首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Bruton's tyrosine kinase (Btk) is a cytoplasmic protein tyrosine kinase consisting of N-terminal pleckstrin homology (PH) domain followed by Tec homology (TH) domain, Src homology 3 and 2 (SH3 and SH2) domains, and a C-terminal kinase domain. Mutations in the human BTK gene cause the severe immunodeficiency disease X-linked agammaglobulinemia (XLA). The structural and functional basis of several XLA-causing mutations remains unknown, since only the structures of the PH and SH3 domains of human Btk are currently available. In this study, we overexpressed and purified a protein consisting of the SH3 and SH2 domains of human Btk for biochemical and structural analysis. The purified protein was only partially soluble and had a tendency to dimerize, which made it unsuitable for further studies. To overcome the problems of low solubility and dimerization, subdomain interactions were engineered without altering the function of the protein.  相似文献   

2.
BACKGROUND: The Btk (Bruton's tyrosine kinase) gene has been shown to be mutated in the human immunodeficiency disease, XLA (X-linked agammaglobulinemia). Btk is a member of the Tec family of cytosolic protein tyrosine kinases with distinct functional domains PH, TH, SH3, SH2, and kinase. Mutations have been observed in each of the Btk subdomains in XLA. We have analyzed the Btk gene in six XLA patients from five unrelated families. MATERIALS AND METHODS: DNA was prepared from the patients peripheral blood. The Btk exons including the junctional sequences were analyzed by single-strand conformation polymorphism (SSCP) followed by direct nucleotide sequencing after PCR-amplification. For structural analysis, the missense mutations were introduced into three-dimensional models of the PH and kinase domains of Btk and the outcome was predicted based on the knowledge of the protein function. RESULTS: Five novel mutations and two novel polymorphisms, all of which resulted from single-base alterations, were identified. Three of the five mutations were in the PH domain and two were in the kinase domain of Btk. Three of these mutations were of the missense type, two of which altered the same codon in the PH domain; the third one was located in the kinase domain. The fourth mutation was a point deletion in the PH domain causing a frameshift followed by premature termination. The fifth mutation was a splice donor-site mutation within the kinase domain which could result in an exon skipping. In four of the five instances, mothers of the patients were shown to be obligate carriers. In one instance, a sibling sister was identified as a heterozygote establishing her as a carrier. CONCLUSIONS: Functional consequences of the mutations causing frameshifts and altered splicing can be inferred directly. Functional consequences of the missense mutations were interpreted by 3-dimensional structural modeling of Btk domains. It is proposed that the two PH domain mutations will interfere with membrane localization while the kinase domain mutation will interfere with the enzymatic function of Btk. This study provides further insight into the role of Btk in XLA.  相似文献   

3.
Defects in Bruton's tyrosine kinase (Btk) are responsible for X chromosome-linked agammaglobulinemia in patients. Mutations in each of the structural domains of Btk have been detected in patients, yet a mechanistic explanation for most of these mutant phenotypes is lacking. To understand the possible role of the unique pleckstrin homology and Tec homology (PHTH) module of Btk, we have compared the enzymatic properties of full-length Btk and a Btk mutant lacking the PHTH module (BtkDeltaPHTH). Here we show that Btk and BtkDeltaPHTH have similar basal catalytic activity but very different abilities to recognize protein substrates. Furthermore, the catalytic domain of Btk is inactive, in contrast to the catalytic domain of the prototypical Src tyrosine kinase that retains full catalytic ability. These data suggest that the PHTH module plays an important role in protein substrate recognition, that Btk and Src likely have different interdomain organizations and regulations, and that alterations in substrate recognition might play a role in X chromosome-linked agammaglobulinemia.  相似文献   

