding of phase 2 VO2 kinetics during heavy exercise in the supine position, presumably by negating an O2 delivery limitation that was extant in the control condition, but not during upright exercise, where muscle O2 supply was probably not limiting.  相似文献   

20.
We have examined the nonparallel changes in tampanic membrane temperatures (T ty) from the two ears in response to various changes in body and head positions. Upon assuming a lateral recumbent position, the T ty on the lower side increased while that on the upper side decreased. Pressure application over a wide area of the lateral chest only caused inconsistent and obscure asymmetric changes in T ty. A lateral flexion of the head with the subject sitting upright and a rotation of the head to the side in a supine position induced an increase in the T ty on the lower side compared to that on the upper side. The temperature and blood flow of the forehead often decreased on the lower side and increased on the upper side, although such responses were not always concomitant with the asymmetric changes in T ty. A dorsal flexion of the head with the subject in a reclining position caused a slight increase in the T ty, whereas raising the head upright induced a slight decrease in them. Two additional experiments were carried out with single photon emission computed tomography using 99mTc-hexamethylpropyleneamine oxime as tracer, and a slight, relative decrease in counts was noted in the right hemisphere during rotation of the head to the right. These results would strongly suggest that unilateral increases and decreases in T ty could have been caused by one-sided decreases and increases, respectively, in blood flow to the brain and/or the tympanic membrane, induced by a vasomotor reflex involving vestibular stimulation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号