4.
5.
Src homology 2 (SH2) domains recognize phosphotyrosine (pY)-containing sequences and thereby mediate their association to ligands. Bruton's tyrosine kinase (Btk) is a cytoplasmic protein tyrosine kinase, in which mutations cause a hereditary immunodeficiency disease, X-linked agammaglobulinemia (XLA). Mutations have been found in all Btk domains, including SH2. We have analyzed the structural and functional effects of six disease-related amino acid substitutions in the SH2 domain: G302E, R307G, Y334S, L358F, Y361C, and H362Q. Also, we present a novel Btk SH2 missense mutation, H362R, leading to classical XLA. Based on circular dichroism analysis, the conformation of five of the XLA mutants studied differs from the native Btk SH2 domain, while mutant R307G is structurally identical. The binding of XLA mutation-containing SH2 domains to pY-Sepharose was reduced, varying between 1 and 13% of that for the native SH2 domain. The solubility of all the mutated proteins was remarkably reduced. SH2 domain mutations were divided into three categories: 1) Functional mutations, which affect residues presumably participating directly in pY binding (R307G); 2) structural mutations that, via conformational change, not only impair pY binding, but severely derange the structure of the SH2 domain and possibly interfere with the overall conformation of the Btk molecule (G302E, Y334S, L358F, and H362Q); and 3) structural-functional mutations, which contain features from both categories above (Y361C).  相似文献   

6.
Bruton's tyrosine kinase (Btk) is considered an essential signal transducer in B-cells. Mutational defects are associated with a severe immunodeficiency syndrome, X-chromosome linked agammaglobulinemia (XLA). Here we show by coimmunoprecipitation that a member of the protein kinase C (PKC) family, PKCmu, is constitutively associated with Btk. Neither antigen receptor (Ig) crosslinking nor stimulation of B-cells with phorbol ester or H(2)O(2) affected Btk/PKCmu interaction. GST precipitation analysis revealed association of the Btk pleckstrin/Tec homology domain with PKCmu. Transient overexpression of PKCmu deletion mutants as well as expression of selected PKCmu domains in 293T cells revealed that both the kinase domain and the regulatory C1 region are independently capable of binding to the Btk PH-TH domain. These data show the existence of a PKCmu/Btk complex in vivo and identify two PKCmu domains that participate in Btk interaction.  相似文献   

7.
8.
Bruton's tyrosine kinase (Btk) is necessary for B-lymphocyte development. Mutation in the gene coding for Btk causes X-linked agammaglobulinemia (XLA) in humans. Similar to Btk, c-Abl is a tyrosine kinase shuttling between the cytoplasm and the nucleus where it is involved in different functions depending on the localization. In this report we describe for the first time that c-Abl and Btk physically interact and that c-Abl can phosphorylate tyrosine 223 in the SH3 domain of Btk. Interestingly, the Btk sequence matched a v-Abl substrate [correction] identified from a randomized peptide library and was also highly related to a number of previously found c-Abl substrates.  相似文献   

9.
10.
Bruton's tyrosine kinase (Btk), a nonreceptor cytoplasmic tyrosine kinase belonging to the Tec family of kinases, has been shown to be critical for B cell proliferation, differentiation, and signaling. Loss-of-function mutations in the Btk gene lead to X-linked agammaglobulinemia (XLA), a primary immunodeficiency in humans, and the less severe condition xid in mice. Although Btk is mainly localized in the cytoplasm under steady state conditions, it translocates to the plasma membrane upon growth factor stimulation and cross-linking of the B cell receptor. Nevertheless, in ectopically as well as endogenously Btk-expressing cells, it can also translocate to the nucleus. Deletion of the pleckstrin homology (PH) domain (DeltaPH1) leads, however, to an even redistribution of Btk within the nucleus and cytoplasm in the majority of transfected cells. In contrast, an SH3-deleted (DeltaSH3) mutant of Btk has been found to be predominantly nuclear. We also demonstrate that the nuclear accumulation of DeltaPH1 is dependent on Src expression. This nucleocytoplasmic shuttling is sensitive to the exportin 1/CRM1-inactivating drug, leptomycin B, indicating that Btk utilizes functional nuclear export signals. In addition, while the DeltaPH1 mutant of Btk was found to be active and tyrosine-phosphorylated in vivo, DeltaSH3 displayed decreased autokinase activity and was not phosphorylated. Our findings indicate that the nucleocytoplasmic shuttling of Btk has implications regarding potential targets inside the nucleus, which may be critical in gene regulation during B cell development and differentiation.  相似文献   

11.
Mutations in Bruton's tyrosine kinase (Btk) result in X-linked agammaglobulinemia (XLA) in humans and X-linked immunodeficiency (xid) in mice. While targeted disruption of the protein kinase C-beta (PKCbeta) gene in mice results in an immunodeficiency similar to xid, the overall tyrosine phosphorylation of Btk is significantly enhanced in PKCbeta-deficient B cells. We provide direct evidence that PKCbeta acts as a feedback loop inhibitor of Btk activation. Inhibition of PKCbeta results in a dramatic increase in B-cell receptor (BCR)-mediated Ca2+ signaling. We identified a highly conserved PKCbeta serine phosphorylation site in a short linker within the Tec homology domain of Btk. Mutation of this phosphorylation site led to enhanced tyrosine phosphorylation and membrane association of Btk, and augmented BCR and FcepsilonRI-mediated signaling in B and mast cells, respectively. These findings provide a novel mechanism whereby reversible translocation of Btk/Tec kinases regulates the threshold for immunoreceptor signaling and thereby modulates lymphocyte activation.  相似文献   

12.
13.
Bruton's tyrosine kinase (Btk) is tyrosine phosphorylated and enzymatically activated following ligation of the B-cell antigen receptor. These events are temporally regulated, and Btk activation follows that of various members of the Src family of protein tyrosine kinases, thus raising the possibility that Src kinases participate in the Btk activation process. We have evaluated the mechanism underlying Btk enzyme activation and have explored the potential regulatory relationship between Btk and Src protein kinases. We demonstrate in COS transient-expression assays that Btk can be activated through intramolecular autophosphorylation at tyrosine 551 and that Btk autophosphorylation is required for Btk catalytic functions. Coexpression of Btk with members of the Src family of protein tyrosine kinases, but not Syk, led to Btk tyrosine phosphorylation and activation. Using a series of point mutations in Blk (a representative Src protein kinase) and Btk, we show that Src kinases activate Btk through an indirect mechanism that requires membrane association of the Src enzymes as well as functional Btk SH3 and SH2 domains. Our results are compatible with the idea that Src protein tyrosine kinases contribute to Btk activation by indirectly stimulating Btk intramolecular autophosphorylation.  相似文献   

14.
15.
Pleckstrin homology domains of tec family protein kinases.   总被引:2,自引:0,他引:2  
Pleckstrin homology (PH) domains have been shown to be involved in different interactions, including binding to inositol compounds, protein kinase C isoforms, and heterotrimeric G proteins. In some cases, the most important function of PH domains is transient localisation of proteins to membranes, where they can interact with their partners. Tec family protein tyrosine kinases contain a PH domain. In Btk, also PH domain mutations lead into an immunodeficiency, X-linked agammaglobulinemia (XLA). A new disease-causing mutation was identified in the PH domain. The structures for the PH domains of Bmx, Itk, and Tec were modelled based on Btk structure. The domains seem to have similar scaffolding and electrostatic polarisation but to have some differences in the binding regions. The models provide new insight into the specificity, function, and regulation of Tec family kinases.  相似文献   

16.
Bruton's tyrosine kinase (Btk), a member of the Tec family of protein-tyrosine kinases, has been shown to be crucial for B cell development, differentiation, and signaling. Mutations in the Btk gene lead to X-linked agammaglobulinemia in humans and X-linked immunodeficiency in mice. Using a co-transfection approach, we present evidence here that Btk interacts physically with caveolin-1, a 22-kDa integral membrane protein, which is the principal structural and regulatory component of caveolae membranes. In addition, we found that native Bmx, another member of the Tec family kinases, is associated with endogenous caveolin-1 in primary human umbilical vein endothelial cells. Second, in transient transfection assays, expression of caveolin-1 leads to a substantial reduction in the in vivo tyrosine phosphorylation of both Btk and its constitutively active form, E41K. Furthermore, a caveolin-1 scaffolding peptide (amino acids 82--101) functionally suppressed the autokinase activity of purified recombinant Btk protein. Third, we demonstrate that mouse splenic B-lymphocytes express substantial amounts of caveolin-1. Interestingly, caveolin-1 was found to be constitutively phosphorylated on tyrosine 14 in these cells. The expression of caveolin-1 in B-lymphocytes and its interaction with Btk may have implications not only for B cell activation and signaling, but also for antigen presentation.  相似文献   

17.
Alterations of the Bruton's tyrosine kinase(Btk) gene are responsible for X-linked agammaglobulinemia (XLA). Although mutations in various regions were reported mainly in the Caucasian population, correlation between the locations of mutation and the clinical phenotypes remains unclear. We report 12 abnormalities of theBtk gene found in 12 unrelated families out of 14 XLA families in Japan and their clinical features. We utilized Southern blotting and single-strand conformation polymorphism (SSCP) analysis. Gene rearrangement in the kinase domain was identified in two patients by Southern blotting. Seven point mutations, two small deletions, and one small insertion were detected by SSCP and sequencing. The SSCP analysis also provided information about the carriers in these families. We found some clinical heterogeneity in the affected family members with the same gene mutation. Moreover, there is considerable inconsistency between the locations of gene aberrations and the immunological phenotypes. Some patients with a nonsense mutation, which may result in the lack of kinase domain, have detectable B cells and immunoglobulins. These identified alterations will provide valuable clues to theBtk protein function and the pathogenesis of XLA.  相似文献   

18.
The Tec family kinase, Itk (interleukin-2 tyrosine kinase), undergoes an in cis autophosphorylation on Y180 within its Src homology 3 (SH3) domain. Autophosphorylation of the Itk SH3 domain by the Itk kinase domain is strictly dependent on the presence of the intervening Src homology 2 (SH2) domain. A direct docking interaction between the Itk kinase and SH2 domains brings the Itk SH3 domain into the active site where Y180 is then phosphorylated. We now identify the residues on the surface of the Itk SH2 domain responsible for substrate docking and show that this SH2 surface mediates autophosphorylation in the full-length Itk molecule. The canonical phospholigand binding site on the SH2 domain is not involved in substrate docking, instead the docking site consists of side chains from three loop regions (AB, EF and BG) and part of the βD strand. These results are extended into Btk (Bruton's tyrosine kinase), a Tec family kinase linked to the B-cell deficiency X-linked agammaglobulinemia (XLA). Our results suggest that some XLA-causing mutations might impair Btk phosphorylation.  相似文献   

19.
BTKbase, mutation database for X-linked agammaglobulinemia (XLA)   总被引:4,自引:0,他引:4       下载免费PDF全文
X-linked agammaglobulinemia (XLA) is an immunodeficiency caused by mutations in the gene coding for Bruton's agammaglobulinemia tyrosine kinase (BTK). A database (BTKbase) of BTK mutations has been compiled and the recent update lists 368 entries from 318 unrelated families showing 228 unique molecular events. In addition to mutations the database lists also some polymorphisms and site-directed mutations. Each patient is given a unique patient identity number (PIN). Information is provided regarding the phenotype including symptoms. Mutations in all the five domains of BTK have been noticed to cause the disease, the most common event being missense mutations. The mutations appear almost uniformly throughout the molecule and frequently affect CpG sites forming arginine residues. These hot spots have generally pyrimidines 5'and purines 3'to the mutated cytosine. A decreased frequency of missense mutations was found in the TH, SH3 and the upper lobe of the kinase domain. The putative structural implications of all the missense mutations are given in the database showing 228 unique molecular events, including a novel missense mutation causing an R28C substitution as previously seen in the Xid mouse.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号